Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Mater Today Bio ; 25: 100978, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38434571

RESUMEN

A life-threatening illness that poses a serious threat to human health is myocardial infarction. It may result in a significant number of myocardial cells dying, dilated left ventricles, dysfunctional heart function, and ultimately cardiac failure. Based on the development of emerging biomaterials and the lack of clinical treatment methods and cardiac donors for myocardial infarction, hydrogels with good compatibility have been gradually applied to the treatment of myocardial infarction. Specifically, based on the three processes of pathophysiology of myocardial infarction, we summarized various types of hydrogels designed for myocardial tissue engineering in recent years, including natural hydrogels, intelligent hydrogels, growth factors, stem cells, and microRNA-loaded hydrogels. In addition, we also describe the heart patch and preparation techniques that promote the repair of MI heart function. Although most of these hydrogels are still in the preclinical research stage and lack of clinical trials, they have great potential for further application in the future. It is expected that this review will improve our knowledge of and offer fresh approaches to treating myocardial infarction.

2.
Exploration (Beijing) ; 4(3): 20230090, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38939861

RESUMEN

Atherosclerosis, a chronic disease associated with metabolism, poses a significant risk to human well-being. Currently, existing treatments for atherosclerosis lack sufficient efficiency, while the utilization of surface-modified nanoparticles holds the potential to deliver highly effective therapeutic outcomes. These nanoparticles can target and bind to specific receptors that are abnormally over-expressed in atherosclerotic conditions. This paper reviews recent research (2018-present) advances in various ligand-modified nanoparticle systems targeting atherosclerosis by specifically targeting signature molecules in the hope of precise treatment at the molecular level and concludes with a discussion of the challenges and prospects in this field. The intention of this review is to inspire novel concepts for the design and advancement of targeted nanomedicines tailored specifically for the treatment of atherosclerosis.

3.
Mater Today Bio ; 25: 100957, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38322664

RESUMEN

Myocardial infarction (MI) and its associated poor prognosis pose significant risks to human health. Nanomaterials hold great potential for the treatment of MI due to their targeted and controlled release properties, particularly biomimetic nanomaterials. The utilization of biomimetic strategies based on extracellular vesicles (EVs) and cell membranes will serve as the guiding principle for the development of nanomaterial therapy in the future. In this review, we present an overview of research progress on various exosomes derived from mesenchymal stem cells, cardiomyocytes, or induced pluripotent stem cells in the context of myocardial infarction (MI) therapy. These exosomes, utilized as cell-free therapies, have demonstrated the ability to enhance the efficacy of reducing the size of the infarcted area and preventing ischaemic reperfusion through mechanisms such as oxidative stress reduction, polarization modulation, fibrosis inhibition, and angiogenesis promotion. Moreover, EVs can exert cardioprotective effects by encapsulating therapeutic agents and can be engineered to specifically target the infarcted myocardium. Furthermore, we discuss the use of cell membranes derived from erythrocytes, stem cells, immune cells and platelets to encapsulate nanomaterials. This approach allows the nanomaterials to camouflage themselves as endogenous substances targeting the region affected by MI, thereby minimizing toxicity and improving biocompatibility. In conclusion, biomimetic nano-delivery systems hold promise as a potentially beneficial technology for MI treatment. This review serves as a valuable reference for the application of biomimetic nanomaterials in MI therapy and aims to expedite the translation of NPs-based MI therapeutic strategies into practical clinical applications.

4.
J Control Release ; 372: 403-416, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38914207

RESUMEN

The immunosuppressive microenvironment of malignant tumors severely hampers the effectiveness of anti-tumor therapy. Moreover, abnormal tumor vasculature interacts with immune cells, forming a vicious cycle that further interferes with anti-tumor immunity and promotes tumor progression. Our pre-basic found excellent anti-tumor effects of c-di-AMP and RRx-001, respectively, and we further explored whether they could be combined synergistically for anti-tumor immunotherapy. We chose to load these two drugs on PVA-TSPBA hydrogel scaffolds that expressly release drugs within the tumor microenvironment by in situ injection. Studies have shown that c-di-AMP activates the STING pathway, enhances immune cell infiltration, and reverses tumor immunosuppression. Meanwhile, RRx-001 releases nitric oxide, which increases oxidative stress injury in tumor cells and promotes apoptosis. Moreover, the combination of the two presented more powerful pro-vascular normalization and reversed tumor immunosuppression than the drug alone. This study demonstrates a new design option for anti-tumor combination therapy and the potential of tumor environmentally responsive hydrogel scaffolds in combination with anti-tumor immunotherapy.


Asunto(s)
Hidrogeles , Proteínas de la Membrana , Microambiente Tumoral , Animales , Hidrogeles/administración & dosificación , Microambiente Tumoral/efectos de los fármacos , Línea Celular Tumoral , Ratones Endogámicos C57BL , Inmunoterapia/métodos , Ratones , Antineoplásicos/administración & dosificación , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Ratones Endogámicos BALB C , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Neoplasias/terapia , Óxido Nítrico , Humanos , Femenino , Apoptosis/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA