Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38400278

RESUMEN

Commercial, high-tech upper limb prostheses offer a lot of functionality and are equipped with high-grade control mechanisms. However, they are relatively expensive and are not accessible to the majority of amputees. Therefore, more affordable, accessible, open-source, and 3D-printable alternatives are being developed. A commonly proposed approach to control these prostheses is to use bio-potentials generated by skeletal muscles, which can be measured using surface electromyography (sEMG). However, this control mechanism either lacks accuracy when a single sEMG sensor is used or involves the use of wires to connect to an array of multiple nodes, which hinders patients' movements. In order to mitigate these issues, we have developed a circular, wireless s-EMG array that is able to collect sEMG potentials on an array of electrodes that can be spread (not) uniformly around the circumference of a patient's arm. The modular sEMG system is combined with a Bluetooth Low Energy System on Chip, motion sensors, and a battery. We have benchmarked this system with a commercial, wired, state-of-the-art alternative and found an r = 0.98 (p < 0.01) Spearman correlation between the root-mean-squared (RMS) amplitude of sEMG measurements measured by both devices for the same set of 20 reference gestures, demonstrating that the system is accurate in measuring sEMG. Additionally, we have demonstrated that the RMS amplitudes of sEMG measurements between the different nodes within the array are uncorrelated, indicating that they contain independent information that can be used for higher accuracy in gesture recognition. We show this by training a random forest classifier that can distinguish between 6 gestures with an accuracy of 97%. This work is important for a large and growing group of amputees whose quality of life could be improved using this technology.


Asunto(s)
Amputados , Miembros Artificiales , Humanos , Electromiografía , Calidad de Vida , Músculo Esquelético/fisiología , Gestos , Mano/fisiología
2.
Sensors (Basel) ; 24(16)2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39205019

RESUMEN

A low-cost, tri-axial 50 Hz magnetic field monitoring sensor was designed, calibrated and verified. The sensor was designed using off-the-shelf components and commercially available coils. It can measure 50 Hz magnetic fields originating from high-voltage power lines from 0.08 µT to 364 µT, divided into two measurement ranges. The sensor was calibrated both on-board and in-lab. The on-board calibration takes the circuit attenuation, noise and parasitic components into account. In the in-lab calibration, the output of the developed sensor is compared to the benchmark, a narrowband EHP-50. The sensor was then verified in situ under high-voltage power lines at two independent measurement locations. The measured field values during this validation were between 0.10 µT and 13.43 µT, which is in agreement with other reported measurement values under high-voltage power lines in literature. The results were compared to the benchmark, for which average deviations of 6.2% and 1.4% were found, at the two independent measurement locations. Furthermore, fields up to 113.3 µT were measured in a power distribution sub-station to ensure that both measurement ranges were verified. Our network, four active sensors in the field, had high uptimes of 96%, 82%, 81% and, 95% during a minimum 3-month interval. In total, over 6 million samples were gathered with field values that ranged from 0.08 µT to 45.48 µT. This suggests that the proposed solution can be used for this monitoring, although more extensive long-term testing with more sensors is required to confirm the uptime under multiple circumstances.

3.
Sensors (Basel) ; 23(6)2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36991856

RESUMEN

Of particular interest within fifth generation (5G) cellular networks are the typical levels of radiofrequency (RF) electromagnetic fields (EMFs) emitted by 'small cells', low-power base stations, which are installed such that both workers and members of the general public can come in close proximity with them. In this study, RF-EMF measurements were performed near two 5G New Radio (NR) base stations, one with an Advanced Antenna System (AAS) capable of beamforming and the other a traditional microcell. At various positions near the base stations, with distances ranging between 0.5 m and 100 m, both the worst-case and time-averaged field levels under maximized downlink traffic load were assessed. Moreover, from these measurements, estimates were made of the typical exposures for various cases involving users and non-users. Comparison to the maximum permissible exposure limits issued by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) resulted in maximum exposure ratios of 0.15 (occupational, at 0.5 m) and 0.68 (general public, at 1.3 m). The exposure of non-users was potentially much lower, depending on the activity of other users serviced by the base station and its beamforming capabilities: 5 to 30 times lower in the case of an AAS base station compared to barely lower to 30 times lower for a traditional antenna.


Asunto(s)
Teléfono Celular , Campos Electromagnéticos , Humanos , Exposición a Riesgos Ambientales , Ondas de Radio/efectos adversos
4.
Sensors (Basel) ; 23(6)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36992024

RESUMEN

This paper compares different low-cost sensors that can measure (5G) RF-EMF exposure. The sensors are either commercially available (off-the-shelf Software Defined Radio (SDR) Adalm Pluto) or constructed by a research institution (i.e., imec-WAVES, Ghent University and Smart Sensor Systems research group (S³R), The Hague University of Applied Sciences). Both in-lab (GTEM cell) and in-situ measurements have been performed for this comparison. The in-lab measurements tested the linearity and sensitivity, which can then be used to calibrate the sensors. The in-situ testing confirmed that the low-cost hardware sensors and SDR can be used to assess the RF-EMF radiation. The variability between the sensors was 1.78 dB on average, with a maximum deviation of 5.26 dB. Values between 0.09 V/m and 2.44 V/m were obtained at a distance of about 50 m from the base station. These devices can be used to provide the general public and governments with temporal and spatial 5G electromagnetic field values.

5.
Sensors (Basel) ; 20(19)2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-33003578

RESUMEN

Currently, visible light positioning (VLP) enabling an illumination infrastructure requires a costly retrofit. Intensity modulation systems not only necessitate changes to the internal LED driving module, but decrease the LEDs' radiant flux as well. This hinders the infrastructure's ability to meet the maintained illuminance standards. Ideally, the LEDs could be left unmodulated, i.e., unmodulated VLP (uVLP). uVLP systems, inherently low-cost, exploit the characteristics of the light signals of opportunity (LSOOP) to infer a position. In this paper, it is shown that proper signal processing allows using the LED's characteristic frequency (CF) as a discriminative feature in photodiode (PD)-based received signal strength (RSS) uVLP. This manuscript investigates and compares the aptitude of (future) RSS-based uVLP and VLP systems in terms of their feasibility, cost and accuracy. It demonstrates that CF-based uVLP exhibits an acceptable loss of accuracy compared to (regular) VLP. For point source-like LEDs, uVLP only worsens the trilateration-based median p50 and 90th percentile root-mean-square error p90 from 5.3cm to 7.9cm (+50%) and from 9.6cm to 15.6cm (+62%), in the 4m × 4m room under consideration. A large experimental validation shows that employing a robust model-based fingerprinting localisation procedure, instead of trilateration, further boosts uVLP's p50 and p90 accuracy to 5.0cm and 10.6cm. When collating with VLP's p50=3.5cm and p90=6.8cm, uVLP exhibits a comparable positioning performance at a significantly lower cost and at a higher maintained illuminance, all of which underline uVLP's high adoption potential. With this work, a significant step is taken towards the development of an accurate and low-cost tracking system.

6.
Sensors (Basel) ; 20(7)2020 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-32235403

RESUMEN

This paper experimentally investigates passive human visible light sensing (VLS). A passive VLS system is tested consisting of one light emitting diode (LED) and one photodiode-based receiver, both ceiling-mounted. There is no line of sight between the LED and the receiver, so only reflected light can be considered. The influence of a human is investigated based on the received signal strength (RSS) values of the reflections of ambient light at the photodiode. Depending on the situation, this influence can reach up to ± 50 % . The experimental results show the influence of three various clothing colors, four different walking directions and four different layouts. Based on the obtained results, a human pass-by detection system is proposed and tested. The system achieves a detection rate of 100% in a controlled environment for 21 experiments. For a realistic corridor experiment, the system keeps its detection rate of 100% for 19 experiments.


Asunto(s)
Técnicas Biosensibles/instrumentación , Percepción de Movimiento , Movimiento (Física) , Humanos , Luz
7.
Radiat Prot Dosimetry ; 198(6): 358-369, 2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35511688

RESUMEN

New measurement methods and equipment for correct 5G New Radio (NR) electromagnetic field (EMF) in-situ exposure assessment of instantaneous time-averaged exposure (Eavg) and maximum extrapolated field exposure (Emax) are proposed. The different options are investigated with in-situ measurements around 5G NR base stations (FR1) in different countries. The maximum electric field values satisfy the ICNIRP 2020 limit (maximum 7.7%). The difference between Emax and Eavg is <3 dB for the different measurement equipment at multiple sites in case there is only self-generated traffic. However, in a more realistic scenario, Eavg cannot be used to assess the exposure correctly due to influence of other users as the spatial distribution of user equipment (UE) influences Eavg, while Emax is not affected. However, when multiple UEs are collocated, there is no influence of the number of UEs. A broadband measurement can give a first impression of the RF-EMF exposure up to 700 m, but is not enough to assess the 5G-NR exposure.


Asunto(s)
Teléfono Celular , Ondas de Radio , Electricidad , Campos Electromagnéticos , Exposición a Riesgos Ambientales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA