Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 110(5): 895-900, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-36990084

RESUMEN

Genome sequencing (GS) is a powerful test for the diagnosis of rare genetic disorders. Although GS can enumerate most non-coding variation, determining which non-coding variants are disease-causing is challenging. RNA sequencing (RNA-seq) has emerged as an important tool to help address this issue, but its diagnostic utility remains understudied, and the added value of a trio design is unknown. We performed GS plus RNA-seq from blood using an automated clinical-grade high-throughput platform on 97 individuals from 39 families where the proband was a child with unexplained medical complexity. RNA-seq was an effective adjunct test when paired with GS. It enabled clarification of putative splice variants in three families, but it did not reveal variants not already identified by GS analysis. Trio RNA-seq decreased the number of candidates requiring manual review when filtering for de novo dominant disease-causing variants, allowing for the exclusion of 16% of gene-expression outliers and 27% of allele-specific-expression outliers. However, clear diagnostic benefit from the trio design was not observed. Blood-based RNA-seq can facilitate genome analysis in children with suspected undiagnosed genetic disease. In contrast to DNA sequencing, the clinical advantages of a trio RNA-seq design may be more limited.


Asunto(s)
Familia , Enfermedades Raras , Humanos , Niño , Secuencia de Bases , Análisis de Secuencia de ADN , Secuenciación del Exoma , Enfermedades Raras/genética , Análisis de Secuencia de ARN
2.
Am J Hum Genet ; 110(11): 1919-1937, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37827158

RESUMEN

Misregulation of histone lysine methylation is associated with several human cancers and with human developmental disorders. DOT1L is an evolutionarily conserved gene encoding a lysine methyltransferase (KMT) that methylates histone 3 lysine-79 (H3K79) and was not previously associated with a Mendelian disease in OMIM. We have identified nine unrelated individuals with seven different de novo heterozygous missense variants in DOT1L through the Undiagnosed Disease Network (UDN), the SickKids Complex Care genomics project, and GeneMatcher. All probands had some degree of global developmental delay/intellectual disability, and most had one or more major congenital anomalies. To assess the pathogenicity of the DOT1L variants, functional studies were performed in Drosophila and human cells. The fruit fly DOT1L ortholog, grappa, is expressed in most cells including neurons in the central nervous system. The identified DOT1L variants behave as gain-of-function alleles in flies and lead to increased H3K79 methylation levels in flies and human cells. Our results show that human DOT1L and fly grappa are required for proper development and that de novo heterozygous variants in DOT1L are associated with a Mendelian disease.


Asunto(s)
Anomalías Congénitas , Discapacidades del Desarrollo , N-Metiltransferasa de Histona-Lisina , Humanos , Mutación con Ganancia de Función , N-Metiltransferasa de Histona-Lisina/genética , Histonas/genética , Histonas/metabolismo , Lisina , Metilación , Metiltransferasas/genética , Neoplasias/genética , Drosophila/genética , Proteínas de Drosophila/genética , Discapacidades del Desarrollo/genética , Anomalías Congénitas/genética
3.
Brain ; 146(8): 3528-3541, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36732302

RESUMEN

Biallelic loss-of-function variants in SMPD4 cause a rare and severe neurodevelopmental disorder with progressive congenital microcephaly and early death. SMPD4 encodes a sphingomyelinase that hydrolyses sphingomyelin into ceramide at neutral pH and can thereby affect membrane lipid homeostasis. SMPD4 localizes to the membranes of the endoplasmic reticulum and nuclear envelope and interacts with nuclear pore complexes (NPC). We refine the clinical phenotype of loss-of-function SMPD4 variants by describing five individuals from three unrelated families with longitudinal data due to prolonged survival. All individuals surviving beyond infancy developed insulin-dependent diabetes, besides presenting with a severe neurodevelopmental disorder and microcephaly, making diabetes one of the most frequent age-dependent non-cerebral abnormalities. We studied the function of SMPD4 at the cellular and organ levels. Knock-down of SMPD4 in human neural stem cells causes reduced proliferation rates and prolonged mitosis. Moreover, SMPD4 depletion results in abnormal nuclear envelope breakdown and reassembly during mitosis and decreased post-mitotic NPC insertion. Fibroblasts from affected individuals show deficient SMPD4-specific neutral sphingomyelinase activity, without changing (sub)cellular lipidome fractions, which suggests a local function of SMPD4 on the nuclear envelope. In embryonic mouse brain, knockdown of Smpd4 impairs cortical progenitor proliferation and induces premature differentiation by altering the balance between neurogenic and proliferative progenitor cell divisions. We hypothesize that, in individuals with SMPD4-related disease, nuclear envelope bending, which is needed to insert NPCs in the nuclear envelope, is impaired in the absence of SMPD4 and interferes with cerebral corticogenesis and survival of pancreatic beta cells.


Asunto(s)
Diabetes Mellitus , Microcefalia , Humanos , Animales , Ratones , Membrana Nuclear/química , Membrana Nuclear/metabolismo , Microcefalia/genética , Microcefalia/metabolismo , Esfingomielina Fosfodiesterasa/análisis , Esfingomielina Fosfodiesterasa/genética , Esfingomielina Fosfodiesterasa/metabolismo , Poro Nuclear/metabolismo , Mitosis , Diabetes Mellitus/metabolismo
4.
Brain ; 146(6): 2285-2297, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36477332

RESUMEN

The blood-brain barrier ensures CNS homeostasis and protection from injury. Claudin-5 (CLDN5), an important component of tight junctions, is critical for the integrity of the blood-brain barrier. We have identified de novo heterozygous missense variants in CLDN5 in 15 unrelated patients who presented with a shared constellation of features including developmental delay, seizures (primarily infantile onset focal epilepsy), microcephaly and a recognizable pattern of pontine atrophy and brain calcifications. All variants clustered in one subregion/domain of the CLDN5 gene and the recurrent variants demonstrate genotype-phenotype correlations. We modelled both patient variants and loss of function alleles in the zebrafish to show that the variants analogous to those in patients probably result in a novel aberrant function in CLDN5. In total, human patient and zebrafish data provide parallel evidence that pathogenic sequence variants in CLDN5 cause a novel neurodevelopmental disorder involving disruption of the blood-brain barrier and impaired neuronal function.


Asunto(s)
Microcefalia , Animales , Humanos , Microcefalia/genética , Claudina-5/genética , Claudina-5/metabolismo , Pez Cebra/metabolismo , Barrera Hematoencefálica/metabolismo , Convulsiones/genética , Síndrome
5.
Genet Med ; 25(8): 100863, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37125634

RESUMEN

PURPOSE: Bone morphogenic proteins (BMPs) regulate gene expression that is related to many critical developmental processes, including osteogenesis for which they are named. In addition, BMP2 is widely expressed in cells of mesenchymal origin, including bone, cartilage, skeletal and cardiac muscle, and adipose tissue. It also participates in neurodevelopment by inducing differentiation of neural stem cells. In humans, BMP2 variants result in a multiple congenital anomaly syndrome through a haploinsufficiency mechanism. We sought to expand the phenotypic spectrum and highlight phenotypes of patients harboring monoallelic missense variants in BMP2. METHODS: We used retrospective chart review to examine phenotypes from an international cohort of 18 individuals and compared these with published cases. Patient-derived missense variants were modeled in zebrafish to examine their effect on the ability of bmp2b to promote embryonic ventralization. RESULTS: The presented cases recapitulated existing descriptions of BMP2-related disorders, including craniofacial, cardiac, and skeletal anomalies and exhibit a wide phenotypic spectrum. We also identified patients with neural tube defects, structural brain anomalies, and endocrinopathies. Missense variants modeled in zebrafish resulted in loss of protein function. CONCLUSION: We use this expansion of reported phenotypes to suggest multidisciplinary medical monitoring and management of patients with BMP2-related skeletal dysplasia spectrum.


Asunto(s)
Osteocondrodisplasias , Pez Cebra , Animales , Humanos , Pez Cebra/genética , Estudios Retrospectivos , Diferenciación Celular , Osteogénesis/genética , Proteínas Morfogenéticas Óseas , Proteína Morfogenética Ósea 2/genética
6.
Genet Med ; 24(11): 2399-2407, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36083289

RESUMEN

PURPOSE: RABGAP1 is a GTPase-activating protein implicated in a variety of cellular and molecular processes, including mitosis, cell migration, vesicular trafficking, and mTOR signaling. There are no known Mendelian diseases caused by variants in RABGAP1. METHODS: Through GeneMatcher, we identified 5 patients from 3 unrelated families with homozygous variants in the RABGAP1 gene found on exome sequencing. We established lymphoblastoid cells lines derived from an affected individual and her parents and performed RNA sequencing and functional studies. Rabgap1 knockout mice were generated and phenotyped. RESULTS: We report 5 patients presenting with a common constellation of features, including global developmental delay/intellectual disability, microcephaly, bilateral sensorineural hearing loss, and seizures, as well as overlapping dysmorphic features. Neuroimaging revealed common features, including delayed myelination, white matter volume loss, ventriculomegaly, and thinning of the corpus callosum. Functional analysis of patient cells revealed downregulated mTOR signaling and abnormal localization of early endosomes and lysosomes. Rabgap1 knockout mice exhibited several features in common with the patient cohort, including microcephaly, thinning of the corpus callosum, and ventriculomegaly. CONCLUSION: Collectively, our results provide evidence of a novel neurodevelopmental syndrome caused by biallelic loss-of-function variants in RABGAP1.


Asunto(s)
Hidrocefalia , Discapacidad Intelectual , Microcefalia , Trastornos del Neurodesarrollo , Animales , Ratones , Femenino , Humanos , Microcefalia/genética , Linaje , Discapacidad Intelectual/genética , Síndrome , Ratones Noqueados , Serina-Treonina Quinasas TOR , Trastornos del Neurodesarrollo/genética
7.
Development ; 145(22)2018 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-30355727

RESUMEN

A key event in heart development is the timely addition of cardiac progenitor cells, defects in which can lead to congenital heart defects. However, how the balance and proportion of progenitor proliferation versus addition to the heart is regulated remains poorly understood. Here, we demonstrate that Hey2 functions to regulate the dynamics of cardiac progenitor addition to the zebrafish heart. We found that the previously noted increase in myocardial cell number found in the absence of Hey2 function was due to a pronounced expansion in the size of the cardiac progenitor pool. Expression analysis and lineage tracing of hey2-expressing cells showed that hey2 is active in cardiac progenitors. Hey2 acted to limit proliferation of cardiac progenitors, prior to heart tube formation. Use of a transplantation approach demonstrated a likely cell-autonomous (in cardiac progenitors) function for Hey2. Taken together, our data suggest a previously unappreciated role for Hey2 in controlling the proliferative capacity of cardiac progenitors, affecting the subsequent contribution of late-differentiating cardiac progenitors to the developing vertebrate heart.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Corazón/embriología , Células Madre/citología , Células Madre/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Enfermedades Cardiovasculares/patología , Recuento de Células , Linaje de la Célula , Proliferación Celular , Tamaño de la Célula , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Mutación/genética , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Transducción de Señal , Pez Cebra/genética , Proteínas de Pez Cebra/genética
8.
Dev Biol ; 455(1): 19-31, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31299230

RESUMEN

mid and H15 encode Tbx20 transcription factors that specify ventral pattern in the Drosophila leg. We find that there are at least two pathways for mid and H15 specification of ventral fate. In the first pathway, mid and H15 negatively regulate Dpp, the dorsal signal in leg development. mid and H15 block the dorsalizing effects of Dpp signaling in the ventral leg. In loss- and gain-of-function experiments in imaginal discs, we show that mid and H15 block the accumulation of phospho-Mad, the activated form of the Drosophila pSmad1/5 homolog. In a second pathway, we find mid and H15 must also directly promote ventral fate because simultaneously blocking Dpp signaling in mid H15 mutants does not rescue the ventral to dorsal transformation in most ventral leg structures. We show that mid and H15 act as transcriptional repressors in ventral leg development. The two genes repress the Dpp target gene Dad, the laterally expressed gene Upd, and the mid VLE enhancer. This repression depends on the eh1 domain, a binding site for the Groucho co-repressor, and is likely direct because Mid localizes to target gene enhancers in PCR-ChIP assays. A mid allele mutant for the repressing domain (eh1), mideh1, was found to be compromised in gain-of-function assays and in rescue of mid H15 loss-of-function. We propose that mid and H15 specify ventral fate through inhibition of Dpp signaling and through coordinating the repression of genes in the ventral leg.


Asunto(s)
Tipificación del Cuerpo/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Extremidades/crecimiento & desarrollo , Transducción de Señal/genética , Proteínas de Dominio T Box/genética , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Regulación del Desarrollo de la Expresión Génica , Discos Imaginales/crecimiento & desarrollo , Discos Imaginales/metabolismo , Mutación , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Clin Genet ; 98(3): 299-302, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32621286

RESUMEN

Neural tube defects (NTD) are among the most common congenital anomalies, affecting about 1:1000 births. In most cases, the etiology of NTD is multifactorial and the genetic variants associated with them remain largely unknown. There is extensive evidence from animal models over the past two decades implicating SHROOM3 in neural tube formation; however, its exact role in human disease has remained elusive. In this report, we present the first case of a human fetus with a homozygous loss of function variant in SHROOM3. The fetus presents with anencephaly and cleft lip and palate, similar to previously described Shroom3 mouse mutants and is suggestive of a novel monogenic cause of NTD. Our case provides clarification on the contribution of SHROOM3 to human development after decades of model organism research.


Asunto(s)
Anencefalia/genética , Labio Leporino/genética , Fisura del Paladar/genética , Proteínas de Microfilamentos/genética , Anencefalia/complicaciones , Anencefalia/patología , Labio Leporino/complicaciones , Labio Leporino/patología , Fisura del Paladar/complicaciones , Fisura del Paladar/patología , Femenino , Feto , Homocigoto , Humanos , Mutación con Pérdida de Función/genética , Análisis por Micromatrices , Defectos del Tubo Neural/genética , Defectos del Tubo Neural/patología
10.
Am J Med Genet A ; 179(4): 663-667, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30803154

RESUMEN

Parathyroid hormone like hormone (PTHLH) signaling is essential for the proper formation of bone and its elevation or disruption has been directly implicated in several different skeletal dysplasias. We report a patient with a 2.802 Mb deletion upstream of the PTHLH coding sequence who presents with multiple fractures, metaphyseal changes, and overall features consistent with hyperparathyroid like disease. Analysis of the deleted region revealed the loss of putative regulatory regions adjacent to PTHLH and the possible gain of a limb enhancer. Furthermore, PTHLH expression appeared to be mis-regulated in fibroblasts derived from the patient. Altogether, we find that the disruption of the regulatory landscape of PTHLH likely results in its inappropriate expression and this novel clinical presentation.


Asunto(s)
Hiperparatiroidismo/genética , Hiperparatiroidismo/patología , Mutación , Proteína Relacionada con la Hormona Paratiroidea/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Niño , Humanos , Masculino , Pronóstico
11.
Am J Med Genet A ; 176(2): 450-454, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29271572

RESUMEN

Mesomelic and rhizo-mesomelic dysplasias are a group of disorders characterized by abnormal shortening of the limbs. One of the most common causes of mesomelic shortening is the loss of the transcription factor SHOX. In this clinical report, we present a patient who in addition to mesomelic shortening has severe rhizomelic shortening and developmental delay. Karyotyping revealed a recombinant X chromosome in which the region distal to Xp22.33 (where SHOX is found) was replaced with material from Xq28. Included in the region distal to Xq28 is the gene MECP2 and this patient presents with features of MECP2 duplication syndrome. We find that this patient has skeletal features not typical with the loss of SHOX that are likely explained by the rearrangement of the X chromosome. Further delineation of this rearrangement may allow for the identification of additional genetic mechanisms critical for the development of the limbs.


Asunto(s)
Enfermedades del Desarrollo Óseo/genética , Cromosomas Humanos X/genética , Discapacidades del Desarrollo/genética , Fémur/anomalías , Húmero/anomalías , Proteína 2 de Unión a Metil-CpG/genética , Proteína de la Caja Homeótica de Baja Estatura/genética , Enfermedades del Desarrollo Óseo/fisiopatología , Deleción Cromosómica , Duplicación Cromosómica/genética , Discapacidades del Desarrollo/fisiopatología , Enanismo , Femenino , Fémur/fisiopatología , Humanos , Húmero/fisiopatología , Hibridación Fluorescente in Situ , Lactante , Cariotipificación
12.
Dev Biol ; 418(1): 17-27, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27554166

RESUMEN

The Mesp family of transcription factors have been implicated in the early formation and migration of the cardiac lineage, although the precise molecular mechanisms underlying this process remain unknown. In this study we examine the function of Mesp family members in zebrafish cardiac development and find that Mespaa is remarkably efficient at promoting cardiac fates in normally non-cardiogenic cells. However, Mespaa is dispensable for normal cardiac formation. Despite no overt defects in cardiovascular specification, we find a consistent defect in cardiac laterality in mespaa null embryos. This is further exacerbated by the depletion of other mesp paralogues, highlighting a conserved role for the mesp family in left-right asymmetry, distinct from a function in cardiac specification. Despite an early requirement for mespaa to promote cardiogenesis, cells over-expressing mespaa are found to both exhibit unique cellular behaviors and activate the transcription of gata5 only after the completion of gastrulation. We propose that while mespaa remains capable of driving cardiac progenitor formation in zebrafish, it may not play an essential role in the cardiac regulatory network. Furthermore, the late activation of migration and cardiac gene transcription in mespaa over-expressing cells challenges previous studies on the timing of these events and provides intriguing questions for future study.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Corazón/embriología , Miocitos Cardíacos/citología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Tipificación del Cuerpo/genética , Diferenciación Celular , Factor de Transcripción GATA5/biosíntesis , Factor de Transcripción GATA5/genética , Gastrulación/fisiología , Morfolinos/genética , Proteínas de Pez Cebra/biosíntesis
13.
PLoS Genet ; 9(7): e1003612, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23874215

RESUMEN

KLF3 is a Krüppel family zinc finger transcription factor with widespread tissue expression and no previously known role in heart development. In a screen for dominant mutations affecting cardiovascular function in N-ethyl-N-nitrosourea (ENU) mutagenized mice, we identified a missense mutation in the Klf3 gene that caused aortic valvular stenosis and partially penetrant perinatal lethality in heterozygotes. All homozygotes died as embryos. In the first of three zinc fingers, a point mutation changed a highly conserved histidine at amino acid 275 to arginine (Klf3(H275R) ). This change impaired binding of the mutant protein to KLF3's canonical DNA binding sequence. Heterozygous Klf3(H275R) mutants that died as neonates had marked biventricular cardiac hypertrophy with diminished cardiac chambers. Adult survivors exhibited hypotension, cardiac hypertrophy with enlarged cardiac chambers, and aortic valvular stenosis. A dominant negative effect on protein function was inferred by the similarity in phenotype between heterozygous Klf3(H275R) mutants and homozygous Klf3 null mice. However, the existence of divergent traits suggested the involvement of additional interactions. We conclude that KLF3 plays diverse and important roles in cardiovascular development and function in mice, and that amino acid 275 is critical for normal KLF3 protein function. Future exploration of the KLF3 pathway provides a new avenue for investigating causative factors contributing to cardiovascular disorders in humans.


Asunto(s)
Estenosis de la Válvula Aórtica/genética , Enfermedades Cardiovasculares/genética , Factores de Transcripción de Tipo Kruppel/genética , Mutación Missense , Animales , Estenosis de la Válvula Aórtica/fisiopatología , Enfermedades Cardiovasculares/fisiopatología , Proteínas de Unión al ADN , Etilnitrosourea/química , Humanos , Factores de Transcripción de Tipo Kruppel/química , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Motivos de Nucleótidos/genética
14.
Development ; 138(15): 3113-23, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21715426

RESUMEN

Development of the heart requires recruitment of cardiovascular progenitor cells (CPCs) to the future heart-forming region. CPCs are the building blocks of the heart, and have the potential to form all the major cardiac lineages. However, little is known regarding what regulates CPC fate and behavior. Activity of GATA4, SMARCD3 and TBX5 - the `cardiac BAF' (cBAF) complex, can promote myocardial differentiation in embryonic mouse mesoderm. Here, we exploit the advantages of the zebrafish embryo to gain mechanistic understanding of cBAF activity. Overexpression of smarcd3b and gata5 in zebrafish results in an enlarged heart, whereas combinatorial loss of cBAF components inhibits cardiac differentiation. In transplantation experiments, cBAF acts cell autonomously to promote cardiac fate. Remarkably, cells overexpressing cBAF migrate to the developing heart and differentiate as cardiomyocytes, endocardium and smooth muscle. This is observed even in host embryos that lack endoderm or cardiac mesoderm. Our results reveal an evolutionarily conserved role for cBAF activity in cardiac differentiation. Importantly, they demonstrate that Smarcd3b and Gata5 can induce a primitive, CPC-like state.


Asunto(s)
Factor de Transcripción GATA5/metabolismo , Corazón/embriología , Miocardio/citología , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Diferenciación Celular/fisiología , Células Cultivadas , Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Transcripción GATA/genética , Factores de Transcripción GATA/metabolismo , Factor de Transcripción GATA5/genética , Regulación del Desarrollo de la Expresión Génica , Miocardio/metabolismo , Transducción de Señal/fisiología , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción/genética , Pez Cebra/anatomía & histología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
15.
J Clin Invest ; 133(18)2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37490339

RESUMEN

X-linked myotubular myopathy (XLMTM) is a fatal congenital disorder caused by mutations in the MTM1 gene. Currently, there are no approved treatments, although AAV8-mediated gene transfer therapy has shown promise in animal models and preliminarily in patients. However, 4 patients with XLMTM treated with gene therapy have died from progressive liver failure, and hepatobiliary disease has now been recognized more broadly in association with XLMTM. In an attempt to understand whether loss of MTM1 itself is associated with liver pathology, we have characterized what we believe to be a novel liver phenotype in a zebrafish model of this disease. Specifically, we found that loss-of-function mutations in mtm1 led to severe liver abnormalities including impaired bile flux, structural abnormalities of the bile canaliculus, and improper endosome-mediated trafficking of canalicular transporters. Using a reporter-tagged Mtm1 zebrafish line, we established localization of Mtm1 in the liver in association with Rab11, a marker of recycling endosomes, and canalicular transport proteins and demonstrated that hepatocyte-specific reexpression of Mtm1 could rescue the cholestatic phenotype. Last, we completed a targeted chemical screen and found that Dynasore, a dynamin-2 inhibitor, was able to partially restore bile flow and transporter localization to the canalicular membrane. In summary, we demonstrate, for the first time to our knowledge, liver abnormalities that were directly caused by MTM1 mutation in a preclinical model, thus establishing the critical framework for better understanding and comprehensive treatment of the human disease.


Asunto(s)
Miopatías Estructurales Congénitas , Pez Cebra , Animales , Humanos , Modelos Animales de Enfermedad , Proteínas de Transporte de Membrana/metabolismo , Músculo Esquelético/metabolismo , Mutación , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/terapia , Miopatías Estructurales Congénitas/patología , Proteínas Tirosina Fosfatasas no Receptoras/genética , Pez Cebra/genética , Pez Cebra/metabolismo
16.
Mol Genet Genomic Med ; 9(11): e1821, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34623774

RESUMEN

BACKGROUND: Unbalanced translocations between the q arm of chromosomes 5 and 13 are exceedingly rare and there is only one reported case with distal trisomy 5q/monosomy 13q. In this report, we describe a second patient with a similar rearrangement arising from a paternal balanced translocation. METHODS: Karyotype analysis was performed on the proband and their parents. Microarray was also conducted on the proband. RESULTS: Our patient was found to have global developmental delay, distinct facial features, short stature, growth hormone deficiency, delayed puberty, and brain anomalies including a small pituitary. Karyotype and microarray analysis revealed a terminal duplication of chromosome regions 5q33.3 to 5qter and a terminal deletion of chromosome regions 13q34 to 13qter that resulted from a balanced translocation in her father. The endocrine abnormalities and neuroimaging findings have not been previously described in patients with either copy number change. CONCLUSIONS: This case helps expand on the phenotype of patients with distal trisomy 5q/monosomy 13q as well as possibly providing useful information on the more common individual copy number changes.


Asunto(s)
Encéfalo , Trastornos de los Cromosomas , Hormona del Crecimiento , Translocación Genética , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Deleción Cromosómica , Trastornos de los Cromosomas/diagnóstico , Cromosomas Humanos Par 13/genética , Cromosomas Humanos Par 5/genética , Femenino , Hormona del Crecimiento/deficiencia , Humanos , Trisomía
17.
Elife ; 52016 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-27077952

RESUMEN

The Apelin receptor (Aplnr) is essential for heart development, controlling the early migration of cardiac progenitors. Here we demonstrate that in zebrafish Aplnr modulates Nodal/TGFß signaling, a key pathway essential for mesendoderm induction and migration. Loss of Aplnr function leads to a reduction in Nodal target gene expression whereas activation of Aplnr by a non-peptide agonist increases the expression of these same targets. Furthermore, loss of Aplnr results in a delay in the expression of the cardiogenic transcription factors mespaa/ab. Elevating Nodal levels in aplnra/b morphant and double mutant embryos is sufficient to rescue cardiac differentiation defects. We demonstrate that loss of Aplnr attenuates the activity of a point source of Nodal ligands Squint and Cyclops in a non-cell autonomous manner. Our results favour a model in which Aplnr is required to fine-tune Nodal output, acting as a specific rheostat for the Nodal/TGFß pathway during the earliest stages of cardiogenesis.


Asunto(s)
Corazón/embriología , Proteína Nodal/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Receptores de Apelina , Pez Cebra
18.
Sci Signal ; 7(355): ra117, 2014 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-25492966

RESUMEN

The primary cilium is required for Hedgehog (Hh) signaling in vertebrates. Hh leads to ciliary accumulation and activation of the transmembrane protein Smoothened (Smo) and affects the localization of several pathway components, including the Gli family of transcriptional regulators, within different regions of primary cilia. Genetic analysis indicates that the kinesin protein Kif7 both promotes and inhibits mouse Hh signaling. Using mass spectrometry, we identified liprin-α1 (PPFIA1) and the protein phosphatase PP2A as Kif7-interacting proteins, and we showed that they were important for the trafficking of Kif7 and Gli proteins to the tips of cilia and for the transcriptional output of Hh signaling. Our results suggested that PPFIA1 functioned with PP2A to promote the dephosphorylation of Kif7, triggering Kif7 localization to the tips of primary cilia and promoting Gli transcriptional activity.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Hedgehog/metabolismo , Cinesinas/metabolismo , Proteína Fosfatasa 2/metabolismo , Proteínas/metabolismo , Transducción de Señal/fisiología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Cilios/genética , Cilios/metabolismo , Células HEK293 , Proteínas Hedgehog/genética , Humanos , Cinesinas/genética , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Proteína Fosfatasa 2/genética , Proteínas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética/fisiología , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteína con Dedos de Zinc GLI1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA