Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Physiology (Bethesda) ; 30(6): 428-37, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26525342

RESUMEN

Since glucose is the principal energy source for most cells, many organisms have evolved numerous and sophisticated mechanisms to sense glucose and respond to it appropriately. In this context, cloning of the carbohydrate responsive element binding protein has unraveled a critical molecular link between glucose metabolism and transcriptional reprogramming induced by glucose. In this review, we detail major findings that have advanced our knowledge of glucose sensing.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Metabolismo Energético , Glucosa/metabolismo , Transducción de Señal , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Animales , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Ácidos Grasos/metabolismo , Humanos , Resistencia a la Insulina , Hígado/metabolismo , Hígado/patología , Neoplasias/metabolismo , Neoplasias/patología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Isoformas de Proteínas
2.
Hepatology ; 62(4): 1086-100, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25761756

RESUMEN

UNLABELLED: Carbohydrate responsive element binding protein (ChREBP) is central for de novo fatty acid synthesis under physiological conditions and in the context of nonalcoholic fatty liver disease. We explored its contribution to alcohol-induced steatosis in a mouse model of binge drinking as acute ethanol (EtOH) intoxication has become an alarming health problem. Within 6 hours, ChREBP acetylation and its recruitment onto target gene promoters were increased in liver of EtOH-fed mice. Acetylation of ChREBP was dependent on alcohol metabolism because inhibition of alcohol dehydrogenase (ADH) activity blunted ChREBP EtOH-induced acetylation in mouse hepatocytes. Transfection of an acetylation-defective mutant of ChREBP (ChREBP(K672A) ) in HepG2 cells impaired the stimulatory effect of EtOH on ChREBP activity. Importantly, ChREBP silencing in the liver of EtOH-fed mice prevented alcohol-induced triglyceride accumulation through an inhibition of the lipogenic pathway but also led, unexpectedly, to hypothermia, increased blood acetaldehyde concentrations, and enhanced lethality. This phenotype was associated with impaired hepatic EtOH metabolism as a consequence of reduced ADH activity. While the expression and activity of the NAD(+) dependent deacetylase sirtuin 1, a ChREBP-negative target, were down-regulated in the liver of alcohol-fed mice, they were restored to control levels upon ChREBP silencing. In turn, ADH acetylation was reduced, suggesting that ChREBP regulates EtOH metabolism and ADH activity through its direct control of sirtuin 1 expression. Indeed, when sirtuin 1 activity was rescued by resveratrol pretreatment in EtOH-treated hepatocytes, a significant decrease in ADH protein content and/or acetylation was observed. CONCLUSION: our study describes a novel role for ChREBP in EtOH metabolism and unravels its protective effect against severe intoxication in response to binge drinking.


Asunto(s)
Consumo Excesivo de Bebidas Alcohólicas/etiología , Etanol/metabolismo , Proteínas Nucleares/fisiología , Factores de Transcripción/fisiología , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Susceptibilidad a Enfermedades , Masculino , Ratones , Ratones Endogámicos C57BL
3.
Nature ; 456(7219): 269-73, 2008 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-18849969

RESUMEN

During early fasting, increases in skeletal muscle proteolysis liberate free amino acids for hepatic gluconeogenesis in response to pancreatic glucagon. Hepatic glucose output diminishes during the late protein-sparing phase of fasting, when ketone body production by the liver supplies compensatory fuel for glucose-dependent tissues. Glucagon stimulates the gluconeogenic program by triggering the dephosphorylation and nuclear translocation of the CREB regulated transcription coactivator 2 (CRTC2; also known as TORC2), while parallel decreases in insulin signalling augment gluconeogenic gene expression through the dephosphorylation and nuclear shuttling of forkhead box O1 (FOXO1). Here we show that a fasting-inducible switch, consisting of the histone acetyltransferase p300 and the nutrient-sensing deacetylase sirtuin 1 (SIRT1), maintains energy balance in mice through the sequential induction of CRTC2 and FOXO1. After glucagon induction, CRTC2 stimulated gluconeogenic gene expression by an association with p300, which we show here is also activated by dephosphorylation at Ser 89 during fasting. In turn, p300 increased hepatic CRTC2 activity by acetylating it at Lys 628, a site that also targets CRTC2 for degradation after its ubiquitination by the E3 ligase constitutive photomorphogenic protein (COP1). Glucagon effects were attenuated during late fasting, when CRTC2 was downregulated owing to SIRT1-mediated deacetylation and when FOXO1 supported expression of the gluconeogenic program. Disrupting SIRT1 activity, by liver-specific knockout of the Sirt1 gene or by administration of a SIRT1 antagonist, increased CRTC2 activity and glucose output, whereas exposure to SIRT1 agonists reduced them. In view of the reciprocal activation of FOXO1 and its coactivator peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha, encoded by Ppargc1a) by SIRT1 activators, our results illustrate how the exchange of two gluconeogenic regulators during fasting maintains energy balance.


Asunto(s)
Ayuno/fisiología , Gluconeogénesis/fisiología , Acetilación , Animales , Proteína de Unión a CREB/metabolismo , Línea Celular Transformada , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Inhibidores Enzimáticos/farmacología , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Humanos , Hígado/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteínas Nucleares/metabolismo , Resveratrol , Sirtuina 1 , Sirtuinas/genética , Sirtuinas/metabolismo , Estilbenos/farmacología , Transactivadores/metabolismo , Factores de Transcripción , Ubiquitina-Proteína Ligasas/metabolismo , Factores de Transcripción p300-CBP/metabolismo
4.
Nat Commun ; 15(1): 1879, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424041

RESUMEN

Cancer cells integrate multiple biosynthetic demands to drive unrestricted proliferation. How these cellular processes crosstalk to fuel cancer cell growth is still not fully understood. Here, we uncover the mechanisms by which the transcription factor Carbohydrate responsive element binding protein (ChREBP) functions as an oncogene during hepatocellular carcinoma (HCC) development. Mechanistically, ChREBP triggers the expression of the PI3K regulatory subunit p85α, to sustain the activity of the pro-oncogenic PI3K/AKT signaling pathway in HCC. In parallel, increased ChREBP activity reroutes glucose and glutamine metabolic fluxes into fatty acid and nucleic acid synthesis to support PI3K/AKT-mediated HCC growth. Thus, HCC cells have a ChREBP-driven circuitry that ensures balanced coordination between PI3K/AKT signaling and appropriate cell anabolism to support HCC development. Finally, pharmacological inhibition of ChREBP by SBI-993 significantly suppresses in vivo HCC tumor growth. Overall, we show that targeting ChREBP with specific inhibitors provides an attractive therapeutic window for HCC treatment.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias Hepáticas/metabolismo , Transducción de Señal , Carcinogénesis , Proliferación Celular , Línea Celular Tumoral
5.
Cancer Immunol Res ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38912762

RESUMEN

Cancers only develop if they escape immunosurveillance, and the success of cancer immunotherapies relies in most cases on their ability to restore effector T-cell functions, particularly IFN-γ production. Revolutionizing the treatment of many cancers, immunotherapies targeting immune checkpoints such as PD1 can increase survival and cure patients. Unfortunately, although immunotherapy has greatly improved the prognosis of patients, not all respond to anti-PD1 immunotherapy, making it crucial to identify alternative treatments that could be combined with current immunotherapies to improve their effectiveness. Here, we show that iron supplementation significantly boosts T-cell responses in vivo and in vitro. This boost is associated with a metabolic reprogramming of T cells in favor of lipid oxidation. We also found that the "adjuvant" effect of iron led to a marked slowdown of tumor-cell growth after tumor-cell line transplantation in mice. Specifically, our results suggest that iron supplementation promotes anti-tumor responses by increasing IFN-γ production by T cells. In addition, iron supplementation considerably improves the efficacy of anti-PD1 cancer immunotherapy in mice. Finally, our study suggests that, in cancer patients, the quality and efficacy of the anti-tumor response following anti-PD1 immunotherapy may be modulated by plasma ferritin levels. In summary, our results suggest the benefits of iron supplementation on the reactivation of anti-tumor responses and support the relevance of a fruitful association between immunotherapy and iron supplementation.

6.
Nature ; 449(7160): 366-9, 2007 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-17805301

RESUMEN

During feeding, increases in circulating pancreatic insulin inhibit hepatic glucose output through the activation of the Ser/Thr kinase AKT and subsequent phosphorylation of the forkhead transcription factor FOXO1 (refs 1-3). Under fasting conditions, FOXO1 increases gluconeogenic gene expression in concert with the cAMP responsive coactivator TORC2 (refs 4-8). In response to pancreatic glucagon, TORC2 is de-phosphorylated at Ser 171 and transported to the nucleus, in which it stimulates the gluconeogenic programme by binding to CREB. Here we show in mice that insulin inhibits gluconeogenic gene expression during re-feeding by promoting the phosphorylation and ubiquitin-dependent degradation of TORC2. Insulin disrupts TORC2 activity by induction of the Ser/Thr kinase SIK2, which we show here undergoes AKT2-mediated phosphorylation at Ser 358. Activated SIK2 in turn stimulated the Ser 171 phosphorylation and cytoplasmic translocation of TORC2. Phosphorylated TORC2 was degraded by the 26S proteasome during re-feeding through an association with COP1, a substrate receptor for an E3 ligase complex that promoted TORC2 ubiquitination at Lys 628. Because TORC2 protein levels and activity were increased in diabetes owing to a block in TORC2 phosphorylation, our results point to an important role for this pathway in the maintenance of glucose homeostasis.


Asunto(s)
Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Gluconeogénesis/genética , Insulina/metabolismo , Transactivadores/metabolismo , Animales , Línea Celular , Ingestión de Alimentos/fisiología , Ayuno/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Gluconeogénesis/efectos de los fármacos , Glucosa/metabolismo , Homeostasis/efectos de los fármacos , Humanos , Insulina/farmacología , Masculino , Ratones , Proteínas Nucleares/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
7.
J Hepatol ; 56(1): 199-209, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21835137

RESUMEN

BACKGROUND & AIMS: In liver, the glucose-responsive transcription factor ChREBP plays a critical role in converting excess carbohydrates into triglycerides through de novo lipogenesis. Although the importance of ChREBP in glucose sensing and hepatic energy utilization is strongly supported, the mechanism driving its activation in response to glucose in the liver is not fully understood. Indeed, the current model of ChREBP activation, which depends on Serine 196 and Threonine 666 dephosphorylation, phosphatase 2A (PP2A) activity, and xylulose 5-phosphate (X5P) as a signaling metabolite, has been challenged. METHODS: We inhibited PP2A activity in HepG2 cells through the overexpression of SV40 small t antigen and addressed the importance of ChREBP dephosphorylation on Ser-196 using a phospho-specific antibody. To identify the exact nature of the metabolite signal required for ChREBP activity in liver, we focused on the importance of G6P synthesis in liver cells, through the modulation of glucose 6-phosphate dehydrogenase (G6PDH) activity, the rate-limiting enzyme of the pentose phosphate pathway in hepatocytes, and in HepG2 cells using both adenoviral and siRNA approaches. RESULTS: In contrast to the current proposed model, our study reports that PP2A activity is dispensable for ChREBP activation in response to glucose and that dephosphorylation on Ser-196 is not sufficient to promote ChREBP nuclear translocation in the absence of a rise in glucose metabolism. By deciphering the respective roles of G6P and X5P as signaling metabolites, our study reveals that G6P produced by GK, but not X5P, is essential for both ChREBP nuclear translocation and transcriptional activity in response to glucose in liver cells. CONCLUSIONS: Altogether, our study, by reporting that G6P is the glucose-signaling metabolite, challenges the PP2A/X5P-dependent model currently described for ChREBP activation in response to glucose in liver.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Glucosa-6-Fosfato/metabolismo , Glucosa/farmacología , Hígado/efectos de los fármacos , Hígado/metabolismo , Pentosafosfatos/metabolismo , Transporte Activo de Núcleo Celular , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/química , Glucosafosfato Deshidrogenasa/antagonistas & inhibidores , Glucosafosfato Deshidrogenasa/genética , Glucosafosfato Deshidrogenasa/metabolismo , Células Hep G2 , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Lipogénesis , Modelos Biológicos , Vía de Pentosa Fosfato , Fosforilación , Proteína Fosfatasa 2/metabolismo , ARN Interferente Pequeño/genética , Transcripción Genética
8.
Front Immunol ; 13: 960226, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275699

RESUMEN

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy derived from early T cell progenitors. Since relapsed T-ALL is associated with a poor prognosis improving initial treatment of patients is essential to avoid resistant selection of T-ALL. During initiation, development, metastasis and even in response to chemotherapy, tumor cells face strong metabolic challenges. In this study, we identify mitochondrial UnCoupling Protein 2 (UCP2) as a tricarboxylic acid (TCA) cycle metabolite transporter controlling glutamine metabolism associated with T-ALL cell proliferation. In T-ALL cell lines, we show that UCP2 expression is controlled by glutamine metabolism and is essential for their proliferation. Our data show that T-ALL cell lines differ in their substrate dependency and their energetic metabolism (glycolysis and oxidative). Thus, while UCP2 silencing decreases cell proliferation in all leukemia cells, it also alters mitochondrial respiration of T-ALL cells relying on glutamine-dependent oxidative metabolism by rewiring their cellular metabolism to glycolysis. In this context, the function of UCP2 in the metabolite export of malate enables appropriate TCA cycle to provide building blocks such as lipids for cell growth and mitochondrial respiration. Therefore, interfering with UCP2 function can be considered as an interesting strategy to decrease metabolic efficiency and proliferation rate of leukemia cells.


Asunto(s)
Glutamina , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Proteína Desacopladora 2/genética , Proteína Desacopladora 2/metabolismo , Glutamina/metabolismo , Malatos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proliferación Celular , Ácidos Tricarboxílicos , Lípidos
9.
JCI Insight ; 7(4)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35041621

RESUMEN

Impaired glucose metabolism is observed in obesity and type 2 diabetes. Glucose controls gene expression through the transcription factor ChREBP in liver and adipose tissues. Mlxipl encodes 2 isoforms: ChREBPα, the full-length form (translocation into the nucleus is under the control of glucose), and ChREBPß, a constitutively nuclear shorter form. ChREBPß gene expression in white adipose tissue is strongly associated with insulin sensitivity. Here, we investigated the consequences of ChREBPß deficiency on insulin action and energy balance. ChREBPß-deficient male and female C57BL6/J and FVB/N mice were produced using CRISPR/Cas9-mediated gene editing. Unlike global ChREBP deficiency, lack of ChREBPß showed modest effects on gene expression in adipose tissues and the liver, with variations chiefly observed in brown adipose tissue. In mice fed chow and 2 types of high-fat diets, lack of ChREBPß had moderate effects on body composition and insulin sensitivity. At thermoneutrality, ChREBPß deficiency did not prevent the whitening of brown adipose tissue previously reported in total ChREBP-KO mice. These findings revealed that ChREBPß is dispensable for metabolic adaptations to nutritional and thermic challenges.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Glucemia/metabolismo , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2/genética , Metabolismo Energético/genética , Regulación de la Expresión Génica , ARN/genética , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/biosíntesis , Células Cultivadas , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL
10.
Hepatol Commun ; 5(9): 1490-1506, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34510835

RESUMEN

CTNNB1 (catenin beta 1)-mutated hepatocellular carcinomas (HCCs) account for a large proportion of human HCCs. They display high levels of respiratory chain activity. As metabolism and redox balance are closely linked, tumor cells must maintain their redox status during these metabolic alterations. We investigated the redox balance of these HCCs and the feasibility of targeting this balance as an avenue for targeted therapy. We assessed the expression of the nuclear erythroid 2 p45-related factor 2 (NRF2) detoxification pathway in an annotated human HCC data set and reported an enrichment of the NRF2 program in human HCCs with CTNNB1 mutations, largely independent of NFE2L2 (nuclear factor, erythroid 2 like 2) or KEAP1 (Kelch-like ECH-associated protein 1) mutations. We then used mice with hepatocyte-specific oncogenic ß-catenin activation to evaluate the redox status associated with ß-catenin activation in preneoplastic livers and tumors. We challenged them with various oxidative stressors and observed that the ß-catenin pathway activation increased transcription of Nfe2l2, which protects ß-catenin-activated hepatocytes from oxidative damage and supports tumor development. Moreover, outside of its effects on reactive oxygen species scavenging, we found out that Nrf2 itself contributes to the metabolic activity of ß-catenin-activated cells. We then challenged ß-catenin activated tumors pharmacologically to create a redox imbalance and found that pharmacological inactivation of Nrf2 was sufficient to considerably decrease the progression of ß-catenin-dependent HCC development. Conclusion: These results demonstrate cooperation between oncogenic ß-catenin signaling and the NRF2 pathway in CTNNB1-mediated HCC tumorigenesis, and we provide evidence for the relevance of redox balance targeting as a therapeutic strategy in CTNNB1-mutated HCC.

11.
Mol Metab ; 43: 101108, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33137488

RESUMEN

OBJECTIVE: Glucose production in the blood requires the expression of glucose-6 phosphatase (G6Pase), a key enzyme that allows glucose-6 phosphate (G6P) hydrolysis into free glucose and inorganic phosphate. We previously reported that the hepatic suppression of G6Pase leads to G6P accumulation and to metabolic reprogramming in hepatocytes from liver G6Pase-deficient mice (L.G6pc-/-). Interestingly, the activity of the transcription factor carbohydrate response element-binding protein (ChREBP), central for de novo lipid synthesis, is markedly activated in L.G6pc-/- mice, which consequently rapidly develop NAFLD-like pathology. In the current work, we assessed whether a selective deletion of ChREBP could prevent hepatic lipid accumulation and NAFLD initiation in L.G6pc-/- mice. METHODS: We generated liver-specific ChREBP (L.Chrebp-/-)- and/or G6Pase (L.G6pc-/-)-deficient mice using a Cre-lox strategy in B6.SACreERT2 mice. Mice were fed a standard chow diet or a high-fat diet for 10 days. Markers of hepatic metabolism and cellular stress were analysed in the liver of control, L. G6pc-/-, L. Chrebp-/- and double knockout (i.e., L.G6pc-/-.Chrebp-/-) mice. RESULTS: We observed that there was a dramatic decrease in lipid accumulation in the liver of L.G6pc-/-.Chrebp-/- mice. At the mechanistic level, elevated G6P concentrations caused by lack of G6Pase are rerouted towards glycogen synthesis. Importantly, this exacerbated glycogen accumulation, leading to hepatic water retention and aggravated hepatomegaly. This caused animal distress and hepatocyte damage, characterised by ballooning and moderate fibrosis, paralleled with acute endoplasmic reticulum stress. CONCLUSIONS: Our study reveals the crucial role of the ChREBP-G6Pase duo in the regulation of G6P-regulated pathways in the liver.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Metabolismo de los Lípidos/fisiología , Monoéster Fosfórico Hidrolasas/metabolismo , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Glucosa/metabolismo , Glucosa-6-Fosfatasa/metabolismo , Glucosa-6-Fosfato/metabolismo , Hepatocitos/metabolismo , Hidrólisis , Lípidos/fisiología , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/fisiopatología , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Monoéster Fosfórico Hidrolasas/genética
12.
Cell Rep ; 28(9): 2306-2316.e5, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31461648

RESUMEN

Colorectal cancer (CRC) is associated with metabolic and redox perturbation. The mitochondrial transporter uncoupling protein 2 (UCP2) controls cell proliferation in vitro through the modulation of cellular metabolism, but the underlying mechanism in tumors in vivo remains unexplored. Using murine intestinal cancer models and CRC patient samples, we find higher UCP2 protein levels in tumors compared to their non-tumoral counterparts. We reveal the tumor-suppressive role of UCP2 as its deletion enhances colon and small intestinal tumorigenesis in AOM/DSS-treated and ApcMin/+ mice, respectively, and correlates with poor survival in the latter model. Mechanistically, UCP2 loss increases levels of oxidized glutathione and proteins in tumors. UCP2 deficiency alters glycolytic pathways while promoting phospholipid synthesis, thereby limiting the availability of NADPH for buffering oxidative stress. We show that UCP2 loss renders colon cells more prone to malignant transformation through metabolic reprogramming and perturbation of redox homeostasis and could favor worse outcomes in CRC.


Asunto(s)
Carcinogénesis/genética , Neoplasias Colorrectales/metabolismo , Lipogénesis , NADP/metabolismo , Estrés Oxidativo , Proteína Desacopladora 2/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Carcinogénesis/metabolismo , Colon/metabolismo , Colon/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Glucólisis , Humanos , Intestino Delgado/metabolismo , Intestino Delgado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Proteína Desacopladora 2/genética
13.
FEBS Lett ; 582(1): 68-73, 2008 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-17716660

RESUMEN

Non-alcoholic fatty liver disease is tightly associated with insulin resistance, type 2 diabetes and obesity, but the molecular links between hepatic fat accumulation and insulin resistance are not fully identified. Excessive accumulation of triglycerides (TG) is one the main characteristics of non-alcoholic fatty liver disease and fatty acids utilized for the synthesis of TG in liver are available from the plasma non-esterified fatty acid pool but also from fatty acids newly synthesized through hepatic de novo lipogenesis. Recently, the transcription factor ChREBP (carbohydrate responsive element binding protein) has emerged as a central determinant of lipid synthesis in liver through its transcriptional control of key genes of the lipogenic pathway, including fatty acid synthase and acetyl CoA carboxylase. In this mini-review, we will focus on the importance of ChREBP in the physiopathology of hepatic steatosis and insulin resistance by discussing the physiological and metabolic consequences of ChREBP knockdown in liver of ob/ob mice.


Asunto(s)
Hígado Graso/fisiopatología , Resistencia a la Insulina , Proteínas Nucleares/fisiología , Factores de Transcripción/fisiología , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Hígado/metabolismo , Ratones , Ratones Endogámicos , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo
14.
J Clin Invest ; 115(10): 2843-54, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16184193

RESUMEN

Dietary polyunsaturated fatty acids (PUFAs) are potent inhibitors of hepatic glycolysis and lipogenesis. Recently, carbohydrate-responsive element-binding protein (ChREBP) was implicated in the regulation by glucose of glycolytic and lipogenic genes, including those encoding L-pyruvate kinase (L-PK) and fatty acid synthase (FAS). The aim of our study was to assess the role of ChREBP in the control of L-PK and FAS gene expression by PUFAs. We demonstrated in mice, both in vivo and in vitro, that PUFAs [linoleate (C18:2), eicosapentanoic acid (C20:5), and docosahexaenoic acid (C22:6)] suppressed ChREBP activity by increasing ChREBP mRNA decay and by altering ChREBP translocation from the cytosol to the nucleus, independently of an activation of the AMP-activated protein kinase, previously shown to regulate ChREBP activity. In contrast, saturated [stearate (C18)] and monounsaturated fatty acids [oleate (C18:1)] had no effect. Since glucose metabolism via the pentose phosphate pathway is determinant for ChREBP nuclear translocation, the decrease in xylulose 5-phosphate concentrations caused by a PUFA diet favors a PUFA-mediated inhibition of ChREBP translocation. In addition, overexpression of a constitutive nuclear ChREBP isoform in cultured hepatocytes significantly reduced the PUFA inhibition of both L-PK and FAS gene expression. Our results demonstrate that the suppressive effect of PUFAs on these genes is primarily caused by an alteration of ChREBP nuclear translocation. In conclusion, we describe a novel mechanism to explain the inhibitory effect of PUFAs on the genes encoding L-PK and FAS and demonstrate that ChREBP is a pivotal transcription factor responsible for coordinating the PUFA suppression of glycolytic and lipogenic genes.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Grasas Insaturadas en la Dieta/administración & dosificación , Ácidos Docosahexaenoicos/administración & dosificación , Ácido Eicosapentaenoico/administración & dosificación , Glucólisis/efectos de los fármacos , Lipogénesis/efectos de los fármacos , Proteínas Quinasas Activadas por AMP , Animales , Células Cultivadas , Grasas Insaturadas en la Dieta/farmacología , Ácidos Docosahexaenoicos/farmacología , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/fisiología , Ácido Eicosapentaenoico/farmacología , Ácido Graso Sintasas/biosíntesis , Ácido Graso Sintasas/genética , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/fisiología , Glucólisis/fisiología , Hepatocitos/enzimología , Lipogénesis/fisiología , Masculino , Ratones , Complejos Multienzimáticos/metabolismo , Proteínas Nucleares/metabolismo , Vía de Pentosa Fosfato/efectos de los fármacos , Vía de Pentosa Fosfato/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Piruvato Quinasa/biosíntesis , Piruvato Quinasa/genética , Factores de Transcripción/metabolismo
15.
Nat Commun ; 9(1): 2092, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29844386

RESUMEN

Aberrant histone methylation profile is reported to correlate with the development and progression of NAFLD during obesity. However, the identification of specific epigenetic modifiers involved in this process remains poorly understood. Here, we identify the histone demethylase Plant Homeodomain Finger 2 (Phf2) as a new transcriptional co-activator of the transcription factor Carbohydrate Responsive Element Binding Protein (ChREBP). By specifically erasing H3K9me2 methyl-marks on the promoter of ChREBP-regulated genes, Phf2 facilitates incorporation of metabolic precursors into mono-unsaturated fatty acids, leading to hepatosteatosis development in the absence of inflammation and insulin resistance. Moreover, the Phf2-mediated activation of the transcription factor NF-E2-related factor 2 (Nrf2) further reroutes glucose fluxes toward the pentose phosphate pathway and glutathione biosynthesis, protecting the liver from oxidative stress and fibrogenesis in response to diet-induced obesity. Overall, our findings establish a downstream epigenetic checkpoint, whereby Phf2, through facilitating H3K9me2 demethylation at specific gene promoters, protects liver from the pathogenesis progression of NAFLD.


Asunto(s)
Desmetilación , Histona Demetilasas/metabolismo , Histonas/metabolismo , Proteínas de Homeodominio/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Proteínas Nucleares/metabolismo , Obesidad/patología , Factores de Transcripción/metabolismo , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Células Cultivadas , Activación Enzimática , Glucosa/metabolismo , Glutatión/biosíntesis , Humanos , Hígado/patología , Masculino , Metilación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Nucleares/genética , Estrés Oxidativo/genética , Estrés Oxidativo/fisiología , Vía de Pentosa Fosfato/fisiología , Regiones Promotoras Genéticas/genética , Factores de Transcripción/genética
16.
Diabetes ; 55(8): 2159-70, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16873678

RESUMEN

Obesity is a metabolic disorder often associated with type 2 diabetes, insulin resistance, and hepatic steatosis. Leptin-deficient (ob/ob) mice are a well-characterized mouse model of obesity in which increased hepatic lipogenesis is thought to be responsible for the phenotype of insulin resistance. We have recently demonstrated that carbohydrate responsive element-binding protein (ChREBP) plays a key role in the control of lipogenesis through the transcriptional regulation of lipogenic genes, including acetyl-CoA carboxylase and fatty acid synthase. The present study reveals that ChREBP gene expression and ChREBP nuclear protein content are significantly increased in liver of ob/ob mice. To explore the involvement of ChREBP in the physiopathology of hepatic steatosis and insulin resistance, we have developed an adenovirus-mediated RNA interference technique in which short hairpin RNAs (shRNAs) were used to inhibit ChREBP expression in vivo. Liver-specific inhibition of ChREBP in ob/ob mice markedly improved hepatic steatosis by specifically decreasing lipogenic rates. Correction of hepatic steatosis also led to decreased levels of plasma triglycerides and nonesterified fatty acids. As a consequence, insulin signaling was improved in liver, skeletal muscles, and white adipose tissue, and overall glucose tolerance and insulin sensitivity were restored in ob/ob mice after a 7-day treatment with the recombinant adenovirus expressing shRNA against ChREBP. Taken together, our results demonstrate that ChREBP is central for the regulation of lipogenesis in vivo and plays a determinant role in the development of the hepatic steatosis and of insulin resistance in ob/ob mice.


Asunto(s)
Hígado Graso/etiología , Resistencia a la Insulina/fisiología , Hígado/química , Proteínas Nucleares/antagonistas & inhibidores , Obesidad/complicaciones , Factores de Transcripción/antagonistas & inhibidores , Tejido Adiposo/metabolismo , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Glucemia/análisis , Carbohidratos de la Dieta/administración & dosificación , Regulación hacia Abajo/genética , Ácidos Grasos no Esterificados/sangre , Hígado Graso/genética , Hígado Graso/prevención & control , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Glucógeno/análisis , Insulina/fisiología , Leptina/deficiencia , Lípidos/análisis , Lípidos/biosíntesis , Hígado/metabolismo , Masculino , Ratones , Ratones Obesos , Músculo Esquelético/química , Proteínas Nucleares/análisis , Proteínas Nucleares/genética , Obesidad/genética , ARN Mensajero/análisis , ARN Interferente Pequeño/genética , Transducción de Señal , Factores de Transcripción/genética , Transfección , Triglicéridos/sangre
17.
Cell Rep ; 21(2): 403-416, 2017 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-29020627

RESUMEN

While the physiological benefits of the fibroblast growth factor 21 (FGF21) hepatokine are documented in response to fasting, little information is available on Fgf21 regulation in a glucose-overload context. We report that peroxisome-proliferator-activated receptor α (PPARα), a nuclear receptor of the fasting response, is required with the carbohydrate-sensitive transcription factor carbohydrate-responsive element-binding protein (ChREBP) to balance FGF21 glucose response. Microarray analysis indicated that only a few hepatic genes respond to fasting and glucose similarly to Fgf21. Glucose-challenged Chrebp-/- mice exhibit a marked reduction in FGF21 production, a decrease that was rescued by re-expression of an active ChREBP isoform in the liver of Chrebp-/- mice. Unexpectedly, carbohydrate challenge of hepatic Pparα knockout mice also demonstrated a PPARα-dependent glucose response for Fgf21 that was associated with an increased sucrose preference. This blunted response was due to decreased Fgf21 promoter accessibility and diminished ChREBP binding onto Fgf21 carbohydrate-responsive element (ChoRE) in hepatocytes lacking PPARα. Our study reports that PPARα is required for the ChREBP-induced glucose response of FGF21.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Glucosa/metabolismo , Proteínas Nucleares/metabolismo , PPAR alfa/metabolismo , Factores de Transcripción/metabolismo , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Células Cultivadas , Femenino , Factores de Crecimiento de Fibroblastos/genética , Hepatocitos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Nucleares/genética , PPAR alfa/genética , Elementos de Respuesta , Factores de Transcripción/genética
18.
Biochimie ; 87(1): 81-6, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15733741

RESUMEN

In mammals, the regulation of hepatic metabolism plays a key role in whole body energy balance, since the liver is the major site of carbohydrate metabolism (glycolysis and glycogen synthesis) and triglyceride synthesis (lipogenesis). Lipogenesis is regulated through the acute control of key enzyme activities by means of allosteric and covalent modifications. Moreover, the synthesis of most glycolytic and lipogenic enzymes is regulated in response to dietary status, in which glucose, in particular, is a crucial energy nutrient. This latter response occurs in large part through transcriptional regulation of genes encoding glycolytic and lipogenic enzymes. In the past few years, recent advances have been made in understanding the transcriptional regulation of hepatic glycolytic and lipogenic genes by insulin and glucose. Although insulin is a major regulator of hepatic lipogenesis, there is increasing evidence that glucose also contributes to the coordinated regulation of carbohydrate and lipid metabolism in liver. Here, we review the respective roles of the transcription factor sterol regulatory element binding protein-1c (SREBP-1c) in mediating the effect of insulin on hepatic gene expression, and the role of carbohydrate responsive element binding protein (ChREBP) in regulating gene transcription by glucose.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/fisiología , Proteínas de Unión al ADN/fisiología , Glucosa/metabolismo , Lípidos/biosíntesis , Hígado/metabolismo , Factores de Transcripción/fisiología , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Regulación Enzimológica de la Expresión Génica , Glucoquinasa/biosíntesis , Humanos , Ratas , Proteína 1 de Unión a los Elementos Reguladores de Esteroles
19.
Trends Endocrinol Metab ; 24(5): 257-68, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23597489

RESUMEN

Glucose is an energy source that also controls the expression of key genes involved in energetic metabolism through the glucose-signaling transcription factor carbohydrate response element-binding protein (ChREBP). ChREBP has recently emerged as a central regulator of glycolysis and de novo fatty acid synthesis in liver, but new evidence shows that it plays a broader and crucial role in various processes, ranging from glucolipotoxicity to apoptosis and/or proliferation in specific cell types. However, several aspects of ChREBP activation by glucose metabolites are currently controversial, as well as the effects of activating or inhibiting ChREBP, on insulin sensitivity, which might depend on genetic, dietary or environmental factors. Thus, much remains to be elucidated. Here, we summarize our current understanding of the regulation and function of this fascinating transcription factor.


Asunto(s)
Tejido Adiposo/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Glucólisis , Células Secretoras de Insulina/metabolismo , Lipogénesis , Hígado/metabolismo , Modelos Biológicos , Animales , Apoptosis , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/química , Proliferación Celular , Humanos , Resistencia a la Insulina , Células Secretoras de Insulina/citología , Músculo Esquelético/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Elementos de Respuesta
20.
Cell Metab ; 15(6): 795-7, 2012 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-22682219

RESUMEN

The ChREBP transcription factor is regulated by glucose and plays a role in insulin sensitivity, but the mechanism underlying these effects remains unclear. In a recent Nature article, Herman et al. (2012) show that a shorter ChREBP isoform (ChREBP-ß) links glucose transport to lipogenesis in white adipose tissue.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA