Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 21(11)2021 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-34199927

RESUMEN

A graphene oxide-coated in-fiber Mach-Zehnder interferometer (MZI) formed with a multimode fiber-thin core fiber-multimode fiber (MMF-TCF-MMF) is proposed and experimentally demonstrated for ammonia gas (NH3) sensing. The MZI structure is composed of two segments of MMF of length 2 mm, with a flame-tapered TCF between them as the sensing arm. The MMFs act as mode couplers to split and recombine light owing to the core diameter mismatch with the other fibers. A tapered TCF is formed by the flame melting taper method, resulting in evanescent wave leakage. A layer of graphene oxide (GO) is applied to the tapered region of the TCF to achieve gas adsorption. The sensor operates on the principle of changing the effective refractive index of the cladding mode of a fiber through changing the conductivity of the GO coating by adsorbed NH3 molecules, which gives rise to a phase shift and shows as the resonant dip shifts in the transmission spectrum. So the concentration of the ammonia gas can be obtained by measuring the dip shift. A wavelength-shift sensitivity of 4.97 pm/ppm with a linear fit coefficient of 98.9% is achieved for ammonia gas concentrations in the range of 0 to 151 ppm. In addition, we performed a repetitive dynamic response test on the sensor by charging/releasing NH3 at concentration of 200 ppm and a relative humidity test in a relative humidity range of 35% to 70%, which demonstrates the reusability and stability of the sensor.

2.
Int J Biol Macromol ; 224: 908-918, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36283558

RESUMEN

Several studies showed the efficacy of Lycium barbarum polysaccharide (LBP) in diabetic animals and patients with type 2 diabetes mellitus (T2DM). However, the mechanism of LBP in alleviating T2DM based on glucagon-like peptide 1 (GLP1) has not been suitably elucidated. GLP1 is an important peptide that plays a role in blood glucose homeostasis. Inhibition of sodium/glucose cotransporter 1 (SGLT1) can result in a net increase in GLP1 release. We found that LBP could reduce SGLT1 expression. Thus, the effects of LBP on the first- and second-phase secretion of GLP1 were systematically assessed in vitro using STC1 cells and in vivo using diabetic KKAy mice. LBP could induce the first-phase secretion of GLP1 by stimulating calcium ion influx in vitro and by inhibiting alpha-glucosidase activity in vivo. Regulation of Gcg gene expression by modulating the Wnt/ß-catenin and cAMP/Epac pathways, as well as inhibition of alpha-glucosidase activity, was responsible for the second-phase secretion of GLP1. LBP could stimulate GLP1 secretion; however, dipeptidyl peptidase 4 (DPP4) activated by LBP might offset the second-phase secretion of GLP1. Thus, we suggest considering the simultaneous use of LBP and a DPP4 inhibitor to stimulate slow, continuous GLP1 secretion. Further studies are warranted for in-depth mechanistic information.


Asunto(s)
Diabetes Mellitus Tipo 2 , Medicamentos Herbarios Chinos , Lycium , Ratones , Animales , Péptido 1 Similar al Glucagón/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , alfa-Glucosidasas , Hipoglucemiantes/farmacología , Lycium/metabolismo
3.
Nanomaterials (Basel) ; 9(3)2019 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-30845741

RESUMEN

In this paper, we look at the work of a classical plasmon-induced transparency (PIT) based on metasurface, including a periodic lattice with a cut wire (CW) and a pair of symmetry split ring resonators (SSR). Destructive interference of the 'bright-dark' mode originated from the CW and a pair of SSRs and resulted in a pronounced transparency peak at 1.148 THz, with 85% spectral contrast ratio. In the simulation, the effects of the relative distance between the CW and the SSR pair resonator, as well as the vertical distance of the split gap, on the coupling strength of the PIT effect, have been investigated. Furthermore, we introduce a continuous graphene strip monolayer into the metamaterial and by manipulating the Fermi level of the graphene we see a complete modulation of the amplitude and line shape of the PIT transparency peak. The near-field couplings in the relative mode resonators are quantitatively understood by coupled harmonic oscillator model, which indicates that the modulation of the PIT effect result from the variation of the damping rate in the dark mode. The transmitted electric field distributions with polarization vector clearly confirmed this conclusion. Finally, a group delay t g of 5.4 ps within the transparency window is achieved. We believe that this design has practical applications in terahertz (THz) functional devices and slow light devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA