Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Soft Matter ; 17(22): 5613-5632, 2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-33998621

RESUMEN

Amongst the theoretical approaches towards the dynamics and phase behaviour of suspensions of active Brownian particles (ABPs), no attempt has been made to specify the motility-induced inter-particle correlations as quantified by the pair-correlation function. Here, we derive expressions for the pair-correlation function for ABPs with very short-ranged direct interactions for small and large swimming velocities and low concentrations. The pair-correlation function is the solution of a differential equation that is obtained from the Fokker-Planck equation for the probability density function of the positions and orientations of the ABPs. For large swimming Peclet numbers, λ, the pair-correlation function is highly asymmetric. The pair-correlation function attains a large value, ∼λ, within a small region of spatial extent, ∼1/λ, near contact of the ABPs when the ABPs approach each other. The pair-correlation function is small within a large region of spatial extent, ∼λ1/3, when the ABPs move apart, with a contact value that is essentially zero. From the explicit expressions for the pair-correlation function, Fick's diffusion equation is generalized to include motility. It is shown that mass transport, in case of large swimming velocities, is dominated by a preferred swimming direction that is induced by concentration gradients. The expression for the pair-correlation function derived in this paper could serve as a starting point to obtain approximate results for high concentrations, which could then be employed in a first-principles analysis of the dynamics and phase behaviour of ABPs at higher concentrations.

2.
Soft Matter ; 14(5): 826-836, 2018 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-29308827

RESUMEN

We report on the smooth transition between gradient-banded velocity profiles with a sharp interface and curved velocity profiles, both resulting from strong shear-thinning dispersions of concentrated xanthan (a highly charged poly-saccharide). Pronounced shear-banded flow, where two extended shear-bands are separated by a relatively sharp interface, is observed in a limited range of shear rates, at very low ionic strength and at a high concentration, using heterodyne light scattering to measure spatially resolved velocity profiles. The width of the interface between the coexisting shear-bands broadens to span a sizable fraction of the gap of the shear cell, either by changing the shear rate, by lowering the concentration, or by increasing the ionic strength. The broadening results in a smooth transition to highly curved velocity profiles and is connected to a disappearing flow birefringence. Thus, these experiments show that the classic shear-banding instability can give rise to highly curved velocity profiles, due to the existence of broad interfaces between the bands, with an extent of the order or larger than the cell gap width. This observation may aid to resolve the ongoing dispute concerning shear-banding of highly entangled polymeric systems, suggesting that the curved velocity profiles that have been observed in the past are in fact shear-banded states with an unusually broad interface.

3.
J Chem Phys ; 149(1): 014903, 2018 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-29981556

RESUMEN

For highly non-uniformly flowing fluids, there are contributions to the stress related to spatial variations of the shear rate, which are commonly referred to as non-local stresses. The standard expression for the shear stress, which states that the shear stress is proportional to the shear rate, is based on a formal expansion of the stress tensor with respect to spatial gradients in the flow velocity up to leading order. Such a leading order expansion is not able to describe fluids with very rapid spatial variations of the shear rate, like in micro-fluidics devices and in shear-banding suspensions. Spatial derivatives of the shear rate then significantly contribute to the stress. Such non-local stresses have so far been introduced on a phenomenological level. In particular, a formal gradient expansion of the stress tensor beyond the above mentioned leading order contribution leads to a phenomenological formulation of non-local stresses in terms of the so-called "shear-curvature viscosity". We derive an expression for the shear-curvature viscosity for dilute suspensions of spherical colloids and propose an effective-medium approach to extend this result to concentrated suspensions. The validity of the effective-medium prediction is confirmed by Brownian dynamics simulations on highly non-uniformly flowing fluids.

4.
Soft Matter ; 12(48): 9705-9727, 2016 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-27808335

RESUMEN

The determination of the net charge and size of microgel particles as a function of their concentration, as well as the degree of association of ions to the microgel backbone, has been pursued in earlier studies mainly by scattering and rheology. These methods suffer from contributions due to inter-particle interactions that interfere with the characterization of single-particle properties. Here we introduce dielectric spectroscopy as an alternative experimental method to characterize microgel systems. The advantage of dielectric spectroscopy over other experimental methods is that the polarization due to mobile charges within a microgel particle is only weakly affected by inter-particle interactions. Apart from electrode polarization effects, experimental spectra on PNIPAM-co-AA [poly(N-isopropylacrylamide-co-acrylic acid)] ionic microgel particles suspended in de-ionized water exhibit three well-separated relaxation modes, which are due to the polarization of the mobile charges within the microgel particles, the diffuse double layer around the particles, and the polymer backbone. Expressions for the full frequency dependence of the electrode-polarization contribution to the measured dielectric response are derived, and a theory is proposed for the polarization resulting from the mobile charges within the microgel. Relaxation of the diffuse double layer is modeled within the realm of a cell model. The net charge and the size of the microgel particles are found to be strongly varying with concentration. A very small value of the diffusion coefficient of ions within the microgel is found, due to a large degree of chemical association of protons to the polymer backbone.

5.
J Colloid Interface Sci ; 666: 457-471, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38608640

RESUMEN

Migration of colloidal particles induced by temperature gradients is commonly referred to as thermodiffusion, thermal diffusion, or the (Ludwig-)Soret effect. The thermophoretic force experienced by a colloidal particle that drives thermodiffusion consists of two distinct contributions: a contribution resulting from internal degrees of freedom of single colloidal particles, and a contribution due to the interactions between the colloids. We present an irreversible thermodynamics based theory for the latter collective contribution to the thermophoretic force. The present theory leads to a novel "thermophoretic interaction force" (for uncharged colloids), which has not been identified in earlier approaches. In addition, an N-particle Smoluchowski equation including temperature gradients is proposed, which complies with the irreversible thermodynamics approach. A comparison with experiments on colloids with a temperature dependent attractive interaction potential over a large concentration and temperature range is presented. The comparison shows that the novel thermophoretic interaction force is essential to describe data on the Soret coefficient and the thermodiffusion coefficient.

6.
J Phys Chem Lett ; 15(31): 8108-8113, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39087873

RESUMEN

We experimentally studied the effects of an externally applied electric field on protein crystallization and liquid-liquid phase separation (LLPS) and its crystallization kinetics. For a surprisingly weak alternating current (AC) electric field, crystallization was found to occur in a wider region of the phase diagram, while nucleation induction times were reduced, and crystal growth rates were enhanced. LLPS on the contrary was suppressed, which diminishes the tendency for a two-step crystallization scenario. The effect of the electric field is ascribed to a change in the protein-protein interaction potential.


Asunto(s)
Cristalización , Electricidad , Cinética , Proteínas/química , Transición de Fase , Muramidasa/química
7.
Phys Rev Lett ; 110(1): 015901, 2013 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-23383809

RESUMEN

We report on the observation of a glass transition in suspensions of very long and thin, highly charged colloidal rods (fd-virus particles). Structural particle arrest is found to occur at a low ionic strength due to caging of the charged rods in the potential setup by their neighbors through long-ranged electrostatic interactions. The relaxation time of density fluctuations as probed by dynamic light scattering is found to diverge within a small concentration range. The rod concentration where structural particle arrest occurs is well within the full chiral-nematic state, far beyond the two-phase isotropic-nematic coexistence region. The morphology of the suspensions thus consists of nematic domains with various orientations. We quantify the dynamics of the resulting texture with image-time correlation spectroscopy. Interestingly, the decay times of image correlation functions are found to diverge in a discontinuous fashion at the same concentration of charged rods where structural particle arrest is observed. At the glass-transition concentration, we thus find both structural arrest and freezing of the texture dynamics.

8.
Phys Rev Lett ; 109(9): 098305, 2012 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-23002893

RESUMEN

There is currently no experimental technique available to probe spatially resolved rotational diffusion of nanoparticles in the vicinity of a wall. We present the first experimental study of rotational diffusion of small spherical colloids, using dynamic evanescent wave scattering. A setup is used where the wave vector components parallel and perpendicular to the wall can be varied independently, and an expression is derived for the first cumulant of the intensity correlation function in VH evanescent wave geometry for optically anisotropic spheres. The experimental results are in agreement with theoretical predictions that take particle-wall hydrodynamic interactions into account.


Asunto(s)
Coloides/química , Modelos Químicos , Anisotropía , Difusión , Fluorocarburos/química , Hidrodinámica , Luz , Óptica y Fotónica/métodos , Dispersión de Radiación
9.
Eur Phys J E Soft Matter ; 35(7): 62, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22821511

RESUMEN

A new near-wall velocimetry technique is proposed, based on evanescent wave dynamic light scattering, which allows for the measurement of near-wall velocity profile (characterized by an apparent slip velocity and a shear rate) with a resolution of tens of nanometers. A full theoretical expression of the correlation function is derived for the case of linear flow with negligible Brownian motion. The technique is demonstrated for latex spheres dispersed in water-glycerol mixtures.

10.
Eur Phys J E Soft Matter ; 34(4): 40, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21499963

RESUMEN

In concentrated suspensions of charged colloids, interactions between colloids can be induced by an external electric field through the polarization of charge distributions (within the diffusive double layer and the layer of condensed ions) and/or electro-osmotic flow. In case of rod-like colloids, these field-induced inter-colloidal interactions have recently been shown to lead to anomalous orientation perpendicular to the external field, and to phase/state transitions and dynamical states, depending on the field amplitude and frequency of the external field. As a first step towards a (semi-) quantitative understanding of these phenomena, we present a linear-response analysis of the frequency-dependent polarization of the layer of condensed ions on a single, long and thin cylindrical colloid. The in-phase and out-phase response functions for the charge distribution and the electric potential are calculated for arbitrary orientation of the cylindrical colloid. The frequency-dependent degree of alignment, which is proportional to the electric-field-induced birefringence, is calculated as well, and compared to experiments on dilute fd virus suspensions.


Asunto(s)
Coloides/química , Iones , Algoritmos , Electricidad , Electroquímica/métodos , Electrólitos , Ensayo de Materiales , Modelos Químicos , Modelos Estadísticos , Tamaño de la Partícula , Física/métodos , Propiedades de Superficie , Suspensiones
11.
Eur Phys J E Soft Matter ; 33(1): 51-68, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20924635

RESUMEN

The electric-field-induced charge distribution and potential around a colloidal sphere and rod in salt solutions are analyzed. The resulting field-induced colloid-colloid interactions are calculated for specific orientations. The colloids are assumed to be uncharged (or very weakly charged), such that the deflection of ion fluxes by the cores of the colloids is the dominant polarization mechanism (which is referred to as volume-polarization). Explicit expressions are derived for the frequency-dependent charge distribution and the potential in case of a symmetric electrolyte. It is shown that colloid-colloid interactions due to the induced charge distributions can be much larger than the thermal energy, and are therefore sufficiently strong to give rise to electric-field-induced phase transitions. The present study is a first step towards a quantitative description of field-induced transitions for systems where volume-polarization is the dominant polarization mechanism.

12.
Eur Phys J E Soft Matter ; 32(2): 127-34, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20596881

RESUMEN

Multiarm star polymers were used as model grafted colloidal particles with long hairs, to study their size variation due to osmotic forces arising from added linear homopolymers of smaller size. This is the origin of the depletion phenomenon that has been exploited in the past as a means to melt soft colloidal glasses by adding linear chains and analyzed using dynamic light scattering experiments and an effective interactions analysis yielding the depletion potential. Shrinkage is a generic phenomenon for hairy particles, which affects macroscopic properties and state transitions at high concentrations. In this work we present a small-angle neutron scattering study of star/linear polymer mixtures with different size ratios (varying the linear polymer molar mass) and confirm the depletion picture, i.e., osmotic star shrinkage. Moreover, we find that as the linear/star polymer size ratio increases for the same effective linear volume fraction (c/c* with c* the overlapping concentration), the star shrinkage is reduced whereas the onset of shrinkage appears to take place at higher linear polymer volume fractions. A theoretical description of the force balance on a star polymer in solution, accounting for the classic Flory contributions, i.e. elastic and excluded volume, as well as the osmotic force due to the linear chains, accurately predicts the experimental findings of reduced star size as a function of linear polymer concentration. This is done in a parameter-free fashion, in which the size of the cavity created by the star, and from which the chains are excluded, is related to the radius of the former from first principles.

13.
J Chem Phys ; 132(7): 074704, 2010 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-20170241

RESUMEN

As a first step toward the interpretation of dynamic light scattering with evanescent illumination from suspensions of interacting spheres, in order to probe their near wall dynamics, we develop a theory for the initial slope of the intensity autocorrelation function. An expression for the first cumulant is derived that is valid for arbitrary concentrations, which generalizes a well-known expression for the short-time, wave-vector dependent collective diffusion coefficient in bulk to the case where a wall is present. Explicit expressions and numerical results for the various contributions to the initial slope are obtained within a leading order virial expansion. The dependence of the initial slope on the components of the wave vector parallel and perpendicular to the wall, as well as the dependence on the evanescent-light penetration depth are discussed. For the hydrodynamic interactions between colloids and between the wall, which are essential for a correct description of the near-interface dynamics, we include both far-field and lubrication contributions. Lubrication contributions are essential to capture the dynamics as probed in experiments with small penetration depths. Simulations have been performed to verify the theory and to estimate the extent of the concentration range where the virial expansion is valid. The computer algorithm developed for this purpose will also be of future importance for the interpretation of experiments and to develop an understanding of near-interface dynamics, at high colloid concentrations.


Asunto(s)
Modelos Químicos , Algoritmos , Coloides/química , Simulación por Computador , Difusión , Luz , Tamaño de la Partícula , Radiación , Dispersión de Radiación , Análisis Espectral , Propiedades de Superficie
14.
Clin Oncol (R Coll Radiol) ; 32(12): 792-804, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33036840

RESUMEN

Organ motion as a result of respiratory and cardiac motion poses significant challenges for the accurate delivery of radiotherapy to both the thorax and the upper abdomen. Modern imaging techniques during radiotherapy simulation and delivery now permit better quantification of organ motion, which in turn reduces tumour and organ at risk position uncertainty. These imaging advances, coupled with respiratory correlated radiotherapy delivery techniques, have led to the development of a range of approaches to manage respiratory motion. This review summarises the key strategies of image-guided respiratory motion management with a focus on lung and liver radiotherapy.


Asunto(s)
Neoplasias Hepáticas/radioterapia , Neoplasias Pulmonares/radioterapia , Movimiento , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Guiada por Imagen/métodos , Mecánica Respiratoria , Simulación por Computador , Humanos , Neoplasias Hepáticas/fisiopatología , Neoplasias Pulmonares/fisiopatología
15.
Eur Phys J E Soft Matter ; 30(3): 333-40, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19856211

RESUMEN

Experiments on suspensions of charged colloidal rods (fd-virus particles) in external electric fields are performed, which show that a non-equilibrium critical point can be identified. Several transition lines of field-induced phases and states meet at this point and it is shown that there is a length- and time-scale which diverge at the non-equilibrium critical point. The off-critical and critical behavior is characterized, with both power law and logarithmic divergencies. These experiments show that analogous features of the classical, critical divergence of correlation lengths and relaxation times in equilibrium systems are also exhibited by driven systems that are far out of equilibrium, related to phases/states that do not exist in the absence of the external field.


Asunto(s)
Bacteriófagos/química , Electricidad , Coloides , Microscopía , Suspensiones , Termodinámica , Factores de Tiempo
16.
J Appl Microbiol ; 104(4): 1137-46, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18042188

RESUMEN

AIM: To evaluate nutritional and anti-infectious characteristics of the chemically treated baker's yeast with 2-mercapto-ethanol (2ME) for gnotobiotically grown Artemia. METHODS AND RESULTS: A selection of isogenic yeast strains was treated with 2ME and fed to gnotobiotically grown Artemia. In the first experiment the effect of the chemical treatment on the yeast nutritional value was studied. In most cases, 2ME-treated yeast cells were better feed for Artemia than the untreated cells. In the second experiment, a small quantity of 2ME-treated yeast cells was fed to Vibrio campbellii (VC) challenged Artemia. The 2ME-treatment on some yeast strains (e.g. gas1, kre6 and chs3) significantly improved Artemia resistance against VC compared with the respective untreated yeast cells. CONCLUSION: Simple chemical treatment with 2ME could significantly improve the nutritional and anti-infectious properties of some baker's yeast strains for gnotobiotically grown Artemia. SIGNIFICANCE AND IMPACT OF THE STUDY: The gnotobiotic Artemia test system provides a unique opportunity (because of noninterference of other microbial compounds) to investigate how the yeast cell wall composition influences macro parameters (e.g. growth and survival) in an organism. In addition, gene expression studies in these gnotobiotically grown Artemia should provide further documentation on direct effects of yeast cells on the genes involved in immune functions.


Asunto(s)
Antibacterianos , Artemia/inmunología , Vida Libre de Gérmenes/fisiología , Microbiología Industrial , Mercaptoetanol/farmacología , Saccharomyces cerevisiae/fisiología , Adyuvantes Inmunológicos/farmacología , Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Artemia/microbiología , Pared Celular/fisiología , Medios de Cultivo , Vibrio/fisiología , Vibriosis/inmunología
17.
Chem Phys ; 345(2-3): 133-151, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19132140

RESUMEN

Neutron radiation offers significant advantages for the study of biological molecular structure and dynamics. A broad and significant effort towards instrumental and methodological development to facilitate biology experiments at neutron sources worldwide is reviewed.

18.
Colloid Polym Sci ; 293(11): 3325-3336, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26617428

RESUMEN

Concentrated dispersions of highly charged rod-like colloids (fd-virus particles) in isotropic-nematic coexistence exhibit a dynamical state when subjected to low-frequency electric fields [Soft Matter, 2010, 6, 273]. This dynamical state consists of nematic domains which persistently melt and form on time scales typically of the order of seconds. The origin of the dynamical state has been attributed to a field-induced, cyclic dissociation and association of condensed ions [Soft Matter, 2014, 10, 1987, Soft Matter, 2015, 11, 2893]. The ionic strength increases on dissociation of condensed ions, rendering the nematic domains unstable, while the subsequent decrease of the ionic strength due to association of condensed ions leads to a recurrent stabilization of the nematic state. The role of dissociation/association of condensed ions in the phase/state behaviour of charged colloids in electric fields has not been addressed before. The electric field strength that is necessary to dissociate sufficient condensed ions to render a nematic domain unstable, depends critically on the ambient ionic strength of the dispersion without the external field, as well as the rod-concentration. The aim of this paper is to compare experimental results for the location of transition lines and the dynamics of melting and forming of nematic domains at various ionic strengths and rod-concentrations with the ion-dissociation/association model. Phase/state diagrams in the field-amplitude versus frequency plane at two different ambient ionic strengths and various rod-concentrations are presented, and compared to the theory. The time scale on which melting and forming of the nematic domains occurs diverges on approach of the transition line where the dynamical state appears. The corresponding critical exponents have been measured by means of image time-correlation spectroscopy [Eur. Phys. J. E, 2009, 30, 333], and are compared to the theoretical values predicted by the ion-dissociation/association model.

19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 63(2 Pt 1): 021406, 2001 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11308491

RESUMEN

The interpretation of superposition rheology data is still a matter of debate due to lack of understanding of viscoelastic superposition response on a microscopic level. So far, only phenomenological approaches have been described, which do not capture the shear induced microstructural deformation, which is responsible for the viscoelastic behavior to the superimposed flow. Experimentally there are indications that there is a fundamental difference between the viscoelastic response to an orthogonally and a parallel superimposed shear flow. We present theoretical predictions, based on microscopic considerations, for both orthogonal and parallel viscoelastic response functions for a colloidal system of attractive particles near their gas-liquid critical point. These predictions extend to values of the stationary shear rate where the system is nonlinearly perturbed, and are based on considerations on the colloidal particle level. The difference in response to orthogonal and parallel superimposed shear flow can be understood entirely in terms of microstructural distortion, where the anisotropy of the microstructure under shear flow conditions is essential. In accordance with experimental observations we find pronounced negative values for response functions in case of parallel superposition for an intermediate range of frequencies, provided that microstructure is nonlinearly perturbed by the stationary shear component. For the critical colloidal systems considered here, the Kramers-Kronig relations for the superimposed response functions are found to be valid. It is argued, however, that the Kramers-Kronig relations may be violated for systems where the stationary shear flow induces a considerable amount of new microstructure.

20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 63(6 Pt 1): 061401, 2001 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-11415098

RESUMEN

Due to long-range correlations and slow dynamics of concentration fluctuations in the vicinity of the gas-liquid critical point, shear flow is very effective in distorting the microstructure of near-critical fluids. The anisotropic nature of the shear-field renders the microstructure highly anisotropic, leading to dichroism. Experiments on the dichroic behavior can thus be used to test theoretical predictions on microstructural order under shear flow conditions. We performed both static and dynamic dichroism and turbidity measurements on a colloid-polymer mixture, existing of silica spheres (radius 51 nm) and polydimethylsiloxane polymer (molar weight 204 kg/mol). Sufficiently far away from the critical point, in the mean-field region, the experimental data are in good agreement with theory. Very close to the critical point, beyond mean field, for which no theory exists yet, an unexpected decrease of dichroism on approach of the critical point is observed. Moreover, we do not observe critical slowing down of shear-induced dichroism, right up to the critical point, in contrast to the turbidity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA