Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Semin Cell Dev Biol ; 108: 4-13, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32201131

RESUMEN

Lipid droplets (LDs), or oil bodies in plants, are specialized organelles that primarily serve as hubs of cellular metabolic energy storage and consumption. These ubiquitous cytoplasmic organelles are derived from the endoplasmic reticulum (ER) and consist of a hydrophobic neutral lipid core - mainly consisting of triglycerides and sterol esters - that is encircled by a phospholipid monolayer. The dynamic metabolic functions of the LDs are mainly executed and regulated by proteins on the monolayer surface. However, its unique architecture puts some structural constraints on the types of proteins that can associate with LDs. The lipid monolayer is decorated with either peripheral proteins or with integral membrane proteins that adopt a monotopic topology. Due to its oil-water interface, which is energetically costly, the LD surface happens to be favorable to the recruitment of many proteins involved in metabolic but also non-metabolic functions. We only started very recently to understand biophysical and biochemical principles controlling protein targeting to LDs. This review aims to summarize the most recent findings regarding this topic and proposes directions that will potentially lead to a better understanding of LD surface characteristics, as compared to bilayer membranes, and how that impacts protein-LD interactions.


Asunto(s)
Fenómenos Biofísicos , Gotas Lipídicas/metabolismo , Retículo Endoplásmico/metabolismo , Humanos , Transporte de Proteínas , Proteoma/metabolismo
2.
Plant J ; 101(1): 156-170, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31498930

RESUMEN

Lincomycin (LIN)-mediated inhibition of protein synthesis in chloroplasts prevents the greening of seedlings, represses the activity of photosynthesis-related genes in the nucleus, including LHCB1.2, and induces the phenylpropanoid pathway, resulting in the production of anthocyanins. In genomes uncoupled (gun) mutants, LHCB1.2 expression is maintained in the presence of LIN or other inhibitors of early chloroplast development. In a screen using concentrations of LIN lower than those employed to isolate gun mutants, we have identified happy on lincomycin (holi) mutants. Several holi mutants show an increased tolerance to LIN, exhibiting de-repressed LHCB1.2 expression and chlorophyll synthesis in seedlings. The mutations responsible were identified by whole-genome single-nucleotide polymorphism (SNP) mapping, and most were found to affect the phenylpropanoid pathway; however, LHCB1.2 expression does not appear to be directly regulated by phenylpropanoids, as indicated by the metabolic profiling of mutants. The most potent holi mutant is defective in a subunit of cellulose synthase encoded by IRREGULAR XYLEM 3, and comparative analysis of this and other cell-wall mutants establishes a link between secondary cell-wall integrity and early chloroplast development, possibly involving altered ABA metabolism or sensing.


Asunto(s)
Arabidopsis/metabolismo , Celulosa/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Cloroplastos/metabolismo , Regulación de la Expresión Génica de las Plantas , Lincomicina/metabolismo
3.
Int J Pharm ; 654: 123974, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38447777

RESUMEN

Sesamol, a lignan, obtained from sesame seeds (Sesamum indicum Linn., Pedaliaciae) has a promising antioxidant, and anti-inflammatory profile. When applied topically, free sesamol rapidly crosses skin layers and gets absorbed in systemic circulation. Its encapsulation into solid lipid nanoparticles not only improved its localised delivery to skin but also resulted in better skin retention, as found in ex-vivo skin retention studies. Free and encapsulated sesamol was compared for antimicrobial and antibiofilm activity against some common skin pathogens and it was found that encapsulation improved the antimicrobial profile by 200%. In vivo evaluation in diabetic open excision wound model suggested that encapsulation of sesamol in SLNs substantially enhanced its wound healing potential when investigated for biophysical, biochemical and histological parameters. It was envisaged that this was achieved via inhibiting bacterial growth and clearing the bacterial biofilm at the wound site, and by regulating oxidative stress in skin tissue.


Asunto(s)
Antiinfecciosos , Liposomas , Nanopartículas , Fenoles , Benzodioxoles/farmacología , Cicatrización de Heridas
4.
Nat Commun ; 15(1): 4504, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802378

RESUMEN

Lipid droplet (LD) function relies on proteins partitioning between the endoplasmic reticulum (ER) phospholipid bilayer and the LD monolayer membrane to control cellular adaptation to metabolic changes. It has been proposed that these hairpin proteins integrate into both membranes in a similar monotopic topology, enabling their passive lateral diffusion during LD emergence at the ER. Here, we combine biochemical solvent-accessibility assays, electron paramagnetic resonance spectroscopy and intra-molecular crosslinking experiments with molecular dynamics simulations, and determine distinct intramembrane positionings of the ER/LD protein UBXD8 in ER bilayer and LD monolayer membranes. UBXD8 is deeply inserted into the ER bilayer with a V-shaped topology and adopts an open-shallow conformation in the LD monolayer. Major structural rearrangements are required to enable ER-to-LD partitioning. Free energy calculations suggest that such structural transition is unlikely spontaneous, indicating that ER-to-LD protein partitioning relies on more complex mechanisms than anticipated and providing regulatory means for this trans-organelle protein trafficking.


Asunto(s)
Retículo Endoplásmico , Gotas Lipídicas , Simulación de Dinámica Molecular , Retículo Endoplásmico/metabolismo , Gotas Lipídicas/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Membrana Dobles de Lípidos/metabolismo , Membrana Dobles de Lípidos/química , Transporte de Proteínas , Animales , Proteínas Asociadas a Gotas Lipídicas/metabolismo , Proteínas Asociadas a Gotas Lipídicas/química , Proteínas Asociadas a Gotas Lipídicas/genética
5.
Adv Biosyst ; 4(11): e2000111, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33135378

RESUMEN

Intermediate filament (IF) proteins are a class of proteins that constitute different filamentous structures in mammalian cells. As such, IF proteins are part of the load-bearing cytoskeleton and support the nuclear envelope. Molecular dynamics simulations show that IF proteins undergo secondary structural changes to compensate mechanical loads, which is confirmed by experimental in vitro studies on IF hydrogels. However, the structural response of intracellular IF to mechanical load is yet to be elucidated in cellulo. Here, in situ nonlinear Raman imaging combined with multivariate data analysis is used to quantify the intracellular secondary structure of the IF cytoskeletal protein vimentin under different states of cellular tension. It is found that cells under native cellular tension contain more unfolded vimentin than chemically or physically relaxed specimens. This indicates that the unfolding of IF proteins occurs intracellularly when sufficient forces are applied, suggesting that IF structures act as local force sensors in the cell to mark locations under large mechanical tension.


Asunto(s)
Desplegamiento Proteico , Vimentina , Células HeLa , Humanos , Filamentos Intermedios/química , Filamentos Intermedios/metabolismo , Mecanotransducción Celular/fisiología , Microscopía , Estructura Secundaria de Proteína , Espectrometría Raman , Vimentina/química , Vimentina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA