Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 666
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nature ; 606(7913): 414-419, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35650436

RESUMEN

All known triterpenes are generated by triterpene synthases (TrTSs) from squalene or oxidosqualene1. This approach is fundamentally different from the biosynthesis of short-chain (C10-C25) terpenes that are formed from polyisoprenyl diphosphates2-4. In this study, two fungal chimeric class I TrTSs, Talaromyces verruculosus talaropentaene synthase (TvTS) and Macrophomina phaseolina macrophomene synthase (MpMS), were characterized. Both enzymes use dimethylallyl diphosphate and isopentenyl diphosphate or hexaprenyl diphosphate as substrates, representing the first examples, to our knowledge, of non-squalene-dependent triterpene biosynthesis. The cyclization mechanisms of TvTS and MpMS and the absolute configurations of their products were investigated in isotopic labelling experiments. Structural analyses of the terpene cyclase domain of TvTS and full-length MpMS provide detailed insights into their catalytic mechanisms. An AlphaFold2-based screening platform was developed to mine a third TrTS, Colletotrichum gloeosporioides colleterpenol synthase (CgCS). Our findings identify a new enzymatic mechanism for the biosynthesis of triterpenes and enhance understanding of terpene biosynthesis in nature.


Asunto(s)
Ascomicetos , Talaromyces , Triterpenos , Ascomicetos/enzimología , Colletotrichum/enzimología , Ciclización , Difosfatos/metabolismo , Escualeno/química , Especificidad por Sustrato , Talaromyces/enzimología , Triterpenos/química , Triterpenos/metabolismo
2.
PLoS Biol ; 22(3): e3002528, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38427710

RESUMEN

Streptomyces antibiotic regulatory proteins (SARPs) are widely distributed activators of antibiotic biosynthesis. Streptomyces coelicolor AfsR is an SARP regulator with an additional nucleotide-binding oligomerization domain (NOD) and a tetratricopeptide repeat (TPR) domain. Here, we present cryo-electron microscopy (cryo-EM) structures and in vitro assays to demonstrate how the SARP domain activates transcription and how it is modulated by NOD and TPR domains. The structures of transcription initiation complexes (TICs) show that the SARP domain forms a side-by-side dimer to simultaneously engage the afs box overlapping the -35 element and the σHrdB region 4 (R4), resembling a sigma adaptation mechanism. The SARP extensively interacts with the subunits of the RNA polymerase (RNAP) core enzyme including the ß-flap tip helix (FTH), the ß' zinc-binding domain (ZBD), and the highly flexible C-terminal domain of the α subunit (αCTD). Transcription assays of full-length AfsR and truncated proteins reveal the inhibitory effect of NOD and TPR on SARP transcription activation, which can be eliminated by ATP binding. In vitro phosphorylation hardly affects transcription activation of AfsR, but counteracts the disinhibition of ATP binding. Overall, our results present a detailed molecular view of how AfsR serves to activate transcription.


Asunto(s)
Proteínas de Unión al ADN , Streptomyces , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Microscopía por Crioelectrón , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional , Antibacterianos , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica
3.
PLoS Biol ; 22(5): e3002628, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38814940

RESUMEN

The peptidoglycan (PG) layer is a critical component of the bacterial cell wall and serves as an important target for antibiotics in both gram-negative and gram-positive bacteria. The hydrolysis of septal PG (sPG) is a crucial step of bacterial cell division, facilitated by FtsEX through an amidase activation system. In this study, we present the cryo-EM structures of Escherichia coli FtsEX and FtsEX-EnvC in the ATP-bound state at resolutions of 3.05 Å and 3.11 Å, respectively. Our PG degradation assays in E. coli reveal that the ATP-bound conformation of FtsEX activates sPG hydrolysis of EnvC-AmiB, whereas EnvC-AmiB alone exhibits autoinhibition. Structural analyses indicate that ATP binding induces conformational changes in FtsEX-EnvC, leading to significant differences from the apo state. Furthermore, PG degradation assays of AmiB mutants confirm that the regulation of AmiB by FtsEX-EnvC is achieved through the interaction between EnvC-AmiB. These findings not only provide structural insight into the mechanism of sPG hydrolysis and bacterial cell division, but also have implications for the development of novel therapeutics targeting drug-resistant bacteria.


Asunto(s)
Adenosina Trifosfato , División Celular , Proteínas de Escherichia coli , Escherichia coli , Peptidoglicano , Peptidoglicano/metabolismo , Hidrólisis , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Escherichia coli/genética , Adenosina Trifosfato/metabolismo , Microscopía por Crioelectrón , Pared Celular/metabolismo , Conformación Proteica , Modelos Moleculares , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/genética , Proteínas de la Membrana Bacteriana Externa , Transportadoras de Casetes de Unión a ATP , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Lipoproteínas , Proteínas de Ciclo Celular
4.
Mol Cell ; 76(1): 126-137.e7, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31444107

RESUMEN

A surprising complexity of ubiquitin signaling has emerged with identification of different ubiquitin chain topologies. However, mechanisms of how the diverse ubiquitin codes control biological processes remain poorly understood. Here, we use quantitative whole-proteome mass spectrometry to identify yeast proteins that are regulated by lysine 11 (K11)-linked ubiquitin chains. The entire Met4 pathway, which links cell proliferation with sulfur amino acid metabolism, was significantly affected by K11 chains and selected for mechanistic studies. Previously, we demonstrated that a K48-linked ubiquitin chain represses the transcription factor Met4. Here, we show that efficient Met4 activation requires a K11-linked topology. Mechanistically, our results propose that the K48 chain binds to a topology-selective tandem ubiquitin binding region in Met4 and competes with binding of the basal transcription machinery to the same region. The change to K11-enriched chain architecture releases this competition and permits binding of the basal transcription complex to activate transcription.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteómica/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transcripción Genética , Activación Transcripcional , Ubiquitinación , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/química , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Sitios de Unión , Unión Competitiva , Cromatografía Liquida , Regulación Fúngica de la Expresión Génica , Lisina , Mutación , Unión Proteica , Conformación Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Relación Estructura-Actividad , Espectrometría de Masas en Tándem
5.
Proc Natl Acad Sci U S A ; 121(11): e2321722121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38446858

RESUMEN

Aromatic polyketides are renowned for their wide-ranging pharmaceutical activities. Their structural diversity is mainly produced via modification of limited types of basic frameworks. In this study, we characterized the biosynthesis of a unique basic aromatic framework, phenyldimethylanthrone (PDA) found in (+)/(-)-anthrabenzoxocinones (ABXs) and fasamycin (FAS). Its biosynthesis employs a methyltransferase (Abx(+)M/Abx(-)M/FasT) and an unusual TcmI-like aromatase/cyclase (ARO/CYC, Abx(+)D/Abx(-)D/FasL) as well as a nonessential helper ARO/CYC (Abx(+)C/Abx(-)C/FasD) to catalyze the aromatization/cyclization of polyketide chain, leading to the formation of all four aromatic rings of the PDA framework, including the C9 to C14 ring and a rare angular benzene ring. Biochemical and structural analysis of Abx(+)D reveals a unique loop region, giving rise to its distinct acyl carrier protein-dependent specificity compared to other conventional TcmI-type ARO/CYCs, all of which impose on free molecules. Mutagenic analysis discloses critical residues of Abx(+)D for its catalytic activity and indicates that the size and shape of its interior pocket determine the orientation of aromatization/cyclization. This study unveils the tetracyclic and non-TcmN type C9 to C14 ARO/CYC, significantly expanding our cognition of ARO/CYCs and the biosynthesis of aromatic polyketide framework.


Asunto(s)
Aromatasa , Policétidos , Ciclización , Proteína Transportadora de Acilo , Catálisis
6.
Nucleic Acids Res ; 52(D1): D732-D737, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37870467

RESUMEN

ICEberg 3.0 (https://tool2-mml.sjtu.edu.cn/ICEberg3/) is an upgraded database that provides comprehensive insights into bacterial integrative and conjugative elements (ICEs). In comparison to the previous version, three key enhancements were introduced: First, through text mining and manual curation, it now encompasses details of 2065 ICEs, 607 IMEs and 275 CIMEs, including 430 with experimental support. Secondly, ICEberg 3.0 systematically categorizes cargo gene functions of ICEs into six groups based on literature curation and predictive analysis, providing a profound understanding of ICEs'diverse biological traits. The cargo gene prediction pipeline is integrated into the online tool ICEfinder 2.0. Finally, ICEberg 3.0 aids the analysis and exploration of ICEs from the human microbiome. Extracted and manually curated from 2405 distinct human microbiome samples, the database comprises 1386 putative ICEs, offering insights into the complex dynamics of Bacteria-ICE-Cargo networks within the human microbiome. With the recent updates, ICEberg 3.0 enhances its capability to unravel the intricacies of ICE biology, particularly in the characterization and understanding of cargo gene functions and ICE interactions within the microbiome. This enhancement may facilitate the investigation of the dynamic landscape of ICE biology and its implications for microbial communities.


Asunto(s)
Bacterias , Conjugación Genética , Bases de Datos Genéticas , Humanos , Bacterias/genética , Bases de Datos Factuales , Elementos Transponibles de ADN , Microbiota
7.
Nucleic Acids Res ; 52(D1): D784-D790, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37897352

RESUMEN

TADB 3.0 (https://bioinfo-mml.sjtu.edu.cn/TADB3/) is an updated database that provides comprehensive information on bacterial types I to VIII toxin-antitoxin (TA) loci. Compared with the previous version, three major improvements are introduced: First, with the aid of text mining and manual curation, it records the details of 536 TA loci with experimental support, including 102, 403, 8, 14, 1, 1, 3 and 4 TA loci of types I to VIII, respectively; Second, by leveraging the upgraded TA prediction tool TAfinder 2.0 with a stringent strategy, TADB 3.0 collects 211 697 putative types I to VIII TA loci predicted in 34 789 completely sequenced prokaryotic genomes, providing researchers with a large-scale dataset for further follow-up analysis and characterization; Third, based on their genomic locations, relationships of 69 019 TA loci and 60 898 mobile genetic elements (MGEs) are visualized by interactive networks accessible through the user-friendly web page. With the recent updates, TADB 3.0 may provide improved in silico support for comprehending the biological roles of TA pairs in prokaryotes and their functional associations with MGEs.


Asunto(s)
Proteínas Bacterianas , Bases de Datos Genéticas , Secuencias Repetitivas Esparcidas , Sistemas Toxina-Antitoxina , Proteínas Bacterianas/genética , Genoma Bacteriano , Sistemas Toxina-Antitoxina/genética , Sitios Genéticos
8.
Proc Natl Acad Sci U S A ; 120(20): e2301389120, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37155856

RESUMEN

Small-molecule carboxyl methyltransferases (CbMTs) constitute a small proportion of the reported methyltransferases, but they have received extensive attention due to their important physiological functions. Most of the small-molecule CbMTs isolated to date originate from plants and are members of the SABATH family. In this study, we identified a type of CbMT (OPCMT) from a group of Mycobacteria, which has a distinct catalytic mechanism from the SABATH methyltransferases. The enzyme contains a large hydrophobic substrate-binding pocket (~400 Å3) and utilizes two conserved residues, Thr20 and Try194, to retain the substrate in a favorable orientation for catalytic transmethylation. The OPCMT_like MTs have a broad substrate scope and can accept diverse carboxylic acids enabling efficient production of methyl esters. They are widely (more than 10,000) distributed in microorganisms, including several well-known pathogens, whereas no related genes are found in humans. In vivo experiments implied that the OPCMT_like MTs was indispensable for M. neoaurum, suggesting that these proteins have important physiological functions.


Asunto(s)
Metiltransferasas , Plantas , Humanos , Metiltransferasas/metabolismo , Secuencia de Aminoácidos , Plantas/metabolismo
9.
Proc Natl Acad Sci U S A ; 120(11): e2222045120, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36877856

RESUMEN

The soil-dwelling filamentous bacteria, Streptomyces, is widely known for its ability to produce numerous bioactive natural products. Despite many efforts toward their overproduction and reconstitution, our limited understanding of the relationship between the host's chromosome three dimension (3D) structure and the yield of the natural products escaped notice. Here, we report the 3D chromosome organization and its dynamics of the model strain, Streptomyces coelicolor, during the different growth phases. The chromosome undergoes a dramatic global structural change from primary to secondary metabolism, while some biosynthetic gene clusters (BGCs) form special local structures when highly expressed. Strikingly, transcription levels of endogenous genes are found to be highly correlated to the local chromosomal interaction frequency as defined by the value of the frequently interacting regions (FIREs). Following the criterion, an exogenous single reporter gene and even complex BGC can achieve a higher expression after being integrated into the chosen loci, which may represent a unique strategy to activate or enhance the production of natural products based on the local chromosomal 3D organization.


Asunto(s)
Productos Biológicos , Streptomyces coelicolor , Streptomyces coelicolor/genética , Estructuras Cromosómicas , Empaquetamiento del ADN , Familia de Multigenes/genética
10.
Plant J ; 119(2): 927-941, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38872484

RESUMEN

Acteoside is a bioactive phenylethanoid glycoside widely distributed throughout the plant kingdom. Because of its two catechol moieties, acteoside displays a variety of beneficial activities. The biosynthetic pathway of acteoside has been largely elucidated, but the assembly logic of two catechol moieties in acteoside remains unclear. Here, we identified a novel polyphenol oxidase OfPPO2 from Osmanthus fragrans, which could hydroxylate various monophenolic substrates, including tyrosine, tyrosol, tyramine, 4-hydroxyphenylacetaldehyde, salidroside, and osmanthuside A, leading to the formation of corresponding catechol-containing intermediates for acteoside biosynthesis. OfPPO2 could also convert osmanthuside B into acteoside, creating catechol moieties directly via post-modification of the acteoside skeleton. The reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis and subcellular localization assay further support the involvement of OfPPO2 in acteoside biosynthesis in planta. These findings suggest that the biosynthesis of acteoside in O. fragrans may follow "parallel routes" rather than the conventionally considered linear route. In support of this hypothesis, the glycosyltransferase OfUGT and the acyltransferase OfAT could direct the flux of diphenolic intermediates generated by OfPPO2 into acteoside. Significantly, OfPPO2 and its orthologs constitute a functionally conserved enzyme family that evolved independently from other known biosynthetic enzymes of acteoside, implying that the substrate promiscuity of this PPO family may offer acteoside-producing plants alternative ways to synthesize acteoside. Overall, this work expands our understanding of parallel pathways plants may employ to efficiently synthesize acteoside, a strategy that may contribute to plants' adaptation to environmental challenges.


Asunto(s)
Catecol Oxidasa , Glucósidos , Fenoles , Proteínas de Plantas , Catecol Oxidasa/metabolismo , Catecol Oxidasa/genética , Glucósidos/metabolismo , Glucósidos/biosíntesis , Fenoles/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Vías Biosintéticas , Oleaceae/enzimología , Oleaceae/genética , Oleaceae/metabolismo , Catecoles/metabolismo , Regulación de la Expresión Génica de las Plantas , Polifenoles
11.
Mol Microbiol ; 121(5): 971-983, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38480679

RESUMEN

Increasing evidence suggests that DNA phosphorothioate (PT) modification serves several purposes in the bacterial host, and some restriction enzymes specifically target PT-DNA. PT-dependent restriction enzymes (PDREs) bind PT-DNA through their DNA sulfur binding domain (SBD) with dissociation constants (KD) of 5 nM~1 µM. Here, we report that SprMcrA, a PDRE, failed to dissociate from PT-DNA after cleavage due to high binding affinity, resulting in low DNA cleavage efficiency. Expression of SBDs in Escherichia coli cells with PT modification induced a drastic loss of cell viability at 25°C when both DNA strands of a PT site were bound, with one SBD on each DNA strand. However, at this temperature, SBD binding to only one PT DNA strand elicited a severe growth lag rather than lethality. This cell growth inhibition phenotype was alleviated by raising the growth temperature. An in vitro assay mimicking DNA replication and RNA transcription demonstrated that the bound SBD hindered the synthesis of new DNA and RNA when using PT-DNA as the template. Our findings suggest that DNA modification-targeting proteins might regulate cellular processes involved in DNA metabolism in addition to being components of restriction-modification systems and epigenetic readers.


Asunto(s)
Replicación del ADN , Proteínas de Escherichia coli , Escherichia coli , Azufre , Escherichia coli/metabolismo , Escherichia coli/genética , Azufre/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , ADN Bacteriano/metabolismo , Enzimas de Restricción del ADN/metabolismo , Unión Proteica , ADN/metabolismo , Sitios de Unión
12.
Nucleic Acids Res ; 51(19): 10782-10794, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37702119

RESUMEN

Phosphorothioate (PT)-modification was discovered in prokaryotes and is involved in many biological functions such as restriction-modification systems. PT-modification can be recognized by the sulfur binding domains (SBDs) of PT-dependent restriction endonucleases, through coordination with the sulfur atom, accompanied by interactions with the DNA backbone and bases. The unique characteristics of PT recognition endow SBDs with the potential to be developed into gene-targeting tools, but previously reported SBDs display sequence-specificity for PT-DNA, which limits their applications. In this work, we identified a novel sequence-promiscuous SBDHga from Hahella ganghwensis. We solved the crystal structure of SBDHga complexed with PT-DNA substrate to 1.8 Å resolution and revealed the recognition mechanism. A shorter L4 loop of SBDHga interacts with the DNA backbone, in contrast with previously reported SBDs, which interact with DNA bases. Furthermore, we explored the feasibility of using SBDHga and a PT-oligonucleotide as targeting tools for site-directed adenosine-to-inosine (A-to-I) RNA editing. A GFP non-sense mutant RNA was repaired at about 60% by harnessing a chimeric SBD-hADAR2DD (deaminase domain of human adenosine deaminase acting on RNA), comparable with currently available RNA editing techniques. This work provides insights into understanding the mechanism of sequence-specificity for SBDs and for developing new tools for gene therapy.


Asunto(s)
Edición de ARN , Humanos , Adenosina Desaminasa/metabolismo , ADN/química , Edición Génica , ARN/metabolismo , Azufre/química
13.
Proc Natl Acad Sci U S A ; 119(17): e2119032119, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35439051

RESUMEN

Iodine-induced cleavage at phosphorothioate DNA (PT-DNA) is characterized by extremely high sensitivity (∼1 phosphorothioate link per 106 nucleotides), which has been used for detecting and sequencing PT-DNA in bacteria. Despite its foreseeable potential for wide applications, the cleavage mechanism at the PT-modified site has not been well established, and it remains unknown as to whether or not cleavage of the bridging P-O occurs at every PT-modified site. In this work, we conducted accurate ωB97X-D calculations and high-performance liquid chromatography-mass spectrometry to investigate the process of PT-DNA cleavage at the atomic and molecular levels. We have found that iodine chemoselectively binds to the sulfur atom of the phosphorothioate link via a strong halogen-chalcogen interaction (a type of halogen bond, with binding affinity as high as 14.9 kcal/mol) and thus triggers P-O bond cleavage via phosphotriester-like hydrolysis. Additionally, aside from cleavage of the bridging P-O bond, the downstream hydrolyses lead to unwanted P-S/P-O conversions and a loss of the phosphorothioate handle. The mechanism we outline helps to explain specific selectivity at the PT-modified site but also predicts the dynamic stoichiometry of P-S and P-O bond breaking. For instance, Tris is involved in the cascade derivation of S-iodo-phosphorothioate to S-amino-phosphorothioate, suppressing the S-iodo-phosphorothioate hydrolysis to a phosphate diester. However, hydrolysis of one-third of the Tris-O-grafting phosphotriester results in unwanted P-S/P-O conversions. Our study suggests that bacterial DNA phosphorothioation may more frequently occur than previous bioinformatic estimations have predicted from iodine-induced deep sequencing data.


Asunto(s)
Yodo , División del ADN , ADN Bacteriano/genética , Yoduros , Fosfatos/química , Azufre
14.
BMC Plant Biol ; 24(1): 68, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38262956

RESUMEN

BACKGROUND: Papaya (Carica papaya) is an economically important fruit cultivated in the tropical and subtropical regions of China. However, the rapid softening rate after postharvest leads to a short shelf-life and considerable economic losses. Accordingly, understanding the mechanisms underlying fruit postharvest softening will be a reasonable way to maintain fruit quality and extend its shelf-life. RESULTS: Mitogen-activated protein kinases (MAPKs) are conserved and play essential roles in response to biotic and abiotic stresses. However, the MAPK family remain poorly studied in papaya. Here, a total of nine putative CpMAPK members were identified within papaya genome, and a comprehensive genome-wide characterization of the CpMAPKs was performed, including evolutionary relationships, conserved domains, gene structures, chromosomal locations, cis-regulatory elements and expression profiles in response to phytohormone and antioxidant organic compound treatments during fruit postharvest ripening. Our findings showed that nearly all CpMAPKs harbored the conserved P-loop, C-loop and activation loop domains. Phylogenetic analysis showed that CpMAPK members could be categorized into four groups (A-D), with the members within the same groups displaying high similarity in protein domains and intron-exon organizations. Moreover, a number of cis-acting elements related to hormone signaling, circadian rhythm, or low-temperature stresses were identified in the promoters of CpMAPKs. Notably, gene expression profiles demonstrated that CpMAPKs exhibited various responses to 2-chloroethylphosphonic acid (ethephon), 1-methylcyclopropene (1-MCP) and the combined ascorbic acid (AsA) and chitosan (CTS) treatments during papaya postharvest ripening. Among them, both CpMAPK9 and CpMAPK20 displayed significant induction in papaya flesh by ethephon treatment, and were pronounced inhibition after AsA and CTS treatments at 16 d compared to those of natural ripening control, suggesting that they potentially involve in fruit postharvest ripening through ethylene signaling pathway or modulating cell wall metabolism. CONCLUSION: This study will provide some valuable insights into future functional characterization of CpMAPKs, and hold great potential for further understanding the molecular mechanisms underlying papaya fruit postharvest ripening.


Asunto(s)
Carica , Quitosano , Ciclopropanos , Compuestos Organofosforados , Frutas , Filogenia , Ácido Ascórbico
15.
Chembiochem ; : e202400292, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970452

RESUMEN

Streptonigrin (STN, 1) is a highly functionalized aminoquinone alkaloid antibiotic with broad and potent antitumor activity. STN structurally contains four methyl groups belonging to two types: C-methyl group and O-methyl groups. Here, we report the biochemical characterization of the O-methyltransferase StnQ2 that can catalyze both the methylation of a hydroxyl group and a carboxyl group in the biosynthesis of streptonigrin. This work not only provides a new insight into methyltransferases, but also advances the elucidation of the complete biosynthetic pathway of streptonigrin.

16.
Brief Bioinform ; 23(1)2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-34657153

RESUMEN

Bacterial type IV secretion systems (T4SSs) are versatile and membrane-spanning apparatuses, which mediate both genetic exchange and delivery of effector proteins to target eukaryotic cells. The secreted effectors (T4SEs) can affect gene expression and signal transduction of the host cells. As such, they often function as virulence factors and play an important role in bacterial pathogenesis. Nowadays, T4SE prediction tools have utilized various machine learning algorithms, but the accuracy and speed of these tools remain to be improved. In this study, we apply a sequence embedding strategy from a pre-trained language model of protein sequences (TAPE) to the classification task of T4SEs. The training dataset is mainly derived from our updated type IV secretion system database SecReT4 with newly experimentally verified T4SEs. An online web server termed T4SEfinder is developed using TAPE and a multi-layer perceptron (MLP) for T4SE prediction after a comprehensive performance comparison with several candidate models, which achieves a slightly higher level of accuracy than the existing prediction tools. It only takes about 3 minutes to make a classification for 5000 protein sequences by T4SEfinder so that the computational speed is qualified for whole genome-scale T4SEs detection in pathogenic bacteria. T4SEfinder might contribute to meet the increasing demands of re-annotating secretion systems and effector proteins in sequenced bacterial genomes. T4SEfinder is freely accessible at https://tool2-mml.sjtu.edu.cn/T4SEfinder_TAPE/.


Asunto(s)
Biología Computacional , Lenguaje , Bacterias/genética , Genoma Bacteriano , Proteínas/genética , Sistemas de Secreción Tipo IV/genética
17.
Metab Eng ; 83: 61-74, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522576

RESUMEN

5-Methyluridine (5-MU) is a prominent intermediate for industrial synthesis of several antiviral-drugs, however, its availability over the past decades has overwhelmingly relied on chemical and enzymatic strategies. Here, we have realized efficient production of 5-MU in E. coli, for the first time, via a designer artificial pathway consisting of a two-enzyme cascade (UMP 5-methylase and phosphatase). More importantly, we have engineered the E. coli cell factory to boost 5-MU production by systematic evaluation of multiple strategies, and as a proof of concept, we have further developed an antibiotic-free fermentation strategy to realize 5-MU production (10.71 g/L) in E. coli MB229 (a ΔthyA strain). Remarkably, we have also established a versatile and robust platform with exploitation of the engineered E. coli for efficient production of diversified UMP-derived chemicals. This study paves the way for future engineering of E. coli as a synthetic biology platform for acceleratively accessing UMP-derived chemical diversities.


Asunto(s)
Escherichia coli , Ingeniería Metabólica , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
18.
New Phytol ; 241(2): 779-792, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37933426

RESUMEN

(+)-Nootkatone is a natural sesquiterpene ketone widely used in food, cosmetics, pharmaceuticals, and agriculture. It is also regarded as one of the most valuable terpenes used commercially. However, plants contain trace amounts of (+)-nootkatone, and extraction from plants is insufficient to meet market demand. Alpinia oxyphylla is a well-known medicinal plant in China, and (+)-nootkatone is one of the main components within the fruits. By transcriptome mining and functional screening using a precursor-providing yeast chassis, the complete (+)-nootkatone biosynthetic pathway in Alpinia oxyphylla was identified. A (+)-valencene synthase (AoVS) was identified as a novel monocot-derived valencene synthase; three (+)-valencene oxidases AoCYP6 (CYP71BB2), AoCYP9 (CYP71CX8), and AoCYP18 (CYP701A170) were identified by constructing a valencene-providing yeast strain. With further characterisation of a cytochrome P450 reductase (AoCPR1) and three dehydrogenases (AoSDR1/2/3), we successfully reconstructed the (+)-nootkatone biosynthetic pathway in Saccharomyces cerevisiae, representing a basis for its biotechnological production. Identifying the biosynthetic pathway of (+)-nootkatone in A. oxyphylla unravelled the molecular mechanism underlying its formation in planta and also supported the bioengineering production of (+)-nootkatone. The highly efficient yeast chassis screening method could be used to elucidate the complete biosynthetic pathway of other valuable plant natural products in future.


Asunto(s)
Alpinia , Plantas Medicinales , Sesquiterpenos , Alpinia/metabolismo , Saccharomyces cerevisiae/metabolismo , Sesquiterpenos/metabolismo , Plantas Medicinales/metabolismo
19.
PLoS Comput Biol ; 19(6): e1011218, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37289843

RESUMEN

Synthetic lethality (SL) occurs when mutations in two genes together lead to cell or organism death, while a single mutation in either gene does not have a significant impact. This concept can also be extended to three or more genes for SL. Computational and experimental methods have been developed to predict and verify SL gene pairs, especially for yeast and Escherichia coli. However, there is currently a lack of a specialized platform to collect microbial SL gene pairs. Therefore, we designed a synthetic interaction database for microbial genetics that collects 13,313 SL and 2,994 Synthetic Rescue (SR) gene pairs that are reported in the literature, as well as 86,981 putative SL pairs got through homologous transfer method in 281 bacterial genomes. Our database website provides multiple functions such as search, browse, visualization, and Blast. Based on the SL interaction data in the S. cerevisiae, we review the issue of duplications' essentiality and observed that the duplicated genes and singletons have a similar ratio of being essential when we consider both individual and SL. The Microbial Synthetic Lethal and Rescue Database (Mslar) is expected to be a useful reference resource for researchers interested in the SL and SR genes of microorganisms. Mslar is open freely to everyone and available on the web at http://guolab.whu.edu.cn/Mslar/.


Asunto(s)
Neoplasias , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Mutaciones Letales Sintéticas , Mutación , Genoma Bacteriano/genética , Bases de Datos Genéticas , Neoplasias/genética
20.
Chem Rev ; 122(1): 209-268, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-34664951

RESUMEN

In vivo imaging in the second near-infrared window (NIR-II, 1000-1700 nm), which enables us to look deeply into living subjects, is producing marvelous opportunities for biomedical research and clinical applications. Very recently, there has been an upsurge of interdisciplinary studies focusing on developing versatile types of inorganic/organic fluorophores that can be used for noninvasive NIR-IIa/IIb imaging (NIR-IIa, 1300-1400 nm; NIR-IIb, 1500-1700 nm) with near-zero tissue autofluorescence and deeper tissue penetration. This review provides an overview of the reports published to date on the design, properties, molecular imaging, and theranostics of inorganic/organic NIR-IIa/IIb fluorophores. First, we summarize the design concepts of the up-to-date functional NIR-IIa/IIb biomaterials, in the order of single-walled carbon nanotubes (SWCNTs), quantum dots (QDs), rare-earth-doped nanoparticles (RENPs), and organic fluorophores (OFs). Then, these novel imaging modalities and versatile biomedical applications brought by these superior fluorescent properties are reviewed. Finally, challenges and perspectives for future clinical translation, aiming at boosting the clinical application progress of NIR-IIa and NIR-IIb imaging technology are highlighted.


Asunto(s)
Nanotubos de Carbono , Medicina de Precisión , Colorantes Fluorescentes , Humanos , Imagen Molecular , Imagen Óptica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA