Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Proteome Res ; 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38171506

RESUMEN

Triacylglycerols and wax esters are two lipid classes that have been linked to diseases, including autism, Alzheimer's disease, dementia, cardiovascular disease, dry eye disease, and diabetes, and thus are molecules worthy of biomarker exploration studies. Since triacylglycerols and wax esters make up the majority of skin-surface lipid secretions, a viable sampling method for these potential biomarkers would be that of groomed latent fingerprints. Currently, however, blood-based sampling protocols predominate in the field. The invasiveness of a blood draw limits its utility to protected populations, including children and the elderly. Herein we describe a noninvasive means for sample collection (from fingerprints) paired with fast MS data-acquisition (MassIVE data set MSV000092742) and efficient data analysis via machine learning. Using both supervised and unsupervised classification, we demonstrate the usefulness of this method in determining whether a variable of interest imparts measurable change within the lipidomic data set. As a proof-of-concept, we show that the method is capable of distinguishing between the fingerprints of different individuals as well as between anatomical sebum collection regions. This noninvasive, high-throughput approach enables future lipidomic biomarker researchers to more easily include underrepresented, protected populations, such as children and the elderly, thus moving the field closer to definitive disease diagnoses that apply to all.

2.
J Virol ; 96(3): e0162621, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-34817202

RESUMEN

The SARS-CoV-2 coronavirus, the etiologic agent of COVID-19, uses its spike (S) glycoprotein anchored in the viral membrane to enter host cells. The S glycoprotein is the major target for neutralizing antibodies elicited by natural infection and by vaccines. Approximately 35% of the SARS-CoV-2 S glycoprotein consists of carbohydrate, which can influence virus infectivity and susceptibility to antibody inhibition. We found that virus-like particles produced by coexpression of SARS-CoV-2 S, M, E, and N proteins contained spike glycoproteins that were extensively modified by complex carbohydrates. We used a fucose-selective lectin to purify the Golgi-modified fraction of a wild-type SARS-CoV-2 S glycoprotein trimer and determined its glycosylation and disulfide bond profile. Compared with soluble or solubilized S glycoproteins modified to prevent proteolytic cleavage and to retain a prefusion conformation, more of the wild-type S glycoprotein N-linked glycans are processed to complex forms. Even Asn 234, a significant percentage of which is decorated by high-mannose glycans on other characterized S trimer preparations, is predominantly modified in the Golgi compartment by processed glycans. Three incompletely occupied sites of O-linked glycosylation were detected. Viruses pseudotyped with natural variants of the serine/threonine residues implicated in O-linked glycosylation were generally infectious and exhibited sensitivity to neutralization by soluble ACE2 and convalescent antisera comparable to that of the wild-type virus. Unlike other natural cysteine variants, a Cys15Phe (C15F) mutant retained partial, but unstable, infectivity. These findings enhance our understanding of the Golgi processing of the native SARS-CoV-2 S glycoprotein carbohydrates and could assist the design of interventions. IMPORTANCE The SARS-CoV-2 coronavirus, which causes COVID-19, uses its spike glycoprotein to enter host cells. The viral spike glycoprotein is the main target of host neutralizing antibodies that help to control SARS-CoV-2 infection and are important for the protection provided by vaccines. The SARS-CoV-2 spike glycoprotein consists of a trimer of two subunits covered with a coat of carbohydrates (sugars). Here, we describe the disulfide bonds that assist the SARS-CoV-2 spike glycoprotein to assume the correct shape and the composition of the sugar moieties on the glycoprotein surface. We also evaluate the consequences of natural virus variation in O-linked sugar addition and in the cysteine residues involved in disulfide bond formation. This information can expedite the improvement of vaccines and therapies for COVID-19.


Asunto(s)
COVID-19/virología , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Secuencia de Aminoácidos , Anticuerpos Neutralizantes/inmunología , Disulfuros , Regulación Viral de la Expresión Génica , Glicosilación , Humanos , Modelos Moleculares , Pruebas de Neutralización , Conformación Proteica , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Proteínas Recombinantes , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/aislamiento & purificación , Relación Estructura-Actividad
3.
Mass Spectrom Rev ; 41(6): 901-921, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-33565652

RESUMEN

Glycans introduce complexity to the proteins to which they are attached. These modifications vary during the progression of many diseases; thus, they serve as potential biomarkers for disease diagnosis and prognosis. The immense structural diversity of glycans makes glycosylation analysis and quantitation difficult. Fortunately, recent advances in analytical techniques provide the opportunity to quantify even low-abundant glycopeptides and glycans derived from complex biological mixtures, allowing for the identification of glycosylation differences between healthy samples and those derived from disease states. Understanding the strengths and weaknesses of different quantitative glycomics analysis methods is important for selecting the best strategy to analyze glycosylation changes in any given set of clinical samples. To provide guidance towards selecting the proper approach, we discuss four widely used quantitative glycomics analysis platforms, including fluorescence-based analysis of released N-linked glycans and three different varieties of MS-based analysis: liquid chromatography (LC)-mass spectrometry (MS) analysis of glycopeptides, matrix-assisted laser desorption ionization-time of flight MS, and LC-ESI-MS analysis of released N-linked glycans. These methods' strengths and weaknesses are compared, particularly associated with the figures of merit that are important for clinical biomarker studies, including: the initial sample requirements, the methods' throughput, sample preparation time, the number of species identified, the methods' utility for isomer separation and structural characterization, method-related challenges associated with quantitation, repeatability, the expertise required, and the cost for each analysis. This review, therefore, provides unique guidance to researchers who endeavor to undertake a clinical glycomics analysis by offering insights on the available analysis technologies.


Asunto(s)
Glicómica , Polisacáridos , Cromatografía Liquida/métodos , Glicómica/métodos , Glicopéptidos , Espectrometría de Masas , Polisacáridos/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
4.
J Proteome Res ; 21(9): 2071-2074, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36004690

RESUMEN

This review "teaches" researchers how to make their lackluster proteomics data look really impressive, by applying an inappropriate but pervasive strategy that selects features in a biased manner. The strategy is demonstrated and used to build a classification model with an accuracy of 92% and AUC of 0.98, while relying completely on random numbers for the data set. This "lesson" in data processing is not to be practiced by anyone; on the contrary, it is meant to be a cautionary tale showing that very unreliable results are obtained when a biomarker panel is generated first, using all the available data, and then tested by cross-validation. Data scientists describe the error committed in this scenario as having test data leak into the feature selection step, and it is currently a common mistake in proteomics biomarker studies that rely on machine learning. After the demonstration, advice is provided about how machine learning methods can be applied to proteomics data sets without generating artificially inflated accuracies.


Asunto(s)
Aprendizaje Automático , Proteómica , Biomarcadores , Proteómica/métodos
5.
J Proteome Res ; 21(4): 1095-1104, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35276041

RESUMEN

Recent studies have highlighted that the proteome can be used to identify potential biomarker candidates for Alzheimer's disease (AD) in diverse cohorts. Furthermore, the racial and ethnic background of participants is an important factor to consider to ensure the effectiveness of potential biomarkers for representative populations. A promising approach to survey potential biomarker candidates for diagnosing AD in diverse cohorts is the application of machine learning to proteomics data sets. Herein, we leveraged six existing bottom-up proteomics data sets, which included non-Hispanic White, African American/Black, and Hispanic participants, to study protein changes in AD and cognitively unimpaired participants. Machine learning models were applied to these data sets and resulted in the identification of amyloid-ß precursor protein (APP) and heat shock protein ß-1 (HSPB1) as two proteins that have high ability to distinguish AD; however, each protein's performance varied based upon the racial and ethnic background of the participants. HSPB1 particularly was helpful for generating high areas under the curve (AUCs) for African American/Black participants. Overall, HSPB1 improved the performance of the machine learning models when combined with APP and/or participant age and is a potential candidate that should be further explored in AD biomarker discovery efforts.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/metabolismo , Biomarcadores , Encéfalo/metabolismo , Humanos , Aprendizaje Automático , Proteómica/métodos , Grupos Raciales
6.
J Virol ; 95(24): e0052921, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34549974

RESUMEN

The functional human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer [(gp120/gp41)3] is produced by cleavage of a conformationally flexible gp160 precursor. gp160 cleavage or the binding of BMS-806, an entry inhibitor, stabilizes the pretriggered, "closed" (state 1) conformation recognized by rarely elicited broadly neutralizing antibodies. Poorly neutralizing antibodies (pNAbs) elicited at high titers during natural infection recognize more "open" Env conformations (states 2 and 3) induced by binding the receptor, CD4. We found that BMS-806 treatment and cross-linking decreased the exposure of pNAb epitopes on cell surface gp160; however, after detergent solubilization, cross-linked and BMS-806-treated gp160 sampled non-state-1 conformations that could be recognized by pNAbs. Cryo-electron microscopy of the purified BMS-806-bound gp160 revealed two hitherto unknown asymmetric trimer conformations, providing insights into the allosteric coupling between trimer opening and structural variation in the gp41 HR1N region. The individual protomer structures in the asymmetric gp160 trimers resemble those of other genetically modified or antibody-bound cleaved HIV-1 Env trimers, which have been suggested to assume state-2-like conformations. Asymmetry of the uncleaved Env potentially exposes surfaces of the trimer to pNAbs. To evaluate the effect of stabilizing a state-1-like conformation of the membrane Env precursor, we treated cells expressing wild-type HIV-1 Env with BMS-806. BMS-806 treatment decreased both gp160 cleavage and the addition of complex glycans, implying that gp160 conformational flexibility contributes to the efficiency of these processes. Selective pressure to maintain flexibility in the precursor of functional Env allows the uncleaved Env to sample asymmetric conformations that potentially skew host antibody responses toward pNAbs. IMPORTANCE The envelope glycoprotein (Env) trimers on the surface of human immunodeficiency virus (HIV-1) mediate the entry of the virus into host cells and serve as targets for neutralizing antibodies. The functional Env trimer is produced by cleavage of the gp160 precursor in the infected cell. We found that the HIV-1 Env precursor is highly plastic, allowing it to assume different asymmetric shapes. This conformational plasticity is potentially important for Env cleavage and proper modification by sugars. Having a flexible, asymmetric Env precursor that can misdirect host antibody responses without compromising virus infectivity would be an advantage for a persistent virus like HIV-1.


Asunto(s)
Proteína gp120 de Envoltorio del VIH/inmunología , Proteína gp41 de Envoltorio del VIH/química , VIH-1/química , Animales , Anticuerpos Neutralizantes/inmunología , Células CHO , Cricetulus , Microscopía por Crioelectrón/métodos , Infecciones por VIH/virología , VIH-1/inmunología , Humanos , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología
7.
Int J Mol Sci ; 23(11)2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35682561

RESUMEN

Lysyl oxidase-like 2 (LOXL2) catalyzes the oxidative deamination of peptidyl lysines and hydroxylysines to promote extracellular matrix remodeling. Aberrant activity of LOXL2 has been associated with organ fibrosis and tumor metastasis. The lysine tyrosylquinone (LTQ) cofactor is derived from Lys653 and Tyr689 in the amine oxidase domain via post-translational modification. Based on the similarity in hydrodynamic radius and radius of gyration, we recently proposed that the overall structures of the mature LOXL2 (containing LTQ) and the precursor LOXL2 (no LTQ) are very similar. In this study, we conducted a mass spectrometry-based disulfide mapping analysis of recombinant LOXL2 in three forms: a full-length LOXL2 (fl-LOXL2) containing a nearly stoichiometric amount of LTQ, Δ1-2SRCR-LOXL2 (SRCR1 and SRCR2 are truncated) in the precursor form, and Δ1-3SRCR-LOXL2 (SRCR1, SRCR2, SRCR3 are truncated) in a mixture of the precursor and the mature forms. We detected a set of five disulfide bonds that is conserved in both the precursor and the mature recombinant LOXL2s. In addition, we detected a set of four alternative disulfide bonds in low abundance that is not associated with the mature LOXL2. These results suggest that the major set of five disulfide bonds is retained post-LTQ formation.


Asunto(s)
Disulfuros , Proteína-Lisina 6-Oxidasa , Aminoácido Oxidorreductasas/metabolismo , Matriz Extracelular/metabolismo , Espectrometría de Masas , Procesamiento Proteico-Postraduccional , Proteína-Lisina 6-Oxidasa/metabolismo
8.
J Proteome Res ; 20(5): 2823-2829, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33909976

RESUMEN

Mass spectrometry data sets from omics studies are an optimal information source for discriminating patients with disease and identifying biomarkers. Thousands of proteins or endogenous metabolites can be queried in each analysis, spanning several orders of magnitude in abundance. Machine learning tools that effectively leverage these data to accurately identify disease states are in high demand. While mass spectrometry data sets are rich with potentially useful information, using the data effectively can be challenging because of missing entries in the data sets and because the number of samples is typically much smaller than the number of features, two challenges that make machine learning difficult. To address this problem, we have modified a new supervised classification tool, the Aristotle Classifier, so that omics data sets can be better leveraged for identifying disease states. The optimized classifier, AC.2021, is benchmarked on multiple data sets against its predecessor and two leading supervised classification tools, Support Vector Machine (SVM) and XGBoost. The new classifier, AC.2021, outperformed existing tools on multiple tests using proteomics data. The underlying code for the classifier, provided herein, would be useful for researchers who desire improved classification accuracy when using their omics data sets to identify disease states.


Asunto(s)
Proteómica , Máquina de Vectores de Soporte , Algoritmos , Biomarcadores , Humanos , Aprendizaje Automático
9.
J Virol ; 94(21)2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-32817216

RESUMEN

Small-molecule viral entry inhibitors, such as BMS-626529 (BMS-529), allosterically block CD4 binding to HIV-1 envelope (Env) and inhibit CD4-induced structural changes in Env trimers. Here, we show that the binding of BMS-529 to clade C soluble chimeric gp140 SOSIP (ch.SOSIP) and membrane-bound trimers with intact transmembrane domain (gp150) prevented trimer conformational transitions and enhanced their immunogenicity. When complexed to BMS-529, ch.SOSIP trimers retained their binding to broadly neutralizing antibodies (bNAbs) and to their unmutated common ancestor (UCA) antibodies, while exposure of CD4-induced (CD4i) non-bNAb epitopes was inhibited. BMS-529-complexed gp150 trimers in detergent micelles, which were isolated from CHO cells, bound to bNAbs, including UCA and intermediates of the CD4 binding site (bs) CH103 bNAb lineage, and showed limited exposure of CD4i epitopes and a glycosylation pattern with a preponderance of high-mannose glycans. In rabbits, BMS-529-complexed V3 glycan-targeting ch.SOSIP immunogen induced in the majority of immunized animals higher neutralization titers against both autologous and select high mannose-bearing heterologous tier 2 pseudoviruses than those immunized with the noncomplexed ch.SOSIP. In rhesus macaques, BMS-529 complexed to CD4 bs-targeting ch.SOSIP immunogen induced stronger neutralization against tier 2 pseudoviruses bearing high-mannose glycans than noncomplexed ch.SOSIP trimer immunogen. When immunized with gp150 complexed to BMS-529, rhesus macaques showed neutralization against tier 2 pseudoviruses with targeted glycan deletion and high-mannose glycan enrichment. These results demonstrated that stabilization of Env trimer conformation with BMS-529 improved the immunogenicity of select chimeric SOSIP trimers and elicited tier 2 neutralizing antibodies of higher potency than noncomplexed trimers.IMPORTANCE Soluble forms of HIV-1 envelope trimers exhibit conformational heterogeneity and undergo CD4-induced (CD4i) exposure of epitopes of non-neutralizing antibodies that can potentially hinder induction of broad neutralizing antibody responses. These limitations have been mitigated through recent structure-guided approaches and include trimer-stabilizing mutations that resist trimer conformational transition and exposure of CD4i epitopes. The use of small-molecule viral inhibitors that allosterically block CD4 binding represents an alternative strategy for stabilizing Env trimer in the pre-CD4-triggered state of both soluble and membrane-bound trimers. In this study, we report that the viral entry inhibitor BMS-626529 restricts trimer conformational transition and improves the immunogenicity of select Env trimer immunogens.


Asunto(s)
Fármacos Anti-VIH/farmacología , Anticuerpos Neutralizantes/farmacología , Anticuerpos Antivirales/farmacología , Infecciones por VIH/tratamiento farmacológico , Inmunoconjugados/farmacología , Piperazinas/farmacología , Triazoles/farmacología , Animales , Fármacos Anti-VIH/química , Anticuerpos Neutralizantes/química , Anticuerpos Antivirales/química , Antígenos CD4/antagonistas & inhibidores , Antígenos CD4/genética , Antígenos CD4/inmunología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Células CHO , Cricetulus , Glicosilación , Células HEK293 , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/efectos de los fármacos , VIH-1/crecimiento & desarrollo , VIH-1/inmunología , Humanos , Inmunoconjugados/química , Macaca mulatta , Piperazinas/química , Multimerización de Proteína , Conejos , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Triazoles/química , Productos del Gen env del Virus de la Inmunodeficiencia Humana/antagonistas & inhibidores , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología
10.
Protein Expr Purif ; 181: 105837, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33529763

RESUMEN

Due to the important pathological roles of the HIV-1 gp120, the protein has been intensively used in the research of HIV. However, recombinant gp120 preparation has proven to be difficult because of extremely low expression levels. In order to facilitate gp120 expression, previous methods predominantly involved the replacement of native signal peptide with a heterologous one, resulting in very limited improvement. Currently, preparation of recombinant gp120 with native glycans relies solely on transient expression systems, which are not amendable for large scale production. In this work, we employed a different approach for gp120 expression. Besides replacing the native gp120 signal peptide with that of rat serum albumin and optimizing its codon usage, we generated a stable gp120-expressing cell line in a glutamine synthetase knockout HEK293T cell line that we established for the purpose of amplification of recombinant gene expressions. The combined usage of these techniques dramatically increased gp120 expression levels and yielded a functional product with human cell derived glycan. This method may be applicable to large scale preparation of other viral envelope proteins, such as that of the emerging SARS-CoV-2, or other glycoproteins which require the presence of authentic human glycans.


Asunto(s)
Glutamato-Amoníaco Ligasa/genética , Proteína gp120 de Envoltorio del VIH/metabolismo , VIH-1/metabolismo , Animales , Células CHO , Sistemas CRISPR-Cas , Codón , Cricetulus , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Señales de Clasificación de Proteína , Proteínas Recombinantes/metabolismo
11.
Anal Bioanal Chem ; 413(6): 1583-1593, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33580828

RESUMEN

One unifying challenge when classifying biological samples with mass spectrometry data is overcoming the obstacle of sample-to-sample variability so that differences between groups, such as between a healthy set and a disease set, can be identified. Similarly, when the same sample is re-analyzed under identical conditions, instrument signals can fluctuate by more than 10%. This signal inconsistency imposes difficulties in identifying subtle differences across a set of samples, and it weakens the mass spectrometrist's ability to effectively leverage data in domains as diverse as proteomics, metabolomics, glycomics, and imaging. We selected challenging data sets in the fields of glycomics, mass spectrometry imaging, and bacterial typing to study the problem of within-group signal variability and adapted a 30-year-old statistical approach to address the problem. The solution, "local-balanced model," relies on using balanced subsets of training data to classify test samples. This analysis strategy was assessed on ESI-MS data of IgG-based glycopeptides and MALDI-MS imaging data of endogenous lipids, and MALDI-MS data of bacterial proteins. Two preliminary examples on non-mass spectrometry data sets are also included to show the potential generality of the method outside the field of MS analysis. We demonstrate that this approach is superior to simple normalization methods, generalizable to multiple mass spectrometry domains, and potentially appropriate in fields as diverse as physics and satellite imaging. In some cases, improvements in classification can be dramatic, with accuracy escalating from 60% with normalization alone to over 90% with the additional development described herein.

12.
Anal Bioanal Chem ; 413(29): 7215-7227, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34448030

RESUMEN

Glycosylation analysis of viral glycoproteins contributes significantly to vaccine design and development. Among other benefits, glycosylation analysis allows vaccine developers to assess the impact of construct design or producer cell line choices for vaccine production, and it is a key measure by which glycoproteins that are produced for use in vaccination can be compared to their native viral forms. Because many viral glycoproteins are multiply glycosylated, glycopeptide analysis is a preferrable approach for mapping the glycans, yet the analysis of glycopeptide data can be cumbersome and requires the expertise of an experienced analyst. In recent years, a commercial software product, Byonic, has been implemented in several instances to facilitate glycopeptide analysis on viral glycoproteins and other glycoproteomics data sets, and the purpose of the study herein is to determine the strengths and limitations of using this software, particularly in cases relevant to vaccine development. The glycopeptides from a recombinantly expressed trimeric S glycoprotein of the SARS-CoV-2 virus were first analyzed using an expert-based analysis strategy; subsequently, analysis of the same data set was completed using Byonic. Careful assessment of instances where the two methods produced different results revealed that the glycopeptide assignments from Byonic contained more false positives than true positives, even when the data were assessed using a 1% false discovery rate. The work herein provides a roadmap for removing the spurious assignments that Byonic generates, and it provides an assessment of the opportunity cost for relying on automated assignments for glycopeptide data sets from viral glycoproteins.


Asunto(s)
Glicopéptidos/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Algoritmos , Secuencia de Aminoácidos , Cromatografía Liquida/métodos , Glicoproteína de la Espiga del Coronavirus/química , Espectrometría de Masas en Tándem/métodos
13.
J Biol Chem ; 294(14): 5616-5631, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30728245

RESUMEN

A successful HIV-1 vaccine will likely need to elicit broadly neutralizing antibodies (bNAbs) that target the envelope glycoprotein (Env) spike on the virus. Native-like recombinant Env trimers of the SOSIP design now serve as a platform for achieving this challenging goal. However, SOSIP trimers usually do not bind efficiently to the inferred germline precursors of bNAbs (gl-bNAbs). We hypothesized that the inherent flexibilities of the V1 and V2 variable loops in the Env trimer contribute to the poor recognition of gl-bNAb epitopes at the trimer apex that extensively involve V2 residues. To reduce local V2 flexibility and improve the binding of V2-dependent bNAbs and gl-bNAbs, we designed BG505 SOSIP.664 trimer variants containing newly created disulfide bonds intended to stabilize the V2 loop in an optimally antigenic configuration. The first variant, I184C/E190C, contained a new disulfide bond within the V2 loop, whereas the second variant, E153C/R178C, had a new disulfide bond that cross-linked V2 and V1. The resulting engineered native-like trimer variants were both more reactive with and were neutralized by V2 bNAbs and gl-bNAbs, a finding that may be valuable in the design of germline targeting and boosting trimer immunogens to create an antigenic conformation optimal for HIV vaccine development.


Asunto(s)
Vacunas contra el SIDA/inmunología , Anticuerpos Neutralizantes/inmunología , Epítopos/inmunología , Anticuerpos Anti-VIH/inmunología , VIH-1/inmunología , Multimerización de Proteína/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Vacunas contra el SIDA/química , Anticuerpos Neutralizantes/química , Epítopos/química , Anticuerpos Anti-VIH/química , VIH-1/química , Estructura Secundaria de Proteína
14.
Anal Chem ; 92(1): 1050-1057, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31769656

RESUMEN

MALDI-TOF MS has shown great utility for rapidly identifying microbial species. It can be used to successfully type bacteria and fungi from a variety of sources more rapidly and cost-effectively than traditional methods. One area where improvements are necessary is in the typing of highly similar samples, such as those samples from the same genus but different species or samples from within a single species but from different strains. One promising way to address this current limitation is by using advanced machine learning techniques. In this work, we adapt a newly developed machine learning tool, the Aristotle Classifier, to bacterial classification of MALDI-TOF MS data. This tool was originally developed for classifying glycomics and glycoproteomics data, so we modified it to be well-suited for assigning mass spectral data from bacterial proteins. The classifier exceeds existing benchmarks in classifying bacteria, and it shows particularly strong performance when the samples to be identified are highly similar. The combination of mass spectrometry data and tools like the Aristotle Classifier could ameliorate the ambiguities associated with challenging bacterial classification problems.


Asunto(s)
Bacterias/clasificación , Proteínas Bacterianas/análisis , Técnicas de Tipificación Bacteriana/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/estadística & datos numéricos , Algoritmos , Bases de Datos de Proteínas/estadística & datos numéricos
15.
J Proteome Res ; 18(7): 2896-2902, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31129958

RESUMEN

Glycopeptide analysis is a growing field that is struggling to adopt effective, automated tools. Many creative workflows and software apps have emerged recently that offer promising capabilities for assigning glycopeptides to MS data in an automated fashion. The effectiveness of these tools is best measured and improved by determining how often they would select a glycopeptide decoy as a spectral match, instead of its correct assignment; yet generating the appropriate number and type of glycopeptide decoys can be challenging. To address this need, we have designed DecoyDeveloper, an on-demand decoy glycopeptide generator that can produce a high volume of decoys with low mass differences. DecoyDeveloper has a simple user interface and is capable of producing large sets of decoys containing complete, biologically relevant glycan and peptide sequences. We demonstrate the tool's efficiency by applying it to a set of 80 glycopeptide targets. This tool is freely available and can be found at http://glycopro.chem.ku.edu/J1.php .


Asunto(s)
Glicopéptidos/análisis , Programas Informáticos , Animales , Humanos , Proteómica/métodos , Error Científico Experimental , Espectrometría de Masas en Tándem/métodos , Espectrometría de Masas en Tándem/normas
16.
Anal Chem ; 91(17): 11070-11077, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31407893

RESUMEN

"The totality is not, as it were, a mere heap, but the whole is something besides the parts."-Aristotle. We built a classifier that uses the totality of the glycomic profile, not restricted to a few glycoforms, to differentiate samples from two different sources. This approach, which relies on using thousands of features, is a radical departure from current strategies, where most of the glycomic profile is ignored in favor of selecting a few features, or even a single feature, meant to capture the differences in sample types. The classifier can be used to differentiate the source of the material; applicable sources may be different species of animals, different protein production methods, or, most importantly, different biological states (disease vs healthy). The classifier can be used on glycomic data in any form, including derivatized monosaccharides, intact glycans, or glycopeptides. It takes advantage of the fact that changing the source material can cause a change in the glycomic profile in many subtle ways: some glycoforms can be upregulated, some downregulated, some may appear unchanged, yet their proportion-with respect to other forms present-can be altered to a detectable degree. By classifying samples using the entirety of their glycan abundances, along with the glycans' relative proportions to each other, the "Aristotle Classifier" is more effective at capturing the underlying trends than standard classification procedures used in glycomics, including PCA (principal components analysis). It also outperforms workflows where a single, representative glycomic-based biomarker is used to classify samples. We describe the Aristotle Classifier and provide several examples of its utility for biomarker studies and other classification problems using glycomic data from several sources.


Asunto(s)
Glicómica/métodos , Glicopéptidos/clasificación , Glicoproteínas/clasificación , Cirrosis Hepática/diagnóstico , Monosacáridos/clasificación , Polisacáridos/clasificación , Biomarcadores/análisis , Glicopéptidos/aislamiento & purificación , Glicopéptidos/metabolismo , Glicoproteínas/aislamiento & purificación , Glicoproteínas/metabolismo , Glicosilación , Humanos , Cirrosis Hepática/metabolismo , Monosacáridos/aislamiento & purificación , Monosacáridos/metabolismo , Polisacáridos/aislamiento & purificación , Polisacáridos/metabolismo , Análisis de Componente Principal , Programas Informáticos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Terminología como Asunto
17.
J Proteome Res ; 17(5): 1826-1832, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29619832

RESUMEN

Human lysyl oxidase-like 2 (hLOXL2), a glycoprotein implicated in tumor progression and organ fibrosis, is a molecular target for anticancer and antifibrosis treatment. This glycoprotein contains three predicted N-linked glycosylation sites; one is near the protein's active site, and at least one more is known to facilitate the protein's secretion. Because the glycosylation impacts the protein's biology, we sought to characterize the native, mammalian glycosylation profile and to determine how closely this profile is recapitulated when the protein is expressed in insect cells. All three glycosylation sites on the protein, expressed in human embryonic kidney (HEK) cells, were characterized individually using a mass spectrometry-based glycopeptide analysis workflow. These data were compared to the glycosylation profile of the same protein expressed in insect cells. We found that the producer cell type imparts a substantial influence on the glycosylation of this important protein. The more-relevant version, expressed in HEK cells, contains large, acidic glycoforms; these glycans are not generated in insect cells. The glycosylation differences likely have structural and functional consequences, and these data should be considered when generating protein for functional studies or for high-throughput screening campaigns.


Asunto(s)
Aminoácido Oxidorreductasas/metabolismo , Riñón/química , Polisacáridos/química , Sitios de Unión , Glicopéptidos/análisis , Glicoproteínas/análisis , Glicosilación , Células HEK293 , Humanos , Riñón/citología , Espectrometría de Masas , Proteínas Recombinantes
18.
J Virol ; 91(9)2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28202756

RESUMEN

HIV-1 envelope glycoprotein (Env) glycosylation is important because individual glycans are components of multiple broadly neutralizing antibody epitopes, while shielding other sites that might otherwise be immunogenic. The glycosylation on Env is influenced by a variety of factors, including the genotype of the protein, the cell line used for its expression, and the details of the construct design. Here, we used a mass spectrometry (MS)-based approach to map the complete glycosylation profile at every site in multiple HIV-1 Env trimers, accomplishing two goals. (i) We determined which glycosylation sites contain conserved glycan profiles across many trimeric Envs. (ii) We identified the variables that impact Env's glycosylation profile at sites with divergent glycosylation. Over half of the gp120 glycosylation sites on 11 different trimeric Envs have a conserved glycan profile, indicating that a native consensus glycosylation profile does indeed exist among trimers. We showed that some soluble gp120s and gp140s exhibit highly divergent glycosylation profiles compared to trimeric Env. We also assessed the impact of several variables on Env glycosylation: truncating the full-length Env; producing Env, instead of the more virologically relevant T lymphocytes, in CHO cells; and purifying Env with different chromatographic platforms, including nickel-nitrilotriacetic acid (Ni-NTA), 2G12, and PGT151 affinity. This report provides the first consensus glycosylation profile of Env trimers, which should serve as a useful benchmark for HIV-1 vaccine developers. This report also defines the sites where glycosylation may be impacted when Env trimers are truncated or produced in CHO cells.IMPORTANCE A protective HIV-1 vaccine will likely include a recombinant version of the viral envelope glycoprotein (Env). Env is highly glycosylated, and yet vaccine developers have lacked guidance on how to assess whether their immunogens have optimal glycosylation. The following important questions are still unanswered. (i) What is the "target" glycosylation profile, when the goal is to generate a natively glycosylated protein? (ii) What variables exert the greatest influence on Env glycosylation? We identified numerous sites on Env where the glycosylation profile does not deviate in 11 different Env trimers, and we investigated the impact on the divergent glycosylation profiles of changing the genotype of the Env sequence, the construct design, the purification method, and the producer cell type. The data presented here give vaccine developers a "glycosylation target" for their immunogens, and they show how protein production variables can impact Env glycosylation.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , Proteína gp120 de Envoltorio del VIH/química , Proteína gp120 de Envoltorio del VIH/inmunología , Proteína gp41 de Envoltorio del VIH/química , Proteína gp41 de Envoltorio del VIH/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Vacunas contra el SIDA/inmunología , Secuencia de Aminoácidos , Animales , Benchmarking , Células CHO , Cricetinae , Cricetulus , Epítopos/inmunología , Glicosilación , VIH-1/química , Evasión Inmune/inmunología
19.
Biotechnol Bioeng ; 115(4): 885-899, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29150937

RESUMEN

We describe the properties of BG505 SOSIP.664 HIV-1 envelope glycoprotein trimers produced under current Good Manufacturing Practice (cGMP) conditions. These proteins are the first of a new generation of native-like trimers that are the basis for many structure-guided immunogen development programs aimed at devising how to induce broadly neutralizing antibodies (bNAbs) to HIV-1 by vaccination. The successful translation of this prototype demonstrates the feasibility of producing similar immunogens on an appropriate scale and of an acceptable quality for Phase I experimental medicine clinical trials. BG505 SOSIP.664 trimers are extensively glycosylated, contain numerous disulfide bonds and require proteolytic cleavage, all properties that pose a substantial challenge to cGMP production. Our strategy involved creating a stable CHO cell line that was adapted to serum-free culture conditions to produce envelope glycoproteins. The trimers were then purified by chromatographic methods using a 2G12 bNAb affinity column and size-exclusion chromatography. The chosen procedures allowed any adventitious viruses to be cleared from the final product to the required extent of >12 log10 . The final cGMP production run yielded 3.52 g (peptidic mass) of fully purified trimers (Drug Substance) from a 200 L bioreactor, a notable yield for such a complex glycoprotein. The purified trimers were fully native-like as judged by negative-stain electron microscopy, and were stable over a multi-month period at room temperature or below and for at least 1 week at 50°C. Their antigenicity, disulfide bond patterns, and glycan composition were consistent with trimers produced on a research laboratory scale. The methods reported here should pave the way for the cGMP production of other native-like Env glycoprotein trimers of various designs and genotypes.


Asunto(s)
Vacunas contra el SIDA/inmunología , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/prevención & control , VIH-1/inmunología , Proteínas del Envoltorio Viral/inmunología , Vacunas contra el SIDA/genética , Animales , Anticuerpos Neutralizantes/inmunología , Células CHO , Cricetulus , Glicosilación , Infecciones por VIH/virología , Humanos , Multimerización de Proteína , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Proteínas del Envoltorio Viral/genética
20.
Anal Bioanal Chem ; 410(10): 2467-2484, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29256076

RESUMEN

Disulfide bonds are important structural moieties of proteins: they ensure proper folding, provide stability, and ensure proper function. With the increasing use of proteins for biotherapeutics, particularly monoclonal antibodies, which are highly disulfide bonded, it is now important to confirm the correct disulfide bond connectivity and to verify the presence, or absence, of disulfide bond variants in the protein therapeutics. These studies help to ensure safety and efficacy. Hence, disulfide bonds are among the critical quality attributes of proteins that have to be monitored closely during the development of biotherapeutics. However, disulfide bond analysis is challenging because of the complexity of the biomolecules. Mass spectrometry (MS) has been the go-to analytical tool for the characterization of such complex biomolecules, and several methods have been reported to meet the challenging task of mapping disulfide bonds in proteins. In this review, we describe the relevant, recent MS-based techniques and provide important considerations needed for efficient disulfide bond analysis in proteins. The review focuses on methods for proper sample preparation, fragmentation techniques for disulfide bond analysis, recent disulfide bond mapping methods based on the fragmentation techniques, and automated algorithms designed for rapid analysis of disulfide bonds from liquid chromatography-MS/MS data. Researchers involved in method development for protein characterization can use the information herein to facilitate development of new MS-based methods for protein disulfide bond analysis. In addition, individuals characterizing biotherapeutics, especially by disulfide bond mapping in antibodies, can use this review to choose the best strategies for disulfide bond assignment of their biologic products. Graphical Abstract This review, describing characterization methods for disulfide bonds in proteins, focuses on three critical components: sample preparation, mass spectrometry data, and software tools.


Asunto(s)
Cromatografía Liquida/métodos , Disulfuros/análisis , Espectrometría de Masas/métodos , Proteínas/química , Secuencia de Aminoácidos , Animales , Productos Biológicos/química , Cisteína/química , Humanos , Oxidación-Reducción , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA