Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanotechnology ; 35(7)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37976543

RESUMEN

The limited options of anabolic drugs restrict their application potential in osteoporosis treatment, despite their theoretical superiority in therapeutic efficacy over antiresorptive drugs. As a prevailing strategy, nano-delivery systems could offer a wider choice of anabolic drugs. In this study, calcium phosphate nanocomposites incorporated with simvastatin (Sim) with periostin-targeting ability were designed and prepared for osteoporosis treatment. Carboxymethyl dextran (CMD) as an anionic and hydrophilic dextran derivative was used to stabilize CaP. In addition, periosteum-targeted peptide (SDSSD) was further grafted on CMD to achieve the bone targeting function. In a one-step coordination assembly strategy, hydrophobic anabolic agent Sim and SDSSD-CMD graft (SDSSD-CMD) were incorporated into the CaP nanoparticles forming SDSSD@CaP/Sim nanocomposites. The resulting SDSSD@CaP/Sim possesses uniform size, great short-term stability and excellent biocompatibility. Moreover, SDSSD@CaP/Sim exhibited a reduced release rate of Sim and showed slow-release behaviour. As anticipated, the nanocomposites exhibited bone bonding capacity in both cellular and animal studies. Besides, SDSSD@CaP/Sim achieved obviously enhanced osteoporosis treatment effect compared to direct injection of Simin vivo. Therefore, our findings highlight the potential of SDSSD-incorporated and CaP-based nanocomposites as a viable strategy to enhance the therapeutic efficacy of anabolic drugs for osteoporosis treatment.


Asunto(s)
Nanocompuestos , Osteoporosis , Animales , Simvastatina/farmacología , Simvastatina/uso terapéutico , Osteoporosis/tratamiento farmacológico , Péptidos/farmacología , Péptidos/uso terapéutico , Fosfatos de Calcio/química , Nanocompuestos/uso terapéutico
2.
J Nanobiotechnology ; 21(1): 397, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37904215

RESUMEN

BACKGROUND: Abnormally regulated long non-coding RNAs (lncRNAs) functions in cancer emphasize their potential to serve as potential targets for cancer therapeutic intervention. LncRNA ASBEL has been identified as oncogene and an anti-sense transcript of tumor-suppressor gene of BTG3 in triple-negative breast cancer (TNBC). RESULTS: Herein, multicomponent self-assembled polyelectrolyte nanocomplexes (CANPs) based on the polyelectrolytes of bioactive hyaluronic acid (HA) and chitosan hydrochloride (CS) were designed and prepared for the collaborative modulation of oncogenic lncRNA ASBEL with antago3, an oligonucleotide antagonist targeting lncRNA ASBEL and hydrophobic curcumin (Cur) co-delivery for synergetic TNBC therapy. Antago3 and Cur co-incorporated CANPs were achieved via a one-step assembling strategy with the cooperation of noncovalent electrostatic interactions, hydrogen-bonding, and hydrophobic interactions. Moreover, the multicomponent assembled CANPs were ulteriorly decorated with a near-infrared fluorescence (NIRF) Cy-5.5 dye (FCANPs) for synchronous NIRF imaging and therapy monitoring performance. Resultantly, MDA-MB-231 cells proliferation, migration, and invasion were efficiently inhibited, and the highest apoptosis ratio was induced by FCANPs with coordination patterns. At the molecular level, effective regulation of lncRNA ASBEL/BTG3 and synchronous regulation of Bcl-2 and c-Met pathways could be observed. CONCLUSION: As expected, systemic administration of FCANPs resulted in targeted and preferential accumulation of near-infrared fluorescence signal and Cur in the tumor tissue. More attractively, systemic FCANPs-mediated collaborative modulating lncRNA ASBEL/BTG3 and Cur co-delivery significantly suppressed the MDA-MB-231 xenograft tumor growth, inhibited metastasis and extended survival rate with negligible systemic toxicity. Our present study represented an effective approach to developing a promising theranostic platform for combating TNBC in a combined therapy pattern.


Asunto(s)
Curcumina , ARN Largo no Codificante , Neoplasias de la Mama Triple Negativas , Humanos , ARN Largo no Codificante/genética , Curcumina/química , Neoplasias de la Mama Triple Negativas/patología , Medicina de Precisión , Línea Celular Tumoral
3.
J Nanobiotechnology ; 21(1): 159, 2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37208748

RESUMEN

BACKGROUND: Combinatorial immunotherapy strategies for enhancing the responsiveness of immune system have shown great promise for cancer therapy. Engineered nanoformulation incorporated toll-like receptor (TLR) 9 agonist CpG ODN has shown more positive results in suppressing tumor growth and can significantly enhance other immunotherapy activity with combinatorial effects due to the innate and adaptive immunostimulatory effects of CpG. RESULTS: In the present work, protamine sulfate (PS) and carboxymethyl ß-glucan (CMG) were used as nanomaterials to form nanoparticles through a self-assembly approach for CpG ODN encapsulation to generate CpG ODN-loaded nano-adjuvant (CNPs), which was subsequently mixed with the mixture of mouse melanoma-derived antigens of tumor cell lysates (TCL) and neoantigens to develop vaccine for anti-tumor immunotherapy. The obtained results showed that CNPs was able to effectively deliver CpG ODN into murine bone marrow-derived dendritic cells (DC) in vitro, and remarkably stimulate the maturation of DC cells with proinflammatory cytokine secretion. In addition, in vivo analysis showed that CNPs enhanced anti-tumor activity of PD1 antibody and CNPs-adjuvanted vaccine based on the mixture antigens of melanoma TCL and melanoma-specific neoantigen could not only induce anti-melanoma cellular immune responses, but also elicit melanoma specific humoral immune responses, which significantly inhibited xenograft tumor growth. Furthermore, CD16 CAR-T cells were generated by expressing CD16-CAR in CD3+CD8+ murine T cells. CONCLUSION: Our results eventually showed that anti-melanoma antibodies induced by CNPs-adjuvanted TCL vaccines were able to collaborate with CD16-CAR-T cells to generate an enhanced targeted anti-tumor effects through ADCC (antibody dependent cell cytotoxicity) approach. CD16 CAR-T cells has thus a great potential to be an universal promising strategy targeting on solid tumor synergistic immunotherapy via co-operation with TCL-based vaccine.


Asunto(s)
Nanopartículas , Neoplasias , Vacunas , Humanos , Ratones , Animales , Adyuvantes Inmunológicos/farmacología , Antígenos de Neoplasias , Oligodesoxirribonucleótidos/farmacología , Citotoxicidad Celular Dependiente de Anticuerpos , Ratones Endogámicos C57BL
4.
Int J Mol Sci ; 23(2)2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-35054843

RESUMEN

Despite advances in the development of tumor treatments, mortality from cancer continues to increase. Nanotechnology is expected to provide an innovative anti-cancer therapy, to combat challenges such as multidrug resistance and tumor recurrence. Nevertheless, tumors can greatly rely on autophagy as an alternative source for metabolites, and which desensitizes cancer cells to therapeutic stress, hindering the success of any current treatment paradigm. Autophagy is a conserved process by which cells turn over their own constituents to maintain cellular homeostasis. The multistep autophagic pathway provides potentially druggable targets to inhibit pro-survival autophagy under various therapeutic stimuli. In this review, we focus on autophagy inhibition based on functional nanoplatforms, which may be a potential strategy to increase therapeutic sensitivity in combinational cancer therapies, including chemotherapy, radiotherapy, phototherapy, sonodynamic therapy, and immunotherapy.


Asunto(s)
Autofagia , Neoplasias/terapia , Antineoplásicos/uso terapéutico , Autofagia/efectos de los fármacos , Autofagia/efectos de la radiación , Terapia Combinada , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de la radiación , Humanos , Nanopartículas
5.
Nanotechnology ; 32(46)2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34371485

RESUMEN

Tumor angiogenesis has been identified as an important factor in the development and progression of tumors, and anti-angiogenesis therapy has been recognized as an effective tumor therapy pattern. The unique characteristics of nanodiamonds (NDs) have been explored for photothermal therapy (PTT) against cancer, while the efficiency of mild PTT mediated by bare NDs was limited. The combination of different therapies into a single nanoplatform has shown great potential for synergistic cancer treatment. In this investigation, we integrated hydrophobic antiangiogenesis agent combretastatin A4 (CA4) into the protamine sulfate (PS) functionalized NDs hybrids (NDs@PS) with a noncovalent self-assembling method (CA4-NDs@PS) for potential combined anti-angiogenesis and mild PTT in liver cancer. The resulted CA4-NDs@PS NDs exhibited high drug loading ability, good dispersibility and colloidal stability. The near-infrared (NIR) laser irradiation could trigger the release of CA4 from CA4-NDs@PS NDs and elevate the temperature of CA4-NDs@PS NDs aqueous solution.In vitroresults illustrated that CA4-NDs@PS coupled with laser irradiation could remarkably enhance HepG-2 cells killing efficiency, leading to an enhanced photocytotoxicity. Furthermore,in vivoexperiments revealed that CA4-NDs@PS exhibited a highly synergistic anticancer efficacy with NIR laser irradiation in HepG-2 tumor-bearing mice. Altogether, our present study fabricated a novel NDs@PS-based nanoplatform for combined anti-tumor angiogenesis and mild PTT against liver cancer.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Nanodiamantes/uso terapéutico , Protaminas/farmacología , Estilbenos/farmacología , Animales , Línea Celular Tumoral , Femenino , Células Hep G2 , Humanos , Ratones , Ratones Endogámicos BALB C , Fototerapia/métodos , Terapia Fototérmica/métodos
6.
J Nanobiotechnology ; 19(1): 238, 2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34380471

RESUMEN

BACKGROUND: Cancer synergistic therapy strategy in combination with therapeutic gene and small molecule drug offers the possibility to amplify anticancer efficiency. Colon cancer-associated transcript-1 (CCAT1) is a well identified oncogenic long noncoding RNA (lncRNA) exerting tumorigenic effects in a variety of cancers including colorectal cancer (CRC). RESULTS: In the present work, curcumin (Cur) and small interfering RNA targeting lncRNA CCAT1(siCCAT1) were co-incorporated into polymeric hybrid nanoparticles (CSNP), which was constructed by self-assembling method with two amphiphilic copolymers, polyethyleneimine-poly (D, L-lactide) (PEI-PDLLA) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol) (DSPE-mPEG). Owing to the multicolor fluorescence characteristics of PEI-PDLLA, the constructed CSNP could be served as a theranostic nanomedicine for synchronous therapy and imaging both in vitro and in vivo. Resultantly, proliferation and migration of HT-29 cells were efficiently inhibited, and the highest apoptosis ratio was induced by CSNP with coordination patterns. Effective knockdown of lncRNA CCAT1 and concurrent regulation of relevant downstream genes could be observed. Furthermore, CSNP triggered conspicuous anti-tumor efficacy in the HT-29 subcutaneous xenografts model with good biosafety and biocompatibility during the treatment. CONCLUSION: On the whole, our studies demonstrated that the collaborative lncRNA CCAT1 silencing and Cur delivery based on CSNP might emerge as a preferable and promising strategy for synergetic anti-CRC therapy.


Asunto(s)
Curcumina/farmacología , Nanopartículas/química , ARN Largo no Codificante/genética , ARN Largo no Codificante/farmacología , Animales , Apoptosis/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Combinación de Medicamentos , Sistemas de Liberación de Medicamentos/métodos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HT29 , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Polímeros , Medicina de Precisión , Interferencia de ARN , ARN Largo no Codificante/química , ARN Interferente Pequeño/genética
7.
Biochem Biophys Res Commun ; 511(2): 253-259, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30777330

RESUMEN

Inactivated vaccines are widely used for prevention of viral disease. Both humoral and cellular immune responses have been shown to play important roles in the control and clearance of virus infections. CpG motif containing oligodeoxynucleotides (ODN) have recently gained considerable interest and been used as vaccine adjuvant due to their potent abilities to modulate host immune response. In this study, CpG-ODN adjuvant and inactivated viral particles of enterovirus 71 (EV71) were co-encapsulated into nanoparticles (NP) generated by using protamine sulfate (PS) and carboxymethyl ß-glucan (CMG) through a self-assembly approach. The administration of EV71 nanovaccine elicited not only specific anti-EV71 neutralizing antibody response, but also cellular immune response characterized by strong productions of IFN-α and IFN-γ. The results suggest that CMG/PS-based nanovehicles hold a great potential to be a novel platform for nanovaccine development against viral disease.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Enterovirus Humano A/inmunología , Infecciones por Enterovirus/prevención & control , Oligodesoxirribonucleótidos/administración & dosificación , Vacunas de Productos Inactivados/administración & dosificación , Vacunas Virales/administración & dosificación , Adyuvantes Inmunológicos/uso terapéutico , Animales , Infecciones por Enterovirus/inmunología , Infecciones por Enterovirus/virología , Femenino , Humanos , Inmunidad Celular , Inmunidad Humoral , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Nanopartículas/química , Oligodesoxirribonucleótidos/uso terapéutico , Protaminas/química , Vacunas de Productos Inactivados/inmunología , Vacunas de Productos Inactivados/uso terapéutico , Vacunas Virales/inmunología , Vacunas Virales/uso terapéutico , beta-Glucanos/química
8.
J Nanobiotechnology ; 17(1): 23, 2019 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-30711005

RESUMEN

BACKGROUND: In recent years, multifunctional theranostic nanoparticles have been fabricated by integrating imaging and therapeutic moieties into one single nano-formulations. However, Complexity of production and safety issues limits their further application. RESULTS: Herein, we demonstrated self-assembled nanoparticles with single structure as a "from one to all" theranostic platform for tumor-targeted dual-modal imaging and programmed photoactive therapy (PPAT). The nanoparticles were successfully developed through self-assembling of hyaluronic acid (HA)-cystamine-cholesterol (HSC) conjugate, in which IR780 was simultaneously incorporated (HSCI NPs). Due to the proper hydrodynamic size and intrinsic targeting ability of HA, the HSCI NPs could accumulate at the tumor site effectively after systemic administration. In the presence of incorporated IR780, in vivo biodistribution and accumulation behaviors of HSCI NPs could be monitored by photoacoustic imaging. After cellular uptake, the HSCI NPs would disintegrate resulting from cystamine reacting with over-expressed GSH. The released IR780 would induce fluorescence "turn-on" conversion, which could be used to image tumor sites effectively. Upon treatment with 808 nm laser irradiation, PPAT could be achieved in which generated reactive oxygen species (ROS) would produce photodynamic therapy (PDT), and subsequently the raised temperature would be beneficial to tumor photothermal therapy (PTT). CONCLUSION: The self-assembled HSCI NPs could act as "from one to all" theranostic platform for high treatment efficiency via PPAT pattern, which could also real-time monitor NPs accumulation by targeted and dual-modal imaging in a non-invasive way.


Asunto(s)
Antineoplásicos/administración & dosificación , Antineoplásicos/química , Nanopartículas/administración & dosificación , Nanopartículas/química , Fotoquimioterapia/métodos , Nanomedicina Teranóstica/métodos , Animales , Línea Celular Tumoral , Colesterol/química , Cistamina/química , Femenino , Humanos , Ácido Hialurónico/química , Indoles/química , Ratones , Ratones Desnudos , Nanopartículas/metabolismo , Nanopartículas/ultraestructura , Técnicas Fotoacústicas , Distribución Tisular , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico
9.
Small ; 14(12): e1703045, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29405618

RESUMEN

In drug delivery, the poor tumor perfusion results in disappointing therapeutic efficacy. Nanomedicines for photodynamic therapy (PDT) greatly need deep tumor penetration due to short lifespan and weak diffusion of the cytotoxic reactive oxygen species (ROS). The damage of only shallow cells can easily cause invasiveness and metastasis. Moreover, even if the nanomedicines enter into deeper lesion, the effectiveness of PDT is limited due to the hypoxic microenvironment. Here, a deep penetrating and oxygen self-sufficient PDT nanoparticle is developed for balanced ROS distribution within tumor and efficient cancer therapy. The designed nanoparticles (CNPs/IP) are doubly emulsified (W/O/W) from poly(ethylene glycol)-poly(ε-caprolactone) copolymers doped with photosensitizer IR780 in the O layer and oxygen depot perfluorooctyl bromide (PFOB) inside the core, and functionalized with the tumor penetrating peptide Cys-Arg-Gly-Asp-Lys (CRGDK). The CRGDK modification significantly improves penetration depth of CNPs/IP and makes the CNPs/IP arrive at both the periphery and hypoxic interior of tumors where the PFOB releases oxygen, effectively alleviating hypoxia and guaranteeing efficient PDT performance. The improved intratumoral distribution of photosensitizer and adequate oxygen supply augment the sensitivity of tumor cells to PDT and significantly improve PDT efficiency. Such a nanosystem provides a potential platform for improved therapeutic index in anticancer therapy.


Asunto(s)
Nanopartículas/química , Oxígeno/química , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/química , Animales , Hipoxia de la Célula/fisiología , Fluorocarburos/química , Humanos , Hidrocarburos Bromados , Especies Reactivas de Oxígeno/metabolismo
10.
Biochem Biophys Res Commun ; 489(4): 386-392, 2017 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-28552529

RESUMEN

Long non-coding RNAs (lncRNAs) are defined as a class of RNA transcripts longer than 200 nucleotides encoded by mammalian genomes that lack protein-coding potential. LncRNA ASBEL has been identified as an anti-sense transcript of BTG3 (B cell translocation gene 3) gene, which encodes an anti-proliferation protein. Remarkable down-regulation of BTG3 has been reported in triple-negative breast cancer (TNBC). In the present study, a number of single-stranded modified anti-sense DNA oligonucleotides (antago) were designed, synthesized and screened for specific lncRNA ASBEL knockdown. We showed here that anti-ASBEL antago played a significant tumor suppressive role in TNBC by effective down-regulating lncRNA ASBEL, which in turn led to increased BTG3 expression. The obtained data suggest lncRNA ASBEL as a novel therapeutic target in TNBC.


Asunto(s)
Antineoplásicos/farmacología , Oligonucleótidos/farmacología , Oligonucleótidos/uso terapéutico , ARN Largo no Codificante/antagonistas & inhibidores , ARN Largo no Codificante/genética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Antineoplásicos/síntesis química , Antineoplásicos/química , Supervivencia Celular/efectos de los fármacos , Femenino , Humanos , Oligonucleótidos/síntesis química , Oligonucleótidos/genética , Neoplasias de la Mama Triple Negativas/patología , Células Tumorales Cultivadas
11.
Biochem Biophys Res Commun ; 465(3): 580-6, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26291268

RESUMEN

Nattokinase (NK), a bacterial serine protease from Bacillus subtilis var. natto, is a potential cardiovascular drug exhibiting strong fibrinolytic activity. To broaden its commercial and medical applications, we constructed a single-mutant (I31L) and two double-mutants (M222A/I31L and T220S/I31L) by site-directed mutagenesis. Active enzymes were expressed in Escherichia coli with periplasmic secretion and were purified to homogeneity. The kinetic parameters of enzymes were examined by spectroscopy assay and isothermal titration calorimetry (ITC), and their fibrinolytic activities were determined by fibrin plate method. The substitution of Leu(31) for Ile(31) resulted in about 2-fold enhancement of catalytic efficiency (Kcat/KM) compared with wild-type NK. The specific activities of both double-mutants (M222A/I31L and T220S/I31L) were significantly increased when compared with the single-mutants (M222A and T220S) and the oxidative stability of M222A/I31L mutant was enhanced with respect to wild-type NK. This study demonstrates the feasibility of improving activity of NK by site-directed mutagenesis and shows successful protein engineering cases to improve the activity of NK as a potent therapeutic agent.


Asunto(s)
Modelos Químicos , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Ingeniería de Proteínas/métodos , Subtilisinas/química , Subtilisinas/metabolismo , Activación Enzimática , Escherichia coli/fisiología , Relación Estructura-Actividad , Subtilisinas/genética
12.
Biochem Biophys Res Commun ; 451(1): 112-8, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25068992

RESUMEN

The search for novel and more efficient chemo-agents against malignant osteoblastoma is important. In this study, we examined the potential anti-osteoblastoma function of bufotalin, and studied the underlying mechanisms. Our results showed that bufotalin induced osteoblastoma cell death and apoptosis in dose- and time-dependent manners. Further, bufotalin induced endoplasmic reticulum (ER) stress activation in osteoblastoma cells, the latter was detected by the induction of C/EBP homologous protein (CHOP), phosphorylation of inositol-requiring enzyme 1 (IRE1) and PKR-like endoplasmic reticulum kinase (PERK), as well as caspase-12 activation. Conversely, the ER stress inhibitor salubrinal, the caspase-12 inhibitor z-ATAD-fmk as well as CHOP depletion by shRNA significantly inhibited bufotalin-induced osteoblastoma cell death and apoptosis. Finally, by using a mice xenograft model, we demonstrated that bufotalin inhibited U2OS osteoblastoma cell growth in vivo. In summary, our results suggest that ER stress contributes to bufotalin-induced apoptosis in osteoblastoma cells. Bufotalin might be investigated as a novel anti-osteoblastoma agent.


Asunto(s)
Apoptosis/efectos de los fármacos , Neoplasias Óseas/tratamiento farmacológico , Bufanólidos/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Osteoblastoma/tratamiento farmacológico , Animales , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Caspasa 12/metabolismo , Cinamatos/farmacología , Relación Dosis-Respuesta a Droga , Silenciador del Gen , Humanos , Masculino , Ratones , Ratones SCID , Osteoblastoma/metabolismo , Osteoblastoma/patología , Tiourea/análogos & derivados , Tiourea/farmacología , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Food Sci Nutr ; 11(10): 5675-5688, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37823145

RESUMEN

Cardiovascular diseases (CVDs) are a global health problem and leading cause of death worldwide. Thrombus formation, one of the CVDs, is essentially the formation of fibrin clots. The existing thrombolytic agents have the disadvantages of high price, short half-life, and high bleeding risk; hence, there is an urgent need to find the alternative thrombolytic agents. In recent years, traditional fermented foods have been widely investigated for their outstanding effects in the prevention and treatment of thrombus formation. In this review, we have focused on fibrinolytic enzymes produced by microorganisms during the fermentation of traditional fermented foods and their potential use for treating CVDs. First, we discussed about the sources of fibrinolytic enzymes and microbial strains that produce those enzymes followed by the optimization of fermentation process, purification, and physicochemical properties of fibrinolytic enzymes. Finally, we have summarized the thrombolytic effects of fibrinolytic enzymes in humans and mice. Fibrinolytic enzymes produced by microorganisms during the fermentation of traditional fermented foods not only lyse thrombi but also acts as anti-atherosclerotic, anti-hyperlipidemia, and neuroprotection agents. Therefore, fibrinolytic enzymes from traditional fermented foods have great potential for the prevention and treatment of CVDs.

14.
Int J Pharm ; 637: 122850, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-36990169

RESUMEN

Neovascularization can provide tumors with essential nutrients and oxygen, as well as maintain a microenvironment for tumor cell growth. In this study, we combined anti-angiogenic therapy and gene therapy for synergistic anti-tumor therapy. We co-delivered the vascular endothelial growth factor receptor inhibitor fruquintinib (Fru) and small interfering RNA CCAT1 (siCCAT1) inhibiting epithelial-mesenchymal transition using 1,2-distearoyl-snglycero-3-phosphoethanolamine-N- [methoxy (polyethylene glycol)] with a pH-responsive benzoic imine linker bond (DSPE-Hyd-mPEG) and polyethyleneimine-poly (d, l-lactide) (PEI-PDLLA) nanocomplex (Fru and siCCAT1 co-delivery NP, FCNP). Due to the characteristics of pH-response, DSPE-Hyd-mPEG removed from FCNP after enrichment at the tumor site, which had a protective effect in the body. Meanwhile, Fru acting on the peritumor blood vessels was rapidly released, and then the nanoparticles loaded with siCCAT1 (CNP) was engulfed by cancer cells and facilitate the successful lysosomal escape of siCCAT1 in, playing the role of silencing CCAT1. Efficient silencing of CCAT1 by FCNP was observed, and simultaneously, the expression of VEGFR-1 was also down-regulated. Furthermore, FCNP elicited significant synergistic antitumor efficacy via anti-angiogenesis and gene therapy in the SW480 subcutaneous xenograft model with favorable biosafety and biocompatibility during the treatment. Overall, FCNP was considered a promising strategy for the combined anti-angiogenesis-gene treatment against colorectal cancer.


Asunto(s)
Neoplasias Colorrectales , Nanopartículas , Humanos , Factor A de Crecimiento Endotelial Vascular/genética , Polietilenglicoles/química , Inhibidores de la Angiogénesis/farmacología , Nanopartículas/química , Terapia Genética , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Línea Celular Tumoral , Microambiente Tumoral
15.
Adv Mater ; 35(29): e2208820, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36810905

RESUMEN

Exploration of clinically acceptable blood glucose monitors has been engaging in the past decades, yet the ability to quantitatively detect blood glucose in a painless, accurate, and highly sensitive manner remains limited. Herein, a fluorescence-amplified origami microneedle (FAOM) device is described that integrates tubular DNA-origami nanostructures and glucose oxidase molecules into its inner network to quantitatively monitor blood glucose. The skin-attached FAOM device can collect glucose molecules in situ and transfer the input into a proton signal after the oxidase's catalysis. The proton-driven mechanical reconfiguration of DNA-origami tubes separates fluorescent molecules and their quenchers, eventually amplifying the glucose-correlated fluorescence signal. The function equation established on clinical examinees suggests that FAOM can report blood glucose in a highly sensitive and quantitative manner. In clinical blind tests, the FAOM achieves well-matched accuracy (98.70 ± 4.77%) compared with a commercial blood biochemical analyzer, fully meeting the requirements of accurate blood glucose monitoring. The FAOM device can be inserted into skin tissue in a trivially painful manner and with minimal leakage of DNA origami, substantially improving the tolerance and compliance of the blood glucose test.


Asunto(s)
Glucemia , Nanoestructuras , Conformación de Ácido Nucleico , Automonitorización de la Glucosa Sanguínea , Protones , ADN/química , Nanoestructuras/química , Glucosa
16.
Bioengineered ; 13(4): 11192-11201, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35485325

RESUMEN

Rheumatoid arthritis (RA) is a chronic autoimmune disease that greatly affect patients' quality of life. Galangin extract is renowned for its anti-proliferative and anti-oxidative characteristics. However, galangin cytotoxicity studies are presently inadequate. We aimed to investigate the therapeutic potential of galangin on RA by investigating the PI3K/AKT signaling pathway.Fibroblast-like synovial cells (FLSs) were exposed to lipopolysaccharide (LPS) to establish an RA model in vitro. An ELISA assay was used to detect the levels of IL-1ß, TNF-α, and IL-6. Cell viability and apoptosis were determined by CCK8/EdU and flow cytometry assays. A western blot assay was used to analyze the protein expression levels. An RA rat model was established to evaluate the function of galangin through histopathological examination. Our results found that galangin induced apoptosis, inhibited cell proliferation, and increased cell invasion of rheumatoid arthritis fibroblast-like synovial cells (RAFLSs). Galangin inactivated the PI3K/AKT signaling pathway and the inflammatory response. An agonist of PI3K signaling, 740Y-P, restored the cellular functions of RAFLSs. Moreover, galangin suppressed the development of RA in vivo. Galangin effected its anti-arthritic influence through the PI3K/AKT signaling pathway. Galangin has potential as an alternative treatment for RA.


Asunto(s)
Artritis Reumatoide , Fosfatidilinositol 3-Quinasa , Animales , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/patología , Flavonoides , Humanos , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Calidad de Vida , Ratas , Transducción de Señal
17.
J Cancer ; 12(8): 2385-2394, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33758614

RESUMEN

Background: The prognosis of early cardia cancer and non-cardia cancer is still controversial. It is difficult to collect a large number of cases with complete information in clinical practice. Our study was aimed to identify the differences in clinicopathological characteristics and outcomes of early cardia gastric cancer and non-cardia gastric cancer. Methods: All cases analyzed were from Surveillance, Epidemiology, and End Results database. The data of the patients with early gastric cancer from 2004 to 2010 was retrospectively analyzed. Patients were distributed to cardia cancer group and non-cardia cancer group. Univariate and multivariate analyses were performed to examine differences between groups. The competitive risk model was made to compare the association with cardia cancer and non-cardia cancer about the causes of death. Propensity score matching (PSM) was performed to reduce the bias. Results: We found that cardia cancer was more common in male patients and the White than that in non-cardia cancer at early stage, signet ring cell carcinoma was more common in non-cardia cancer, and the differentiation of non-cardia cancer was worse. Univariate analysis showed that age, marital status, race, tumor location, histology, grade, stage, and operation or not can determine the prognosis. And the prognosis of patients with cardia cancer was worse than that of non-cardia cancer, according to lymph node metastasis and the depth of tumor invasion. Multivariate analysis showed cardia cancer was an independent prognostic factor for poor prognosis. After PSM, cardia cancer still exhibited poor prognosis. Conclusions: At early stage, cardia cancer had a poor prognosis compared with non-cardia cancer. The prevention and treatment of early cardia cancer need to be seriously treated.

18.
ACS Appl Mater Interfaces ; 13(33): 39112-39125, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34384220

RESUMEN

Autophagy inhibition could hinder the underlying protective mechanisms in the course of tumor treatment. The advances in autophagy inhibition have driven focus on the functionalized nanoplatforms by combining the current treatment paradigms with complementary autophagy inhibition for enhanced efficacy. Furthermore, Ca2+ overload is also a promising adjuvant target for the tumor treatment by augmenting mitochondrial damage. In this view, complementary mitochondrial Ca2+ overload and autophagy inhibition were first demonstrated as a novel strategy suitable for homing in on the shortage of photodynamic therapy (PDT). We constructed biodegradable tumor-targeted inorganic/organic hybrid nanocomposites (DPGC/OI) synchronously encapsulating IR780 and Obatoclax by biomineralization of the nanofilm method, which consists of pH-triggered calcium phosphate (CP), long circulation phospholipid block copolymers 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE)-poly(ethylene glycol) (PEG)2000-glucose (DPG). In the presence of the hydrophilic PEG chain and glucose transporter 1 (Glut-1) ligands, DPGC would become an effectively tumor-oriented nanoplatform. Subsequently, IR780 as an outstanding photosensitizer could produce increased amounts of toxic reactive oxygen species (ROS) after laser irradiation. Calcium phosphate (CP) as the Ca2+ nanogenerator could generate Ca2+ at low pH to induce mitochondrial Ca2+ overload. The dysfunction of mitochondria could enhance increased amounts of ROS. Based on the premise that autophagy would degrade dysfunctional organelles to sustain metabolism and homeostasis, which might participate in resistance to PDT, Obatoclax as an autophagy inhibitor would hinder the protective mechanism from cancer cells with negligible toxicity. Such an enhanced PDT via mitochondrial Ca2+ overload and autophagy inhibition could be realized by DPGC/OI.


Asunto(s)
Autofagia/efectos de los fármacos , Fosfatos de Calcio/química , Glucosa/química , Indoles/química , Nanocompuestos/química , Fosfatidiletanolaminas/química , Fármacos Fotosensibilizantes/química , Polietilenglicoles/química , Animales , Transporte Biológico , Refuerzo Biomédico , Femenino , Humanos , Indoles/metabolismo , Indoles/farmacología , Ratones Endogámicos BALB C , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Fosfolípidos/química , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Pirroles/química , Pirroles/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Propiedades de Superficie , Distribución Tisular
19.
Nanoscale ; 13(31): 13375-13389, 2021 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-34477743

RESUMEN

Owing to its aggressive biological behavior, the lack of specific targets, and the strong therapeutic resistance of triple negative breast cancer (TNBC), current therapeutic strategies are still limited. The combination of multiple treatments has been confirmed as a promising strategy for TNBC therapy. However, the efficacy of combination therapy can be restricted due to increasing therapeutic resistance to various treatments. Herein, we constructed a nanodiamond (ND)-based nanoplatform for augmented mild-temperature photothermal/chemo combination therapy against TNBC, weakening the therapeutic resistance via autophagy inhibition enabled by the NDs. A layer-by-layer self-assembly approach was utilized to construct the ND-based nanoplatform. First, the NDs were modified with protamine sulphate (PS). Meanwhile, the photosensitizer indocyanine green (ICG) and the HSP70 small molecule inhibitor apoptozole (APZ) could be synchronously incorporated to form positively charged PS@ND (ICG + APZ). Then negatively charged hyaluronic acid (HA) was assembled onto the outer face of PS@ND (ICG + APZ) to form the NPIAs. Finally, the positively charged small molecule anti-cancer drug doxorubicin (DOX) could be adsorbed onto the surface of the NPIAs through electrostatic interactions (NPIADs). The resulting NPIADs could be triggered by NIR laser irradiation to exhibit enhanced mild-temperature photothermal therapy (PTT) effects via suppressing the expression of HSP70, and PTT combined with chemotherapy could further enhance the anti-tumor efficacy. Subsequently, the sensitivity of MDA-MB-231 cells could be significantly improved through the weakening of the thermal/drug resistance via autophagy inhibition, leading to augmented combination therapy that is efficient both in vitro and in vivo. Furthermore, the NPIADs could be used as a theranostic nanoplatform for fluorescence (FL) and photoacoustic (PA) imaging. Taken together, this study demonstrated a multifunctional ND-based nanoplatform for FL/PA imaging-guided augmented mild-temperature photothermal/chemo combination therapy via an autophagy regulation strategy against TNBC.


Asunto(s)
Hipertermia Inducida , Nanodiamantes , Nanopartículas , Neoplasias de la Mama Triple Negativas , Autofagia , Doxorrubicina/farmacología , Humanos , Fototerapia , Temperatura , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico
20.
Int J Pharm ; 608: 121091, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34555477

RESUMEN

Cancer vaccines targeting tumor specific neoantigens derived from nonsynonymous mutations of tumor cells have emerged as an effective approach to induce antitumor T cells responses for personalized cancer immunotherapy. Despite the enormous potential of synthetic peptides as a common modality for neoantigen vaccines, their practical efficacy was limited due to their relatively low immunogenicity. Herein, we modify neoantigen peptide (Adpgk) derived from MC-38 colon carcinoma by supplementing ten consecutive positively-charged lysines (10 K-Adpgk) to obtain cationic polypeptide. And then we made them self-assemble with toll-like receptor 9 (TLR-9) agonist CpG oligodeoxynucleotides (CpG ODN) adjuvant directly forming antigen/adjuvant integrated nanocomplexes (PCNPs) through electrostatic interaction for potent tumor immunotherapy. The optimal formed PCNPs were around 175 nm with uniform size distribution and could maintain stability in physiological saline solution. CpG ODN and 10 K-Adpgk in the formed PCNPs could be effectively uptake by dendritic cells (DCs) and stimulate the maturation of DCs as well as improving the efficiency of antigen cross-presentation efficiency in vitro. Furthermore, the PCNPs vaccine could markedly improve neoantigen and adjuvant co-delivery efficiency to lymphoid organs and activate cytotoxic T cells. In addition, vaccination with PCNPs could not only offer prophylactic to protect mice from challenged MC-38 colorectal tumors, but also achieve a better anti-tumor effect in an established colorectal tumor model, and significantly prolong the survival rate of tumor-bearing mice. Therefore, this work provided a versatile but effective method for neoantigen peptide and CpG ODN co-assembly vaccine platform for efficient colorectal cancer immunotherapy.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias Colorrectales , Inmunoterapia , Receptor Toll-Like 9/agonistas , Adyuvantes Inmunológicos , Animales , Neoplasias Colorrectales/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Oligodesoxirribonucleótidos , Péptidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA