Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Circ Res ; 132(2): 187-204, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36583388

RESUMEN

BACKGROUND: NOTCH1 pathogenic variants are implicated in multiple types of congenital heart defects including hypoplastic left heart syndrome, where the left ventricle is underdeveloped. It is unknown how NOTCH1 regulates human cardiac cell lineage determination and cardiomyocyte proliferation. In addition, mechanisms by which NOTCH1 pathogenic variants lead to ventricular hypoplasia in hypoplastic left heart syndrome remain elusive. METHODS: CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 genome editing was utilized to delete NOTCH1 in human induced pluripotent stem cells. Cardiac differentiation was carried out by sequential modulation of WNT signaling, and NOTCH1 knockout and wild-type differentiating cells were collected at day 0, 2, 5, 10, 14, and 30 for single-cell RNA-seq. RESULTS: Human NOTCH1 knockout induced pluripotent stem cells are able to generate functional cardiomyocytes and endothelial cells, suggesting that NOTCH1 is not required for mesoderm differentiation and cardiovascular development in vitro. However, disruption of NOTCH1 blocks human ventricular-like cardiomyocyte differentiation but promotes atrial-like cardiomyocyte generation through shortening the action potential duration. NOTCH1 deficiency leads to defective proliferation of early human cardiomyocytes, and transcriptomic analysis indicates that pathways involved in cell cycle progression and mitosis are downregulated in NOTCH1 knockout cardiomyocytes. Single-cell transcriptomic analysis reveals abnormal cell lineage determination of cardiac mesoderm, which is manifested by the biased differentiation toward epicardial and second heart field progenitors at the expense of first heart field progenitors in NOTCH1 knockout cell populations. CONCLUSIONS: NOTCH1 is essential for human ventricular-like cardiomyocyte differentiation and proliferation through balancing cell fate determination of cardiac mesoderm and modulating cell cycle progression. Because first heart field progenitors primarily contribute to the left ventricle, we speculate that pathogenic NOTCH1 variants lead to biased differentiation of first heart field progenitors, blocked ventricular-like cardiomyocyte differentiation, and defective cardiomyocyte proliferation, which collaboratively contribute to left ventricular hypoplasia in hypoplastic left heart syndrome.


Asunto(s)
Síndrome del Corazón Izquierdo Hipoplásico , Células Madre Pluripotentes Inducidas , Humanos , Células Endoteliales/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Diferenciación Celular/fisiología , Miocitos Cardíacos/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo
2.
Circ Res ; 133(8): 658-673, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37681314

RESUMEN

BACKGROUND: Cardiac conduction is understood to occur through gap junctions. Recent evidence supports ephaptic coupling as another mechanism of electrical communication in the heart. Conduction via gap junctions predicts a direct relationship between conduction velocity (CV) and bulk extracellular resistance. By contrast, ephaptic theory is premised on the existence of a biphasic relationship between CV and the volume of specialized extracellular clefts within intercalated discs such as the perinexus. Our objective was to determine the relationship between ventricular CV and structural changes to micro- and nanoscale extracellular spaces. METHODS: Conduction and Cx43 (connexin43) protein expression were quantified from optically mapped guinea pig whole-heart preparations perfused with the osmotic agents albumin, mannitol, dextran 70 kDa, or dextran 2 MDa. Peak sodium current was quantified in isolated guinea pig ventricular myocytes. Extracellular resistance was quantified by impedance spectroscopy. Intercellular communication was assessed in a heterologous expression system with fluorescence recovery after photobleaching. Perinexal width was quantified from transmission electron micrographs. RESULTS: CV primarily in the transverse direction of propagation was significantly reduced by mannitol and increased by albumin and both dextrans. The combination of albumin and dextran 70 kDa decreased CV relative to albumin alone. Extracellular resistance was reduced by mannitol, unchanged by albumin, and increased by both dextrans. Cx43 expression and conductance and peak sodium currents were not significantly altered by the osmotic agents. In response to osmotic agents, perinexal width, in order of narrowest to widest, was albumin with dextran 70 kDa; albumin or dextran 2 MDa; dextran 70 kDa or no osmotic agent, and mannitol. When compared in the same order, CV was biphasically related to perinexal width. CONCLUSIONS: Cardiac conduction does not correlate with extracellular resistance but is biphasically related to perinexal separation, providing evidence that the relationship between CV and extracellular volume is determined by ephaptic mechanisms under conditions of normal gap junctional coupling.


Asunto(s)
Conexina 43 , Dextranos , Animales , Cobayas , Dextranos/metabolismo , Conexina 43/metabolismo , Miocitos Cardíacos/metabolismo , Sodio/metabolismo , Uniones Comunicantes/metabolismo , Albúminas/metabolismo , Manitol/farmacología , Manitol/metabolismo , Potenciales de Acción
3.
J Biol Chem ; 299(11): 105349, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37838179

RESUMEN

Chloride intracellular channels (CLICs) are a family of proteins that exist in soluble and transmembrane forms. The newest discovered member of the family CLIC6 is implicated in breast, ovarian, lung gastric, and pancreatic cancers and is also known to interact with dopamine-(D(2)-like) receptors. The soluble structure of the channel has been resolved, but the exact physiological role of CLIC6, biophysical characterization, and the membrane structure remain unknown. Here, we aimed to characterize the biophysical properties of this channel using a patch-clamp approach. To determine the biophysical properties of CLIC6, we expressed CLIC6 in HEK-293 cells. On ectopic expression, CLIC6 localizes to the plasma membrane of HEK-293 cells. We established the biophysical properties of CLIC6 by using electrophysiological approaches. Using various anions and potassium (K+) solutions, we determined that CLIC6 is more permeable to chloride-(Cl-) as compared to bromide-(Br-), fluoride-(F-), and K+ ions. In the whole-cell configuration, the CLIC6 currents were inhibited after the addition of 10 µM of IAA-94 (CLIC-specific blocker). CLIC6 was also found to be regulated by pH and redox potential. We demonstrate that the histidine residue at 648 (H648) in the C terminus and cysteine residue in the N terminus (C487) are directly involved in the pH-induced conformational change and redox regulation of CLIC6, respectively. Using qRT-PCR, we identified that CLIC6 is most abundant in the lung and brain, and we recorded the CLIC6 current in mouse lung epithelial cells. Overall, we have determined the biophysical properties of CLIC6 and established it as a Cl- channel.


Asunto(s)
Canales de Cloruro , Cloruros , Animales , Humanos , Ratones , Aniones/metabolismo , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Cloruros/metabolismo , Células Epiteliales/metabolismo , Células HEK293
4.
J Membr Biol ; 257(1-2): 25-36, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38285125

RESUMEN

Concerted robust opening of cardiac ryanodine receptors' (RyR2) Ca2+ release 1oplasmic reticulum (SR) is fundamental for normal systolic cardiac function. During diastole, infrequent spontaneous RyR2 openings mediate the SR Ca2+ leak that normally constrains SR Ca2+ load. Abnormal large diastolic RyR2-mediated Ca2+ leak events can cause delayed after depolarizations (DADs) and arrhythmias. The RyR2-associated mechanisms underlying these processes are being extensively studied at multiple levels utilizing various model animals. Since there are well-described species-specific differences in cardiac intracellular Ca2+ handing in situ, we tested whether or not single RyR2 function in vitro retains this species specificity. We isolated RyR2-rich heavy SR microsomes from mouse, rat, rabbit, and human ventricular muscle and quantified RyR2 function using identical solutions and methods. The single RyR2 cytosolic Ca2+ sensitivity was similar across these species. However, there were significant species differences in single RyR2 mean open times in both systole and diastole-like solutions. In diastole-like solutions, single rat/mouse RyR2 open probability and frequency of long openings (> 6 ms) were similar, but these values were significantly greater than those of either single rabbit or human RyR2s. We propose these in vitro single RyR2 functional differences across species stem from the species-specific RyR2 regulatory environment present in the source tissue. Our results show the single rabbit RyR2 functional attributes, particularly in diastole-like conditions, replicate those of single human RyR2 best among the species tested.


Asunto(s)
Miocitos Cardíacos , Canal Liberador de Calcio Receptor de Rianodina , Ratones , Ratas , Humanos , Conejos , Animales , Miocitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo , Ventrículos Cardíacos , Mamíferos/metabolismo , Calcio/metabolismo
5.
Expert Rev Mol Med ; 25: e5, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36597672

RESUMEN

Long QT syndrome (LQTS) is a detrimental arrhythmia syndrome mainly caused by dysregulated expression or aberrant function of ion channels. The major clinical symptoms of ventricular arrhythmia, palpitations and syncope vary among LQTS subtypes. Susceptibility to malignant arrhythmia is a result of delayed repolarisation of the cardiomyocyte action potential (AP). There are 17 distinct subtypes of LQTS linked to 15 autosomal dominant genes with monogenic mutations. However, due to the presence of modifier genes, the identical mutation may result in completely different clinical manifestations in different carriers. In this review, we describe the roles of various ion channels in orchestrating APs and discuss molecular aetiologies of various types of LQTS. We highlight the usage of patient-specific induced pluripotent stem cell (iPSC) models in characterising fundamental mechanisms associated with LQTS. To mitigate the outcomes of LQTS, treatment strategies are initially focused on small molecules targeting ion channel activities. Next-generation treatments will reap the benefits from development of LQTS patient-specific iPSC platform, which is bolstered by the state-of-the-art technologies including whole-genome sequencing, CRISPR genome editing and machine learning. Deep phenotyping and high-throughput drug testing using LQTS patient-specific cardiomyocytes herald the upcoming precision medicine in LQTS.


Asunto(s)
Células Madre Pluripotentes Inducidas , Síndrome de QT Prolongado , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Medicina de Precisión , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/terapia , Síndrome de QT Prolongado/diagnóstico , Mutación , Canales Iónicos/genética , Canales Iónicos/metabolismo
6.
J Pharmacol Exp Ther ; 384(3): 417-428, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36460339

RESUMEN

The cardiac sodium channel Nav1.5 is a key contributor to the cardiac action potential, and dysregulations in Nav1.5 can lead to cardiac arrhythmias. Nav1.5 is a target of numerous antiarrhythmic drugs (AADs). Previous studies identified the protein 14-3-3 as a regulator of Nav1.5 biophysical coupling. Inhibition of 14-3-3 can remove the Nav1.5 functional coupling and has been shown to inhibit the dominant-negative effect of Brugada syndrome mutations. However, it is unknown whether the coupling regulation is involved with AADs' modulation of Nav1.5. Indeed, AADs could reveal important structural and functional information about Nav1.5 coupling. Here, we investigated the modulation of Nav1.5 by four classic AADs, quinidine, lidocaine, mexiletine, and flecainide, in the presence of 14-3-3 inhibition. The experiments were carried out by high-throughput patch-clamp experiments in an HEK293 Nav1.5 stable cell line. We found that 14-3-3 inhibition can enhance acute block by quinidine, whereas the block by other drugs was not affected. We also saw changes in the use- and dose-dependency of quinidine, lidocaine, and mexiletine when inhibiting 14-3-3. Inhibiting 14-3-3 also shifted the channel activation toward hyperpolarized voltages in the presence of the four drugs studied and slowed the recovery of inactivation in the presence of quinidine. Our results demonstrated that the protein 14-3-3 and Nav1.5 coupling could impact the effects of AADs. Therefore, 14-3-3 and Nav1.5 coupling are new mechanisms to consider in the development of drugs targeting Nav1.5. SIGNIFICANCE STATEMENT: The cardiac sodium channel Nav1.5 is a target of commonly used antiarrhythmic drugs, and Nav1.5 function is regulated by the protein 14-3-3. The present study demonstrated that the regulation of Nav1.5 by 14-3-3 influences Nav1.5's response to antiarrhythmic drugs. This study provides detailed information about how 14-3-3 differentially regulated Nav1.5 functions under the influence of different drug subtypes. These findings will guide future molecular studies investigating Nav1.5 and antiarrhythmic drugs outcomes.


Asunto(s)
Antiarrítmicos , Mexiletine , Humanos , Antiarrítmicos/farmacología , Mexiletine/farmacología , Proteínas 14-3-3/metabolismo , Quinidina/farmacología , Células HEK293 , Lidocaína/farmacología , Canales de Sodio/metabolismo
7.
J Mol Cell Cardiol ; 166: 107-115, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35247375

RESUMEN

The electrophysiological properties of the heart include cardiac automaticity, excitation (i.e., depolarization and repolarization of action potential) of individual cardiomyocytes, and highly coordinated electrical propagation through the whole heart. An abnormality in any of these properties can cause arrhythmias. MicroRNAs (miRs) have been recognized as essential regulators of gene expression through the conventional RNA interference (RNAi) mechanism and are involved in a variety of biological events. Recent evidence has demonstrated that miRs regulate the electrophysiology of the heart through fine regulation by the conventional RNAi mechanism of the expression of ion channels, transporters, intracellular Ca2+-handling proteins, and other relevant factors. Recently, a direct interaction between miRs and ion channels has also been reported in the heart, revealing a biophysical modulation by miRs of cardiac electrophysiology. These advanced discoveries suggest that miR controls cardiac electrophysiology through two distinct mechanisms: immediate action through biophysical modulation and long-term conventional RNAi regulation. Here, we review the recent research progress and summarize the current understanding of how miR manipulates the function of ion channels to maintain the homeostasis of cardiac electrophysiology.


Asunto(s)
MicroARNs , Arritmias Cardíacas/metabolismo , Técnicas Electrofisiológicas Cardíacas , Humanos , Canales Iónicos/genética , Canales Iónicos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo
8.
Circulation ; 143(16): 1597-1613, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33590773

RESUMEN

BACKGROUND: MicroRNAs (miRs) play critical roles in regulation of numerous biological events, including cardiac electrophysiology and arrhythmia, through a canonical RNA interference mechanism. It remains unknown whether endogenous miRs modulate physiologic homeostasis of the heart through noncanonical mechanisms. METHODS: We focused on the predominant miR of the heart (miR1) and investigated whether miR1 could physically bind with ion channels in cardiomyocytes by electrophoretic mobility shift assay, in situ proximity ligation assay, RNA pull down, and RNA immunoprecipitation assays. The functional modulations of cellular electrophysiology were evaluated by inside-out and whole-cell patch clamp. Mutagenesis of miR1 and the ion channel was used to understand the underlying mechanism. The effect on the heart ex vivo was demonstrated through investigating arrhythmia-associated human single nucleotide polymorphisms with miR1-deficient mice. RESULTS: We found that endogenous miR1 could physically bind with cardiac membrane proteins, including an inward-rectifier potassium channel Kir2.1. The miR1-Kir2.1 physical interaction was observed in mouse, guinea pig, canine, and human cardiomyocytes. miR1 quickly and significantly suppressed IK1 at sub-pmol/L concentration, which is close to endogenous miR expression level. Acute presence of miR1 depolarized resting membrane potential and prolonged final repolarization of the action potential in cardiomyocytes. We identified 3 miR1-binding residues on the C-terminus of Kir2.1. Mechanistically, miR1 binds to the pore-facing G-loop of Kir2.1 through the core sequence AAGAAG, which is outside its RNA interference seed region. This biophysical modulation is involved in the dysregulation of gain-of-function Kir2.1-M301K mutation in short QT or atrial fibrillation. We found that an arrhythmia-associated human single nucleotide polymorphism of miR1 (hSNP14A/G) specifically disrupts the biophysical modulation while retaining the RNA interference function. It is remarkable that miR1 but not hSNP14A/G relieved the hyperpolarized resting membrane potential in miR1-deficient cardiomyocytes, improved the conduction velocity, and eliminated the high inducibility of arrhythmia in miR1-deficient hearts ex vivo. CONCLUSIONS: Our study reveals a novel evolutionarily conserved biophysical action of endogenous miRs in modulating cardiac electrophysiology. Our discovery of miRs' biophysical modulation provides a more comprehensive understanding of ion channel dysregulation and may provide new insights into the pathogenesis of cardiac arrhythmias.


Asunto(s)
Canales Iónicos/metabolismo , Potenciales de la Membrana/fisiología , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Perros , Cobayas , Humanos , Ratones
9.
Biophys J ; 118(11): 2829-2843, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32402243

RESUMEN

In cardiac myocytes, action potentials are initiated by an influx of sodium (Na+) ions via voltage-gated Na+ channels. Na+ channel gain of function (GOF), arising in both inherited conditions associated with mutation in the gene encoding the Na+ channel and acquired conditions associated with heart failure, ischemia, and atrial fibrillation, enhance Na+ influx, generating a late Na+ current that prolongs action potential duration (APD) and triggering proarrhythmic early afterdepolarizations (EADs). Recent studies have shown that Na+ channels are highly clustered at the myocyte intercalated disk, facilitating formation of Na+ nanodomains in the intercellular cleft between cells. Simulations from our group have recently predicted that narrowing the width of the intercellular cleft can suppress APD prolongation and EADs in the presence of Na+ channel mutations because of increased intercellular cleft Na+ ion depletion. In this study, we investigate the effects of modulating multiple extracellular spaces, specifically the intercellular cleft and bulk interstitial space, in a novel computational model and experimentally via osmotic agents albumin, dextran 70, and mannitol. We perform optical mapping and transmission electron microscopy in a drug-induced (sea anemone toxin, ATXII) Na+ channel GOF isolated heart model and modulate extracellular spaces via osmotic agents. Single-cell patch-clamp experiments confirmed that the osmotic agents individually do not enhance late Na+ current. Both experiments and simulations are consistent with the conclusion that intercellular cleft narrowing or expansion regulates APD prolongation; in contrast, modulating the bulk interstitial space has negligible effects on repolarization. Thus, we predict that intercellular cleft Na+ nanodomain formation and collapse critically regulates cardiac repolarization in the setting of Na+ channel GOF.


Asunto(s)
Preparaciones Farmacéuticas , Sodio , Potenciales de Acción , Mutación con Ganancia de Función , Iones , Miocitos Cardíacos/metabolismo , Sodio/metabolismo , Canales de Sodio
10.
J Mol Cell Cardiol ; 135: 1-9, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31362018

RESUMEN

BACKGROUND: K channel interacting protein 2 (KChIP2), initially cloned as Kv4 channel modulator, is a multi-tasking protein. In addition to modulating several cardiac ion channels at the plasma membrane, it can also modulate microRNA transcription inside nuclei, and interact with presenilins to modulate Ca release through RyR2 in the cytoplasm. However, the mechanism regulating its subcellular distribution is not clear. OBJECTIVE: We tested whether palmitoylation drives KChIP2 trafficking and distribution in cells, and whether the distribution pattern of KChIP2 in cardiac myocytes is sensitive to cellular milieu. METHOD: We conducted imaging and biochemical experiments on palmitoylatable and unpalmitoylatable KChIP2 variants expressed in COS-7 cells and in cardiomyocytes, and on native KChIP2 in myocytes. RESULTS: In COS-7 cells, palmitoylatable KChIP2 clustered to plasma membrane, while unpalmitoylatable KChIP2 exhibited higher cytoplasmic mobility and faster nuclear entry. The same differences in distribution and mobility were observed when these KChIP2 variants were expressed in cardiac myocytes, indicating that the palmitoylation-dependent distribution and trafficking are intrinsic properties of KChIP2. Importantly, acute stress in a rat model of cardiac arrest/resuscitation induced changes in native KChIP2 resembling those of KChIP2 depalmitoylation, promoting KChIP2 nuclear entry. CONCLUSION: The palmitoylation status of KChIP2 determines its subcellular distribution in cardiac myocytes. Stress promotes nuclear entry of KChIP2, diverting it from ion channel modulation at the plasma membrane to other functions in the nuclear compartment.


Asunto(s)
Paro Cardíaco/genética , Proteínas de Interacción con los Canales Kv/genética , Lipoilación/genética , Potasio/metabolismo , Animales , Células COS , Membrana Celular/genética , Chlorocebus aethiops , Citoplasma/genética , Citoplasma/metabolismo , Paro Cardíaco/metabolismo , Paro Cardíaco/patología , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Humanos , MicroARNs/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Palmitatos/farmacología , Ratas , Canal Liberador de Calcio Receptor de Rianodina/genética
11.
Am J Physiol Heart Circ Physiol ; 315(5): H1250-H1257, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30118344

RESUMEN

Mutations in voltage-gated Na+ channels have been linked to several channelopathies leading to a wide variety of diseases including cardiac arrhythmias, epilepsy, and myotonia. We have previously demonstrated that voltage-gated Na+ channel (Nav)1.5 trafficking-deficient mutant channels could lead to a dominant negative effect by impairing trafficking of the wild-type (WT) channel. We also reported that voltage-gated Na+ channels associate as dimers with coupled gating properties. Here, we hypothesized that the dominant negative effect of mutant Na+ channels could also occur through coupled gating. This was tested using cell surface biotinylation and single channel recordings to measure the gating probability and coupled gating of the dimers. As previously reported, coexpression of Nav1.5-L325R with WT channels led to a dominant negative effect, as reflected by a 75% reduction in current density. Surprisingly, cell surface biotinylation showed that Nav1.5-L325R mutant is capable of trafficking, with 40% of Nav1.5-L325R reaching the cell surface when expressed alone. Importantly, even though a dominant negative effect on the Na+ current is observed when WT and Nav1.5-L325R are expressed together, the total Nav channel cell surface expression was not significantly altered compared with WT channels alone. Thus, the trafficking deficiency could not explain the 75% decrease in inward Na+ current. Interestingly, single channel recordings showed that Nav1.5-L325R exerted a dominant negative effect on the WT channel at the gating level. Both coupled gating and gating probability of WT:L325R dimers were drastically impaired. We conclude that dominant negative suppression exerted by Nav1.5 mutants can also be caused by impairing the WT gating probability, a mechanism resulting from the dimerization and coupled gating of voltage-gated Na+ channel α-subunits. NEW & NOTEWORTHY The presence of dominant negative mutations in the Na+ channel gene leading to Brugada syndrome was supported by our recent findings that Na+ channel α-subunits form dimers. Up until now, the dominant negative effect was thought to be caused by the interaction of the wild-type Na+ channel with trafficking-deficient mutant channels. However, the present study demonstrates that coupled gating of voltage-gated Na+ channels can also be responsible for the dominant negative effect leading to arrhythmias.


Asunto(s)
Activación del Canal Iónico/genética , Mutación , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Sodio/metabolismo , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatología , Células HEK293 , Frecuencia Cardíaca/genética , Humanos , Cadenas de Markov , Potenciales de la Membrana , Modelos Biológicos , Multimerización de Proteína , Transporte de Proteínas , Factores de Tiempo
12.
Int J Mol Sci ; 19(5)2018 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-29734659

RESUMEN

Direct reprogramming of fibroblasts into induced cardiomyocytes (iCMs) holds a great promise for regenerative medicine and has been studied in several major directions. However, cell-cycle regulation, a fundamental biological process, has not been investigated during iCM-reprogramming. Here, our time-lapse imaging on iCMs, reprogrammed by Gata4, Mef2c, and Tbx5 (GMT) monocistronic retroviruses, revealed that iCM-reprogramming was majorly initiated at late-G1- or S-phase and nearly half of GMT-reprogrammed iCMs divided soon after reprogramming. iCMs exited cell cycle along the process of reprogramming with decreased percentage of 5-ethynyl-20-deoxyuridine (EdU)⁺/α-myosin heavy chain (αMHC)-GFP⁺ cells. S-phase synchronization post-GMT-infection could enhance cell-cycle exit of reprogrammed iCMs and yield more GFPhigh iCMs, which achieved an advanced reprogramming with more expression of cardiac genes than GFPlow cells. However, S-phase synchronization did not enhance the reprogramming with a polycistronic-viral vector, in which cell-cycle exit had been accelerated. In conclusion, post-infection synchronization of S-phase facilitated the early progression of GMT-reprogramming through a mechanism of enhanced cell-cycle exit.


Asunto(s)
Puntos de Control del Ciclo Celular/genética , Diferenciación Celular/genética , Reprogramación Celular/genética , Miocitos Cardíacos/citología , Animales , Ciclo Celular/genética , Fibroblastos/citología , Fibroblastos/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , Medicina Regenerativa/tendencias
13.
J Physiol ; 595(7): 2229-2252, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-27808412

RESUMEN

This is the second of the two White Papers from the fourth UC Davis Cardiovascular Symposium Systems Approach to Understanding Cardiac Excitation-Contraction Coupling and Arrhythmias (3-4 March 2016), a biennial event that brings together leading experts in different fields of cardiovascular research. The theme of the 2016 symposium was 'K+ channels and regulation', and the objectives of the conference were severalfold: (1) to identify current knowledge gaps; (2) to understand what may go wrong in the diseased heart and why; (3) to identify possible novel therapeutic targets; and (4) to further the development of systems biology approaches to decipher the molecular mechanisms and treatment of cardiac arrhythmias. The sessions of the Symposium focusing on the functional roles of the cardiac K+ channel in health and disease, as well as K+ channels as therapeutic targets, were contributed by Ye Chen-Izu, Gideon Koren, James Weiss, David Paterson, David Christini, Dobromir Dobrev, Jordi Heijman, Thomas O'Hara, Crystal Ripplinger, Zhilin Qu, Jamie Vandenberg, Colleen Clancy, Isabelle Deschenes, Leighton Izu, Tamas Banyasz, Andras Varro, Heike Wulff, Eleonora Grandi, Michael Sanguinetti, Donald Bers, Jeanne Nerbonne and Nipavan Chiamvimonvat as speakers and panel discussants. This article summarizes state-of-the-art knowledge and controversies on the functional roles of cardiac K+ channels in normal and diseased heart. We endeavour to integrate current knowledge at multiple scales, from the single cell to the whole organ levels, and from both experimental and computational studies.


Asunto(s)
Arritmias Cardíacas/fisiopatología , Corazón/fisiología , Canales de Potasio/fisiología , Animales , Antiarrítmicos/uso terapéutico , Arritmias Cardíacas/tratamiento farmacológico , Corazón/fisiopatología , Humanos , Modelos Biológicos
14.
Am J Physiol Heart Circ Physiol ; 312(6): H1144-H1153, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28341634

RESUMEN

Two-pore K+ (K2p) channels have been described in modulating background conductance as leak channels in different physiological systems. In the heart, the expression of K2p channels is heterogeneous with equivocation regarding their functional role. Our objective was to determine the K2p expression profile and their physiological and pathophysiological contribution to cardiac electrophysiology. Induced pluripotent stem cells (iPSCs) generated from humans were differentiated into cardiomyocytes (iPSC-CMs). mRNA was isolated from these cells, commercial iPSC-CM (iCells), control human heart ventricular tissue (cHVT), and ischemic (iHF) and nonischemic heart failure tissues (niHF). We detected 10 K2p channels in the heart. Comparing quantitative PCR expression of K2p channels between human heart tissue and iPSC-CMs revealed K2p1.1, K2p2.1, K2p5.1, and K2p17.1 to be higher expressed in cHVT, whereas K2p3.1 and K2p13.1 were higher in iPSC-CMs. Notably, K2p17.1 was significantly lower in niHF tissues compared with cHVT. Action potential recordings in iCells after K2p small interfering RNA knockdown revealed prolongations in action potential depolarization at 90% repolarization for K2p2.1, K2p3.1, K2p6.1, and K2p17.1. Here, we report the expression level of 10 human K2p channels in iPSC-CMs and how they compared with cHVT. Importantly, our functional electrophysiological data in human iPSC-CMs revealed a prominent role in cardiac ventricular repolarization for four of these channels. Finally, we also identified K2p17.1 as significantly reduced in niHF tissues and K2p4.1 as reduced in niHF compared with iHF. Thus, we advance the notion that K2p channels are emerging as novel players in cardiac ventricular electrophysiology that could also be remodeled in cardiac pathology and therefore contribute to arrhythmias.NEW & NOTEWORTHY Two-pore K+ (K2p) channels are traditionally regarded as merely background leak channels in myriad physiological systems. Here, we describe the expression profile of K2p channels in human-induced pluripotent stem cell-derived cardiomyocytes and outline a salient role in cardiac repolarization and pathology for multiple K2p channels.


Asunto(s)
Potenciales de Acción , Diferenciación Celular , Ventrículos Cardíacos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Arritmias Cardíacas/etiología , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatología , Estudios de Casos y Controles , Línea Celular , Femenino , Perfilación de la Expresión Génica/métodos , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Ventrículos Cardíacos/fisiopatología , Humanos , Masculino , Isquemia Miocárdica/complicaciones , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/fisiopatología , Canales de Potasio de Dominio Poro en Tándem/genética , Interferencia de ARN , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal , Transfección
15.
Am J Physiol Heart Circ Physiol ; 312(5): H886-H895, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28283549

RESUMEN

Acute cardiac ischemia induces conduction velocity (CV) slowing and conduction block, promoting reentrant arrhythmias leading to sudden cardiac arrest. Previously, we found that mild hypothermia (MH; 32°C) attenuates ischemia-induced conduction block and CV slowing in a canine model of early global ischemia. Acute ischemia impairs cellular excitability and the gap junction (GJ) protein connexin (Cx)43. We hypothesized that MH prevented ischemia-induced conduction block and CV slowing by preserving GJ expression and localization. Canine left ventricular preparations at control (36°C) or MH (32°C) were subjected to no-flow prolonged (30 min) ischemia. Optical action potentials were recorded from the transmural left ventricular wall, and CV was measured throughout ischemia. Cx43 and Na+ channel (NaCh) remodeling was assessed using both confocal immunofluorescence (IF) and/or Western blot analysis. Cellular excitability was determined by microelectrode recordings of action potential upstroke velocity (dV/dtmax) and resting membrane potential (RMP). NaCh current was measured in isolated canine myocytes at 36 and 32°C. As expected, MH prevented conduction block and mitigated ischemia-induced CV slowing during 30 min of ischemia. MH maintained Cx43 at the intercalated disk (ID) and attenuated ischemia-induced Cx43 degradation by both IF and Western blot analysis. MH also preserved dV/dtmax and NaCh function without affecting RMP. No difference in NaCh expression was seen at the ID by IF or Western blot analysis. In conclusion, MH preserves myocardial conduction during prolonged ischemia by maintaining Cx43 expression at the ID and maintaining NaCh function. Hypothermic preservation of GJ coupling and NaCh may be novel antiarrhythmic strategies during resuscitation.NEW & NOTEWORTHY Therapeutic hypothermia is now a class I recommendation for resuscitation from cardiac arrest. This study determined that hypothermia preserves gap junction coupling as well as Na+ channel function during acute cardiac ischemia, attenuating conduction slowing and preventing conduction block, suggesting that induced hypothermia may be a novel antiarrhythmic strategy in resuscitation.


Asunto(s)
Comunicación Celular , Uniones Comunicantes , Sistema de Conducción Cardíaco , Hipotermia Inducida/métodos , Isquemia Miocárdica/terapia , Canales de Sodio , Potenciales de Acción/fisiología , Animales , Conexinas/metabolismo , Perros , Masculino , Microelectrodos , Microscopía Confocal , Células Musculares/metabolismo , Función Ventricular Izquierda
16.
J Mol Cell Cardiol ; 98: 138-45, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27238412

RESUMEN

BACKGROUND: The paracrine action of non-cardiac progenitor cells is robust, but not well understood. Mesenchymal stem cells (MSC) have been shown to enhance calcium (Ca(++)) cycling in myocytes. Therefore, we hypothesized that MSCs can suppress cardiac alternans, an important arrhythmia substrate, by paracrine action on Ca(++) cycling. METHODS AND RESULTS: Human cardiac myocyte monolayers derived from iPS cells (hCM) were cultured without or with human MSCs (hMSC) directly or plated on a transwell insert. Ca(++) transient alternans (Ca(++) ALT) and Ca(++) transient duration (CaD) were measured from hCM monolayers following application of 200µM H2O2. Ca(++) ALT in hCM was significantly decreased when cultured with hMSCs directly (97%, p<0.0001) and when cultured with hMSC in the transwell insert (80%, p<0.0001). When hCM with hMSCs were pretreated with PI3K or eNOS inhibitors, Ca(++) ALT was larger than baseline by 20% (p<0.0001) and 36% (p<0.0001), respectively. In contrast, Ca(++) ALT was reduced by 89% compared to baseline (p<0.0001) when hCM monolayers without hMSCs were pretreated with 20µM GSNO. In all experiments, changes in Ca(++) ALT were mirrored by changes in CaD. Finally, real time quantitative PCR revealed no significant differences in mRNA expression of RyR2, SERCA2a, and phospholamban between hCM cultured with or without hMSCs. CONCLUSION: Ca(++) ALT is suppressed by hMSCs in a paracrine fashion due to activation of a PI3K-mediated nitroso-redox pathway. These findings demonstrate, for the first time, how stem cell therapy might be antiarrhythmic by suppressing cardiac alternans through paracrine action on Ca(++) cycling.


Asunto(s)
Glucanos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Miocitos Cardíacos/metabolismo , Oxidación-Reducción , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Animales , Calcio/metabolismo , Señalización del Calcio , Comunicación Celular , Expresión Génica , Humanos , Peróxido de Hidrógeno/metabolismo , Estrés Oxidativo , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
17.
J Cardiovasc Electrophysiol ; 27(1): 110-9, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26459193

RESUMEN

Connexin43 (Cx43) phosphorylation alters gap junction localization and function. In particular, phosphorylation at serine-368 (S368) has been suggested to alter gap junctional conductance, but previous reports have shown inconsistent results for both timing and functional effects of S368 phosphorylation. The objective of this study was to determine the functional effects of isolated S368 phosphorylation. We evaluated wild-type Cx43 (AdCx43) and mutations simulating permanent phosphorylation (Ad368E) or preventing phosphorylation (Ad368A) at S368. Function was assessed by optical mapping of electrical conduction in patterned cultures of neonatal rat ventricular myocytes, under baseline and metabolic stress (MS) conditions. Baseline conduction velocity (CV) was similar for all groups. In the AdCx43 and Ad368E groups, MS moderately decreased CV. Ad368A caused complete conduction block during MS. Triton-X solubility assessment showed no change in Cx43 location during conduction impairment. Western blot analysis showed that Cx43-S368 phosphorylation was present at baseline, and that it decreased during MS. Our data indicate that phosphorylation at S368 does not affect CV under baseline conditions, and that preventing S368 phosphorylation makes Cx43 hypersensitive to MS. These results show the critical role of S368 phosphorylation during stress conditions.


Asunto(s)
Conexina 43/metabolismo , Miocitos Cardíacos/metabolismo , Estrés Fisiológico , Potenciales de Acción , Animales , Animales Recién Nacidos , Células Cultivadas , Conexina 43/genética , Mutación , Fosforilación , Ratas Sprague-Dawley , Serina , Transducción de Señal , Factores de Tiempo , Transfección , Imagen de Colorante Sensible al Voltaje
18.
J Physiol ; 593(6): 1347-60, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25772290

RESUMEN

This paper is the second of a series of three reviews published in this issue resulting from the University of California Davis Cardiovascular Symposium 2014: Systems approach to understanding cardiac excitation-contraction coupling and arrhythmias: Na(+) channel and Na(+) transport. The goal of the symposium was to bring together experts in the field to discuss points of consensus and controversy on the topic of sodium in the heart. The present review focuses on Na(+) channel function and regulation, Na(+) channel structure and function, and Na(+) channel trafficking, sequestration and complexing.


Asunto(s)
Miocitos Cardíacos/metabolismo , Canales de Sodio/metabolismo , Potenciales de Acción , Secuencia de Aminoácidos , Animales , Congresos como Asunto , Humanos , Datos de Secuencia Molecular , Miocitos Cardíacos/efectos de los fármacos , Transporte de Proteínas , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio/química
19.
Proc Natl Acad Sci U S A ; 109(44): 18186-91, 2012 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-23071315

RESUMEN

Nitric oxide (NO) derived from the activity of neuronal nitric oxide synthase (NOS1) is involved in S-nitrosylation of key sarcoplasmic reticulum (SR) Ca(2+) handling proteins. Deficient S-nitrosylation of the cardiac ryanodine receptor (RyR2) has a variable effect on SR Ca(2+) leak/sparks in isolated myocytes, likely dependent on the underlying physiological state. It remains unknown, however, whether such molecular aberrancies are causally related to arrhythmogenesis in the intact heart. Here we show in the intact heart, reduced NOS1 activity increased Ca(2+)-mediated ventricular arrhythmias only in the setting of elevated myocardial [Ca(2+)](i). These arrhythmias arose from increased spontaneous SR Ca(2+) release, resulting from a combination of decreased RyR2 S-nitrosylation (RyR2-SNO) and increased RyR2 oxidation (RyR-SOx) (i.e., increased reactive oxygen species (ROS) from xanthine oxidoreductase activity) and could be suppressed with xanthine oxidoreductase (XOR) inhibition (i.e., allopurinol) or nitric oxide donors (i.e., S-nitrosoglutathione, GSNO). Surprisingly, we found evidence of NOS1 down-regulation of RyR2 phosphorylation at the Ca(2+)/calmodulin-dependent protein kinase (CaMKII) site (S2814), suggesting molecular cross-talk between nitrosylation and phosphorylation of RyR2. Finally, we show that nitroso-redox imbalance due to decreased NOS1 activity sensitizes RyR2 to a severe arrhythmic phenotype by oxidative stress. Our findings suggest that nitroso-redox imbalance is an important mechanism of ventricular arrhythmias in the intact heart under disease conditions (i.e., elevated [Ca(2+)](i) and oxidative stress), and that therapies restoring nitroso-redox balance in the heart could prevent sudden arrhythmic death.


Asunto(s)
Arritmias Cardíacas/metabolismo , Calcio/metabolismo , Compuestos Nitrosos/metabolismo , Animales , Cobayas , Miocardio/metabolismo , Óxido Nítrico Sintasa de Tipo I/antagonistas & inhibidores , Estrés Oxidativo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
20.
J Gen Physiol ; 156(2)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38226948

RESUMEN

During chronic stress, persistent activation of cAMP-dependent protein kinase (PKA) occurs, which can contribute to protective or maladaptive changes in the heart. We sought to understand the effect of persistent PKA activation on NaV1.5 channel distribution and function in cardiomyocytes using adult rat ventricular myocytes as the main model. PKA activation with 8CPT-cAMP and okadaic acid (phosphatase inhibitor) caused an increase in Na+ current amplitude without altering the total NaV1.5 protein level, suggesting a redistribution of NaV1.5 to the myocytes' surface. Biotinylation experiments in HEK293 cells showed that inhibiting protein trafficking from intracellular compartments to the plasma membrane prevented the PKA-induced increase in cell surface NaV1.5. Additionally, PKA activation induced a time-dependent increase in microtubule plus-end binding protein 1 (EB1) and clustering of EB1 at myocytes' peripheral surface and intercalated discs (ICDs). This was accompanied by a decrease in stable interfibrillar microtubules but an increase in dynamic microtubules along the myocyte surface. Imaging and coimmunoprecipitation experiments revealed that NaV1.5 interacted with EB1 and ß-tubulin, and both interactions were enhanced by PKA activation. We propose that persistent PKA activation promotes NaV1.5 trafficking to the peripheral surface of myocytes and ICDs by providing dynamic microtubule tracks and enhanced guidance by EB1. Our proposal is consistent with an increase in the correlative distribution of NaV1.5, EB1, and ß-tubulin at these subcellular domains in PKA-activated myocytes. Our study suggests that persistent PKA activation, at least during the initial phase, can protect impulse propagation in a chronically stressed heart by increasing NaV1.5 at ICDs.


Asunto(s)
Miocitos Cardíacos , Canal de Sodio Activado por Voltaje NAV1.5 , Proteínas Quinasas , Tubulina (Proteína) , Animales , Humanos , Ratas , Membrana Celular , Análisis por Conglomerados , Células HEK293 , Proteínas Quinasas/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA