Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Mol Pharm ; 21(3): 1490-1500, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38385557

RESUMEN

Interface-induced aggregation resulting in protein particle formation is an issue during the manufacturing and storage of protein-based therapeutics. High-concentration formulations of therapeutic proteins are even more prone to protein particle formation due to increased protein-protein interactions. However, the dependence of interface-induced protein particle formation on bulk protein concentration is not understood. Furthermore, the formation of protein particles is often mitigated by the addition of polysorbate-based surfactants. However, the details of surfactant-protein interactions that prevent protein particle formation at high concentrations remain unclear. In this work, a tensiometer technique was used to evaluate the surface pressure of an industrially relevant mAb at different bulk concentrations, and in the absence and presence of a polysorbate-based surfactant, polysorbate 20 (PS20). The adsorption kinetics was correlated with subvisible protein particle formation at the air-water interface and in the bulk protein solution using a microflow imaging technique. Our results showed that, in the absence of any surfactant, the number of subvisible particles in the bulk protein solutions increased linearly with mAb concentration, while the number of protein particles measured at the interface showed a logarithmic dependence on bulk protein concentration. In the presence of surfactants above the critical micelle concentration (CMC), our results for low-concentration mAb solutions (10 mg/mL) showed an interface that is surfactant-dominated, and particle characterization results showed that the addition of the surfactant led to reduced particle formation. In contrast, for the highest concentration (170 mg/mL), coadsorption of proteins and surfactants was observed at the air-water interface, even for surfactant formulations above CMC and the surfactant did not mitigate subvisible particle formation. Our results taken together provide evidence that the ratio between the surfactant and mAb molecules is an important consideration when formulating high-concentration mAb therapeutics to prevent unwanted aggregation.


Asunto(s)
Anticuerpos Monoclonales , Polisorbatos , Tensoactivos , Composición de Medicamentos/métodos , Agua , Adsorción , Propiedades de Superficie
2.
Langmuir ; 40(9): 4789-4800, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38379175

RESUMEN

The development of novel protein-based therapeutics, such as monoclonal antibodies (mAbs), is often limited due to challenges associated with maintaining the stability of these formulations during manufacturing, storage, and clinical administration. An undesirable consequence of the instability of protein therapeutics is the formation of protein particles. MAbs can adsorb to interfaces and have the potential to undergo partial unfolding as well as to form viscoelastic gels. Further, the viscoelastic properties may be correlated with their aggregation potential. In this work, a passive microrheology technique was used to correlate the evolution of surface adsorption with the evolution of surface rheology of the National Institute of Standards and Technology (NIST) mAb reference material (NIST mAb) and interface-induced subvisible protein particle formation. The evolution of the surface adsorption and interfacial shear rheological properties of the NIST mAb was recorded in four formulation conditions: two different buffers (histidine vs phosphate-buffered saline) and two different pHs (6.0 and 7.6). Our results together demonstrate the existence of multiple stages for both surface adsorption and surface rheology, characterized by an induction period that appears to be purely viscous, followed by a sharp increase in protein molecules at the interface when the film rheology is viscoelastic and ultimately a slowdown in the surface adsorption that corresponds to the formation of solid-like or glassy films at the interface. When the transitions between the different stages occurred, they were dependent on the buffer/pH of the formulations. The onset of these transitions can also be correlated to the number of protein particles formed at the interface. Finally, the addition of polysorbate 80, an FDA-approved surfactant used to mitigate protein particle formation, led to the interface being surfactant-dominated, and the resulting interface remained purely viscous.


Asunto(s)
Tensoactivos , Agua , Agua/química , Adsorción , Tensoactivos/química , Anticuerpos Monoclonales/química , Tecnología , Reología , Propiedades de Superficie
3.
AAPS PharmSciTech ; 24(5): 104, 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37081185

RESUMEN

Polysorbates (PS) are nonionic surfactants that are commonly included in protein formulations to mitigate the formation of interfacial stress-induced protein particles and thus increase their long-term storage stability. Nonetheless, factors that dictate the efficiency of different polysorbates in mitigating protein particle formation, especially during the application of interfacial stresses, are often ill defined. Here, we used a Langmuir trough to determine the surface activity of two IgG1 monoclonal antibodies formulated with two different polysorbates (PS20 and PS80) when subjected to interfacial dilatational stress. Interfacial properties of these formulations were then correlated with characterization of subvisible protein particles measured by micro-flow imaging (MFI). Both mAbs, when formulated in PS20, demonstrate faster adsorption kinetics and higher surface activity compared to PS80 or surfactant-free formulations. Compression/expansion results suggest that when exposed to interfacial dilatational stresses, both mAb/PS20 formulations display interfacial properties of PS20 alone. In contrast, interfacial properties of both mAb/PS80 formulations suggest mAbs and PS80 are co-adsorbed to the air-water interface. Further, MFI analysis of the interface and the bulk solution confirms that PS20 is more effective than PS80 at mitigating the formation of larger particles in the bulk solution in both mAbs. Concomitantly, the efficiency of PS to prevent interface-induced protein particle formation also depended on the protein's inherent tendency to aggregate at a surfactant-free interface. Together, the studies presented here highlight the importance of determining the interfacial properties of mAbs, surfactants, and their combinations to make informed formulation decisions about the choice of surfactant.


Asunto(s)
Excipientes , Polisorbatos , Tensoactivos , Polisorbatos/química , Tensoactivos/química , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/farmacología , Inmunoglobulina G/química , Inmunoglobulina G/farmacología , Propiedades de Superficie , Composición de Medicamentos , Fenómenos Químicos
4.
Int J Mol Sci ; 22(5)2021 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-33800016

RESUMEN

Carbon-based nanomaterials are nowadays attracting lots of attention, in particular in the biomedical field, where they find a wide spectrum of applications, including, just to name a few, the drug delivery to specific tumor cells and the improvement of non-invasive imaging methods. Nanoparticles inhaled during breathing accumulate in the lung alveoli, where they interact and are covered with lung surfactants. We recently demonstrated that an apparently non-toxic concentration of engineered carbon nanodiamonds (ECNs) is able to induce oxidative/nitrosative stress, imbalance of energy metabolism, and mitochondrial dysfunction in microglial and alveolar basal epithelial cells. Therefore, the complete understanding of their "real" biosafety, along with their possible combination with other molecules mimicking the in vivo milieu, possibly allowing the modulation of their side effects becomes of utmost importance. Based on the above, the focus of the present work was to investigate whether the cellular alterations induced by an apparently non-toxic concentration of ECNs could be counteracted by their incorporation into a synthetic lung surfactant (DPPC:POPG in 7:3 molar ratio). By using two different cell lines (alveolar (A549) and microglial (BV-2)), we were able to show that the presence of lung surfactant decreased the production of ECNs-induced nitric oxide, total reactive oxygen species, and malondialdehyde, as well as counteracted reduced glutathione depletion (A549 cells only), ameliorated cell energy status (ATP and total pool of nicotinic coenzymes), and improved mitochondrial phosphorylating capacity. Overall, our results on alveolar basal epithelial and microglial cell lines clearly depict the benefits coming from the incorporation of carbon nanoparticles into a lung surfactant (mimicking its in vivo lipid composition), creating the basis for the investigation of this combination in vivo.


Asunto(s)
Microglía/efectos de los fármacos , Nanopartículas/toxicidad , Estrés Oxidativo/efectos de los fármacos , Alveolos Pulmonares/efectos de los fármacos , Surfactantes Pulmonares/metabolismo , 1,2-Dipalmitoilfosfatidilcolina/química , 1,2-Dipalmitoilfosfatidilcolina/metabolismo , Células A549 , Animales , Carbono/química , Muerte Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Glutatión/metabolismo , Humanos , Ratones , Microglía/citología , Microglía/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Nanopartículas/administración & dosificación , Nanopartículas/química , Fosfatidilgliceroles/química , Alveolos Pulmonares/citología , Alveolos Pulmonares/metabolismo , Surfactantes Pulmonares/química , Especies Reactivas de Oxígeno/metabolismo , Pruebas de Toxicidad Subcrónica/métodos
5.
Molecules ; 25(3)2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-32046011

RESUMEN

Understanding interactions between inhaled nanoparticles and lung surfactants (LS) present at the air-water interface in the lung, is critical to assessing the toxicity of these nanoparticles. Specifically, in this work, we assess the impact of engineered carbon nanoparticles (ECN) on the ability of healthy LS to undergo reversible collapse, which is essential for proper functioning of LS. Using a Langmuir trough, multiple compression-expansion cycles are performed to assess changes in the surface pressure vs. area isotherms with time and continuous cyclic compression-expansion. Further, theoretical analysis of the isotherms is used to calculate the ability of these lipid systems to retain material during monolayer collapse, due to interactions with ECNs. These results are complemented with fluorescence images of alterations in collapse mechanisms in these monolayer films. Four different model phospholipid systems, that mimic the major compositions of LS, are used in this study. Together, our results show that the ECN does not impact the mechanism of collapse. However, the ability to retain material at the interface during monolayer collapse, as well as re-incorporation of material after a compression-expansion cycle is altered to varying extent by ECNs and depends on the composition of the lipid mixtures.


Asunto(s)
Carbono/química , Pulmón/química , Modelos Teóricos , Nanodiamantes/química , Surfactantes Pulmonares/química , Agua/química , Aire , Fosfolípidos/química , Propiedades de Superficie
6.
Langmuir ; 34(3): 1159-1170, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29019691

RESUMEN

Lipid membranes, a major component of cells, are subjected to significant changes in pH depending on their location in the cell: the outer leaflet of the cell membrane is exposed to a pH of 7.4 whereas lipid membranes that make up late endosomes and lysosomes are exposed to a pH of as low as 4.4. The purpose of this study is to evaluate how changes in the environmental pH within cells alter the fluidity of phospholipid membranes. Specifically, we studied pH-induced alterations in the surface arrangement of monounsaturated lipids with zwitterionic headgroups (phosphoethanolamine (PE) and phosphocholine (PC)) that are abundant in plasma membranes as well as anionic lipids (phosphatidylserine (PS) and phosphatidylglycerol (PG)) that are abundant in inner membranes using a combination of techniques including surface tension vs area measurements, interfacial microrheology, and fluorescence/atomic force microscopy. Using an active interfacial microrheology technique, we find that phospholipids with zwitterionic headgroups show a significant increase in their surface viscosity at acidic pH. This increase in surface viscosity is also found to depend on the size of the lipid headgroup, with a smaller headgroup showing a greater increase in viscosity. The observed pH-induced increase in viscosity is also accompanied by an increase in the cohesion pressure between zwitterionic molecules at acidic pH and a decrease in the average molecular area of the lipids, as measured by fitting the surface pressure isotherms to well-established equations of state. Because fluorescent images show no change in the phase of the lipids, we attribute this change in surface viscosity to the pH-induced reorientation of the P--N+ dipoles that form part of the polar lipid headgroup, resulting in increased lipid-lipid interactions. Anionic PG headgroups do not demonstrate this pH-induced change in viscosity, suggesting that the presence of a net negative charge on the headgroup causes electrostatic repulsion between the headgroups. Our results also show that active interfacial microrheology is a sensitive technique for detecting minute changes in the lipid headgroup orientation induced by changes in the local membrane environment, even in unsaturated phospholipids where the surface viscosity is close to the experimental detection limit.


Asunto(s)
Fosfolípidos/química , Alquilación , Concentración de Iones de Hidrógeno , Propiedades de Superficie , Viscosidad
7.
Biomacromolecules ; 19(7): 2391-2400, 2018 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-29697975

RESUMEN

The interactions among biomacromolecules within insect cuticle may offer new motifs for biomimetic material design. CPR27 is an abundant protein in the rigid cuticle of the elytron from Tribolium castaneum. CPR27 contains the Rebers-Riddiford (RR) motif, which is hypothesized to bind chitin. In this study, active magnetic microrheology coupled with microscopy and protein particle analysis techniques were used to correlate alterations in the viscosity of chitosan solutions with changes in solution microstructure. Addition of CPR27 to chitosan solutions led to a 3-fold drop in viscosity. This change was accompanied by the presence of micrometer-sized coacervate particles in solution. Coacervate formation had a strong dependence on chitosan concentration. Analysis showed the existence of a critical CPR27 concentration beyond which a significant increase in particle count was observed. These effects were not observed when a non-RR cuticular protein, CP30, was tested, providing evidence of a structure-function relationship related to the RR motif.


Asunto(s)
Quitosano/análogos & derivados , Proteínas de Insectos/química , Secuencias de Aminoácidos , Animales , Tribolium/química
8.
Biochim Biophys Acta ; 1858(4): 904-12, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26775740

RESUMEN

The overall goal of this work is to study the combined effects of Mini-B, a 34 residue synthetic analog of the lung surfactant protein SP-B, and cholesterol, a neutral lipid, on a model binary lipid mixture containing dipalmitolphosphatidylcholine (DPPC) and palmitoyl-oleoyl-phosphatidylglycerol (POPG), that is often used to mimic the primary phospholipid composition of lung surfactants. Using surface pressure vs. mean molecular area isotherms, fluorescence imaging and analysis of lipid domain size distributions; we report on changes in the structure, function and stability of the model lipid-protein films in the presence and absence of varying composition of cholesterol. Our results indicate that at low cholesterol concentrations, Mini-B can prevent cholesterol's tendency to lower the line tension between lipid domain boundaries, while maintaining Mini-B's ability to cause reversible collapse resulting in the formation of surface associated reservoirs. Our results also show that lowering the line tension between domains can adversely impact monolayer folding mechanisms. We propose that small amounts of cholesterol and synthetic protein Mini-B can together achieve the seemingly opposing requirements of efficient LS: fluid enough to flow at the air-water interface, while being rigid enough to oppose irreversible collapse at ultra-low surface tensions.


Asunto(s)
Colesterol/química , Membrana Dobles de Lípidos/química , Péptidos/química , Proteína B Asociada a Surfactante Pulmonar/química , 1,2-Dipalmitoilfosfatidilcolina/química , Aire , Pulmón/química , Membranas Artificiales , Péptidos/síntesis química , Fosfatidilgliceroles/química , Proteína B Asociada a Surfactante Pulmonar/síntesis química , Propiedades de Superficie , Tensión Superficial , Agua/química
9.
Mol Pharm ; 13(3): 1047-57, 2016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-26878305

RESUMEN

Noncovalent complexation of plasmid DNA (pDNA) with cell-penetrating peptides (CPPs) forms relatively large complexes with poor gene expression. Yet, condensing these CPP-pDNA complexes via addition of calcium chloride produces small and stable nanoparticles with high levels of gene expression. This simple formulation offered high transfection efficiency and negligible cytotoxicity in HEK-293 (a virus-immortalized kidney cell) and A549 (a human lung cancer cell line). Small changes in CPP charge type, charge spacing, and hydrophobicity were studied by using five arginine-rich CPPs: the well-known hydrophilic polyarginine R9 peptide, a hydrophilic RH9 peptide, and three amphiphilic peptides (RA9, RL9, and RW9) with charge distributions that favor membrane penetration. R9 and RW9 nanoparticles were significantly more effective than the other CPPs under most formulation conditions. However, these CPPs exhibit large differences in membrane penetration potential. Maximum transfection resulted from an appropriate balance of complexing with pDNA, releasing DNA, and membrane penetration potential.


Asunto(s)
Péptidos de Penetración Celular/química , Técnicas de Transferencia de Gen , Neoplasias Pulmonares/patología , Nanopartículas/química , Péptidos/química , Calcio/metabolismo , Supervivencia Celular/efectos de los fármacos , Péptidos de Penetración Celular/administración & dosificación , Células HEK293 , Humanos , Luciferasas/genética , Luciferasas/metabolismo , Neoplasias Pulmonares/metabolismo , Nanopartículas/administración & dosificación , Péptidos/administración & dosificación , Polietileneimina/metabolismo , Células Tumorales Cultivadas
10.
Mol Pharm ; 13(5): 1731-7, 2016 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-26998680

RESUMEN

Most vaccines contain aluminum adjuvants; however, their exact mechanism of action remains unclear. A novel mechanism by Shi and colleagues proposes aluminum adjuvants may enhance immune activation by binding and reorganizing lipids that are key components of lipid rafts. To better understand the specificity of interaction between aluminum adjuvants and the cell membrane lipids, we present a biophysical study of lipid domain clustering in simple model phospholipid monolayers containing dipalmitoyl-phosphatidylcholine (DPPC) and dioleoyl-phosphatidylcholine (DOPC) exposed to two aluminum adjuvants, Alhydrogel and Adju-Phos. Surface pressure measurements and fluorescence microscopy images verified aluminum adjuvant-induced increase in lipid domain size, even in the key lipid raft components. Additionally, adjuvant induced lipid clustering differed based on the physicochemical properties of the adjuvants. Alhydrogel appeared to reduce monolayer compressibility and insert into the monolayer, while Adju-Phos induced more significant changes in domain size, without compromising the integrity of the monolayer. The Alhydrogel and Adju-Phos-mediated reorganization of phospholipid domains reported here supports the new mechanistic paradigm proposed by Shi and co-workers, and further suggests that lipid clustering is induced even in simple phospholipid membranes. The results present the basis for future exploration into lipid-mediated mechanisms of action for adjuvants.


Asunto(s)
Adyuvantes Farmacéuticos/química , Aluminio/química , Microdominios de Membrana/química , Fosfolípidos/química , 1,2-Dipalmitoilfosfatidilcolina/química , Adyuvantes Inmunológicos/química , Membrana Dobles de Lípidos/química , Lípidos de la Membrana/química , Fosfatidilcolinas/química
11.
Langmuir ; 31(14): 4232-45, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25768428

RESUMEN

Noncovalently condensed complexes of genetic material, cell penetrating peptides (CPPs), and calcium chloride present a nonviral route to improve transfection efficiency of nucleic acids (e.g., pDNA and siRNA). However, the exact mechanisms of membrane insertion and delivery of macromolecule complexes to intracellular locations as well as their stability in the intracellular environment are not understood. We show that calcium condensed gene complexes containing different hydrophilic (i.e., dTAT, K9, R9, and RH9) and amphiphilic (i.e., RA9, RL9, and RW9) CPPs formed stable cationic complexes of hydrodynamic radii 100 nm at neutral pH. However, increasing the acidity caused the complexes to become neutral or anionic and increase in size. Using zwitterionic and anionic phospholipid monolayers as models that mimic the membrane composition of the outer leaflet of cell membranes and intracellular vesicles and pHs that mimic the intracellular environment, we study the membrane insertion potential of these seven gene complexes (CPP/pDNA/Ca(2+) complexes) into model membranes. At neutral pH, all gene complexes demonstrated the highest insertion potential into anionic phospholipid membranes, with complexes containing amphiphilic peptides showing the maximum insertion. However, at acidic pH, the gene complexes demonstrated maximum monolayer insertion into zwitterionic lipids, irrespective of the chemical composition of the CPP in the complexes. Our results suggest that in the neutral environment the complexes are unable to penetrate the zwitterionic lipid membranes but can penetrate through the anionic lipid membranes. However, the acidic pH mimicking the local environment in the late endosomes leads to a significant increase in adsorption of the complexes to zwitterionic lipid headgroups and decreases for anionic headgroups. These membrane-gene complex interactions may be responsible for the ability of the complexes to efficiently enter the intracellular environment through endocytosis and escape from the endosomes to effectively deliver their genetic payload.


Asunto(s)
Cloruro de Calcio/química , Membrana Celular/metabolismo , Péptidos de Penetración Celular/química , ADN/química , Portadores de Fármacos/química , Fosfolípidos/química , Secuencia de Aminoácidos , Péptidos de Penetración Celular/metabolismo , ADN/genética , Estabilidad de Medicamentos , Concentración de Iones de Hidrógeno , Membranas Artificiales , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Transfección
12.
Langmuir ; 31(18): 5093-104, 2015 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-25876023

RESUMEN

The focus of this work is to elucidate how phospholipid composition can modulate lipid nanoparticle interactions in phospholipid monolayer systems. We report on alterations in lipid domain formation induced by anionically engineered carbon nanodiamonds (ECNs) as a function of lipid headgroup charge and alkyl chain saturation. Using surface pressure vs area isotherms, monolayer compressibility, and fluorescence microscopy, we found that anionic ECNs induced domain shape alterations in zwitterionic phosphatidylcholine lipids, irrespective of the lipid alkyl chain saturation, even when the surface pressure vs area isotherms did not show any significant changes. Bean-shaped structures characteristic of dipalmitoylphosphatidylcholine (DPPC) were converted to multilobed, fractal, or spiral domains as a result of exposure to ECNs, indicating that ECNs lower the line tension between domains in the case of zwitterionic lipids. For membrane systems containing anionic phospholipids, ECN-induced changes in domain packing were related to the electrostatic interactions between the anionic ECNs and the anionic lipid headgroups, even when zwitterionic lipids are present in excess. By comparing the measured size distributions with our recently developed theory derived by minimizing the free energy associated with the domain energy and mixing entropy, we found that the change in line tension induced by anionic ECNs is dominated by the charge in the condensed lipid domains. Atomic force microscopy images of the transferred anionic films confirm that the location of the anionic ECNs in the lipid monolayers is also modulated by the charge on the condensed lipid domains. Because biological membranes such as lung surfactants contain both saturated and unsaturated phospholipids with different lipid headgroup charges, our results suggest that when studying potential adverse effects of nanoparticles on biological systems the role of lipid compositions cannot be neglected.


Asunto(s)
Carbono/química , Nanodiamantes/química , Fosfolípidos/química , 1,2-Dipalmitoilfosfatidilcolina/química , Microscopía de Fuerza Atómica , Modelos Teóricos
13.
Soft Matter ; 11(17): 3313-21, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25782993

RESUMEN

Active interfacial microrheology is a sensitive tool to detect phase transitions and headgroup order in phospholipid monolayers. The re-orientation of a magnetic nickel nanorod is used to explore changes in the surface rheology of 1,2-dilauroyl-sn-glycero-3-phosphoethanolamine (DLPE) and 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE), which differ by two CH2 groups in their alkyl chains. Phosphatidylethanolamines such as DLPE and DMPE are a major component of cell membranes in bacteria and in the nervous system. At room temperature, DLPE has a liquid expanded (LE) phase for surface pressure, Π < ∼38 mN m(-1); DMPE has an LE phase for Π < ∼7 mN m(-1). In their respective LE phases, DLPE and DMPE show no measurable change in surface viscosity with Π, consistent with a surface viscosity <10(-9) N s m(-1), the resolution of our technique. However, there is a measurable, discontinuous change in the surface viscosity at the LE to liquid condensed (LC) transition for both DLPE and DMPE. This discontinuous change is correlated with a significant increase in the surface compressibility modulus (or isothermal two-dimensional bulk modulus). In the LC phase of DMPE there is an exponential increase in surface viscosity with Π consistent with a two-dimensional free area model. The second-order LC to solid (S) transition in DMPE is marked by an abrupt onset of surface elasticity; there is no measurable elasticity in the LC phase. A measurable surface elasticity in the S phase suggests a change in the molecular ordering or interactions of the DMPE headgroups that is not reflected in isotherms or in grazing incidence X-ray diffraction. This onset of measurable elasticity is also seen in DLPE, even though no indication of a LC-S transition is visible in the isotherms.


Asunto(s)
Transición de Fase , Fosfatidiletanolaminas/química , Elasticidad , Microfluídica , Nanotubos/química , Temperatura de Transición , Viscosidad
14.
J Pharm Sci ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38615816

RESUMEN

During biomanufacturing, several unit operations expose solutions of biologics to multiple stresses, such as hydrodynamic shear forces due to fluid flow and interfacial dilatational stresses due to mechanical agitation or bubble collapse. When these stresses individually act on proteins adsorbed to interfaces, it results in an increase in protein particles in the bulk solution, a phenomenon referred to as interface-induced protein particle formation. However, an understanding of the dominant cause, when multiple stresses are acting simultaneously or sequentially, on interface-induced protein particle formation is limited. In this work, we established a unique set-up using a peristaltic pump and a Langmuir-Pockels trough to study the impact of hydrodynamic shear stress due to pumping and interfacial dilatational stress, on protein particle formation. Our experimental results together demonstrate that for protein solutions subjected to various combinations of stress (i.e., interfacial and hydrodynamic stress in different sequences), surface pressure values during adsorption and when subjected to compression/dilatational stresses, showed no change, suggesting that the interfacial properties of the protein film are not impacted by pumping. The concentration of protein particles is an order of magnitude higher when interfacial dilatational stress is applied at the air-liquid interface, compared to solutions that are only subjected to pumping. Furthermore, the order in which these stresses are applied, have a significant impact on the concentration of protein particles measured in the bulk solution. Together, these studies conclude that for biologics exposed to multiple stresses throughout bioprocessing and manufacturing, exposure to air-liquid interfacial dilatational stress is the predominant mechanism impacting protein particle formation at the interface and in the bulk solution.

15.
Arch Biochem Biophys ; 538(1): 49-56, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23942051

RESUMEN

The isochorismate synthase from Pseudomonas aeruginosa (PchA) catalyzes the conversion of chorismate to isochorismate, which is subsequently converted by a second enzyme (PchB) to salicylate for incorporation into the salicylate-capped siderophore pyochelin. PchA is a member of the MST family of enzymes, which includes the structurally homologous isochorismate synthases from Escherichia coli (EntC and MenF) and salicylate synthases from Yersinia enterocolitica (Irp9) and Mycobacterium tuberculosis (MbtI). The latter enzymes generate isochorismate as an intermediate before generating salicylate and pyruvate. General acid-general base catalysis has been proposed for isochorismate synthesis in all five enzymes, but the residues required for the isomerization are a matter of debate, with both lysine221 and glutamate313 proposed as the general base (PchA numbering). This work includes a classical characterization of PchA with steady state kinetic analysis, solvent kinetic isotope effect analysis and by measuring the effect of viscosogens on catalysis. The results suggest that isochorismate production from chorismate by the MST enzymes is the result of general acid-general base catalysis with a lysine as the base and a glutamic acid as the acid, in reverse protonation states. Chemistry is determined to not be rate limiting, favoring the hypothesis of a conformational or binding step as the slow step.


Asunto(s)
Proteínas Bacterianas/metabolismo , Transferasas Intramoleculares/metabolismo , Lisina/metabolismo , Pseudomonas aeruginosa/enzimología , Ácido Corísmico/metabolismo , Difusión , Escherichia coli/metabolismo , Concentración de Iones de Hidrógeno , Mycobacterium tuberculosis/metabolismo , Plásmidos/metabolismo , Unión Proteica , Conformación Proteica , Salicilatos/metabolismo , Viscosidad , Agua/metabolismo , Yersinia enterocolitica/metabolismo
16.
Langmuir ; 29(49): 15336-49, 2013 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-24294979

RESUMEN

Cell penetrating peptides (CPPs) have been established as excellent candidates for mediating drug delivery into cells. When designing synthetic CPPs for drug delivery applications, it is important to understand their ability to penetrate the cell membrane. In this paper, anionic or zwitterionic phospholipid monolayers at the air-water interface are used as model cell membranes to monitor the membrane insertion potential of synthetic CPPs. The insertion potential of CPPs having different cationic and hydrophobic amino acids were recorded using a Langmuir monolayer approach that records peptide adsorption to model membranes. Fluorescence microscopy was used to visualize alterations in phospholipid packing due to peptide insertion. All CPPs had the highest penetration potential in the presence of anionic phospholipids. In addition, two of three amphiphilic CPPs inserted into zwitterionic phospholipids, but none of the hydrophilic CPPs did. All the CPPs studied induced disruptions in phospholipid packing and domain morphology, which were most pronounced for amphiphilic CPPs. Overall, small changes to amino acids and peptide sequences resulted in dramatically different insertion potentials and membrane reorganization. Designers of synthetic CPPs for efficient intracellular drug delivery should consider small nuances in CPP electrostatic and hydrophobic properties.


Asunto(s)
Péptidos de Penetración Celular/química , Fosfolípidos/química , Membranas Artificiales
17.
Langmuir ; 29(11): 3654-61, 2013 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-23409958

RESUMEN

We present a study of static and dynamic interfacial properties of self-assembled polyelectrolyte complex nanoparticles (size 110-120 nm) containing entrapped surfactant molecules at a fluid/fluid interface. Surface tension vs time measurements of an aqueous solution of these polyelectrolyte complex nanoparticles (PCNs) show a concentration-dependent biphasic adsorption to the air/water interface while interfacial microrheology data show a concentration-dependent initial increase in the surface viscosity (up to 10(-7) N·m/s), followed by a sharp decrease (10(-9) N·m/s). Direct visualization of the air/water interface shows disappearance of particles from the interface over time. On the basis of these observations, we propose that the PCNs at fluid/fluid interfaces exist in two states: initial accumulation of PCNs at the air/water interface as nanoparticles, followed by interface induced disassembly of the accumulated PCNs into their components. The lack of change in particle size, charge, and viscosity of the bulk aqueous solution of PCNs with time indicates that this disintegration of the self-assembled PCNs is an interfacial phenomenon. Changes in energy encountered by the PCNs at the interface lead to instability of the self-assembled system and dissociation into its components. Such systems can be used for applications requiring directed delivery and triggered release of entrapped surfactants or macromolecules at fluid/fluid interfaces.


Asunto(s)
Nanopartículas/química , Polietileneimina/química , Adsorción , Aire , Tamaño de la Partícula , Dodecil Sulfato de Sodio/química , Tensoactivos/química , Viscosidad , Agua/química
18.
Bioengineering (Basel) ; 10(11)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38002439

RESUMEN

Osteoarthritis (OA) is the most common form of joint disease affecting articular cartilage and peri-articular tissues. Traditional treatments are insufficient, as they are aimed at mitigating symptoms. Multipotent Stromal Cell (MSC) therapy has been proposed as a treatment capable of both preventing cartilage destruction and treating symptoms. While many studies have investigated MSCs for treating OA, therapeutic success is often inconsistent due to low MSC viability and retention in the joint. To address this, biomaterial-assisted delivery is of interest, particularly hydrogel microspheres, which can be easily injected into the joint. Microspheres composed of hyaluronic acid (HA) were created as MSC delivery vehicles. Microrheology measurements indicated that the microspheres had structural integrity alongside sufficient permeability. Additionally, encapsulated MSC viability was found to be above 70% over one week in culture. Gene expression analysis of MSC-identifying markers showed no change in CD29 levels, increased expression of CD44, and decreased expression of CD90 after one week of encapsulation. Analysis of chondrogenic markers showed increased expressions of aggrecan (ACAN) and SRY-box transcription factor 9 (SOX9), and decreased expression of osteogenic markers, runt-related transcription factor 2 (RUNX2), and alkaline phosphatase (ALPL). In vivo analysis revealed that HA microspheres remained in the joint for up to 6 weeks. Rats that had undergone destabilization of the medial meniscus and had overt OA were treated with empty HA microspheres, MSC-laden microspheres, MSCs alone, or a control vehicle. Pain measurements taken before and after the treatment illustrated temporarily decreased pain in groups treated with encapsulated cells. Finally, the histopathological scoring of each group illustrated significantly less OA damage in those treated with encapsulated cells compared to controls. Overall, these studies demonstrate the potential of using HA-based hydrogel microspheres to enhance the therapeutic efficacy of MSCs in treating OA.

19.
Biophys J ; 102(1): 56-65, 2012 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-22225798

RESUMEN

The size distribution of domains in phase-separated lung surfactant monolayers influences monolayer viscoelasticity and compressibility which, in turn, influence monolayer collapse and set the compression at which the minimum surface tension is reached. The surfactant-specific protein SP-B decreases the mean domain size and polydispersity as shown by fluorescence microscopy. From the images, the line tension and dipole density difference are determined by comparing the measured size distributions with a theory derived by minimizing the free energy associated with the domain energy and mixing entropy. We find that SP-B increases the line tension, dipole density difference, and the compressibility modulus at surface pressures up to the squeeze-out pressure. The increase in line tension due to SP-B indicates the protein avoids domain boundaries due to its solubility in the more fluid regions of the film.


Asunto(s)
Lípidos/química , Pulmón/química , Modelos Químicos , Proteínas/química , Proteína B Asociada a Surfactante Pulmonar/química , Tensoactivos/química , Simulación por Computador , Humanos , Estructura Terciaria de Proteína , Propiedades de Superficie
20.
J Pharm Sci ; 111(3): 680-689, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34742729

RESUMEN

Formation of submicron and subvisible protein particles (0.1-100 µm) present a major obstacle during processing and storage of therapeutic proteins. While protein aggregation resulting in particle formation is well-understood in bulk solution, the mechanisms of aggregation due to interfacial stresses is less understood. Particularly, in this study, we focus on understanding the combined effect of temperature and application of interfacial dilatational stresses, on interface-induced protein particle formation, using two industrially relevant monoclonal antibodies (mAbs). The surface activity of Molecule C (MC) and Molecule B (MB) were measured at room temperature (RT) and 4 °C in the absence and presence of interfacial dilatation stress using a Langmuir trough. These results were correlated with Micro-flow imaging (MFI) to characterize formation of subvisible protein particles at the interface and in the bulk solution. Our results show that the surface activity for both proteins is temperature dependent. However, the extent of the impact of temperature on the mechanical properties of the monomolecular protein films when subjected to dilatational stresses is protein dependent. Protein particle analysis provided evidence that protein particles formed in bulk solution originate at the interface and are dependent on both application of thermal stresses and interfacial dilatational stresses. In the absence of any interfacial stresses, more and larger protein particles were formed at the interface at RT than at 4 °C. When mAb formulations are subjected to interfacial dilatational stresses, protein particle formation in bulk solution was found to be temperature dependent. Together our results validate that mAb solutions maintained at 4 °C can lower the surface activity of proteins and reduce their tendency to form interface-induced protein particles both in the absence and presence of interfacial dilatational stresses.


Asunto(s)
Anticuerpos Monoclonales , Proteínas de la Membrana , Dilatación , Composición de Medicamentos , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA