RESUMEN
Sulfamethoxazole (SMX), is a ubiquitous antibiotic in the aquatic environment and received concerns on its health hazards, especially its sub-lethal effects on non-target organisms which were remained largely unknown. In the present study, in order to investigate SMX induced tissue damages and reveal underlying mechanisms, marine mussels, Mytilus galloprovincialis were challenged to SMX series (0.5, 50 and 500 µg/L) for six-days followed by six-day-recovery. Comprehensive histopathological alteration (including qualitative, semi-quantitative and quantitative indices), together with transcriptional and (post-) translational responses of key factors (p38, NFκB and p53) in the p38-MAPK signaling pathway were analyzed in gills and digestive glands. Tissue-specific responses were clearly investigated with gills showing more prompt responses and digestive glands showing higher tolerance to SMX. The histopathology showed that SMX triggered inflammatory damages in both tissues and quantitative analysis revealed more significant responses, suggesting its potential as a valuable health indicator. SMX activated expressions of p38, NFκB and p53 at transcriptional and (post-) translational levels, especially after exposed to low level SMX, evidenced by p38 coupled with NFκB/p53 regulation on immunity defense in mussels. Less induction of targeted molecules under severe SMX exposure indicated such signaling transduction may not be efficient enough and can result in inflammatory damages. Taken together, this study expanded the understanding of aquatic SMX induced health risk in marine mussels and the underlying regulation mechanism through p38 signaling transduction.
Asunto(s)
Mytilus , Contaminantes Químicos del Agua , Animales , Sulfametoxazol/toxicidad , Sulfametoxazol/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Sistema de Señalización de MAP Quinasas , Transducción de Señal , Branquias , Contaminantes Químicos del Agua/metabolismoRESUMEN
Based on the micro-hyperspectral imaging technique, spherical engineered microplastic (polyethylene, 10-45 µm) and microalgae (Isochrysis galbana) (4-7 µm) were identified. In transmittance mode of MHSI, micro image cubes from 400 to 1000 nm were obtained from slides containing MP and MA in thin seawater. Classifiers like Support Vector Machine (SVM(Radial Basis Function (RBF))), Least Squares Support Vector Machine (LSSVM(RBF)), k-Nearest Neighbors, etc. were adopted and compared to classify MP and MA. In order to expand the imaging range of micro imaging, image stitching technology was adopted. In allusion to the stitched image cube, SVM(RBF) is suggested for the identification of MA and MP, with recall and precision > 0.86. The above results demonstrate that the MHSI is a promising technique, which can detect MPs with particle size Limit of Detection of 10-45 µm, and it is potential to further expand this LOD.
Asunto(s)
Haptophyta , Microalgas , Imágenes Hiperespectrales , Microplásticos , PlásticosRESUMEN
Colorectal neoplasia differentially expressed (CRNDE) is a significantly upregulated long noncoding RNA in hepatocellular carcinoma (HCC). CRNDE could promote cell proliferation, migration, and invasion, while its molecular mechanisms were still largely unclear. In this study, we investigated the expression and function of CRNDE. CRNDE was significantly upregulated in tumor tissues compared with adjacent normal tissues. In vitro, we revealed that knockdown of CRNDE inhibited cell proliferation, migration, and cell invasion capacities in HCC. Animal studies indicated that CRNDE knockdown represses both growth and metastasis of HCC tumors in vivo. Moreover, knockdown of CRNDE suppressed the cell epithelial-mesenchymal transition (EMT) process by increasing the expression of E-cadherin and ZO-1, whereas, decreasing the expression of N-cadherin, slug, twist, and vimentin in HCC cells. We also revealed that knockdown of CRNDE suppressed the Wnt/ß-catenin signaling in HCC. Thus, CRNDE could modulate EMT of HCC cells and knockdown of CRNDE impaired the mesenchymal properties. CRNDE increased invasion of HCC cells might be through activating the Wnt/ß-catenin signaling pathway.
RESUMEN
A novel bacterial strain A7.6T was isolated from the sediments collected near the Zhairuo Island located in the East China Sea and characterized using a polyphasic approach. Cells were Gram-stain-negative, rod-shaped, non-spore forming, non-flagellated but motile by gliding. The strain was aerobic, positive for oxidase and catalase activities. The strain can grow at 4-35 °C, pH 5.5-9.0, and 0-3% (w/v) NaCl concentration. The major polar lipid was phosphatidylethanolamine, the predominant fatty acids (> 10%) were iso-C15:0 and summed feature 3 (C16:1 ω7c and/or C16:1 ω6c). The genomic G+C content was 33.6 mol% and the major respiratory quinone was menaquinone 6. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain A7.6T belonged to the genus Flavobacterium and was closely related to Flavobacterium tistrianum GB 56.1T (98.4% similarity), F. nitrogenifigens NXU-44T (98.4%), F. ginsenosidimutans THG 01T (98.0%) and F. anhuiense D3T (97.7%). Average nucleotide identities and digital DNA-DNA hybridizations values for genomes ranged from 75.9 to 91.4% and 21.4 to 43.9% between strain A7.6T and its closest phylogenetic neighbors. The polyphasic characterization indicated that strain A7.6T represented a novel species of the genus Flavobacterium, for which the name Flavobacterium sharifuzzamanii is proposed. The type strain is A7.6T (= KCTC 62405T = MCCC 1K03485T). The NCBI GenBank accession number for the 16S rRNA gene of A7.6T is MH396692, and for the genome sequence is QJGZ00000000. The digital protologue database (DPD) Taxon Number is TA00643.
Asunto(s)
Flavobacterium/clasificación , Flavobacterium/fisiología , Sedimentos Geológicos/microbiología , Océanos y Mares , Filogenia , Composición de Base , China , ADN Bacteriano/genética , Ácidos Grasos/análisis , Flavobacterium/química , Genoma Bacteriano/genética , Concentración de Iones de Hidrógeno , Fosfolípidos/análisis , Quinonas/análisis , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Cloruro de Sodio , TemperaturaRESUMEN
Benzo(α)pyrene (BaP) and lead (Pb) are common pollutants discharged greatly in ocean and causing detrimental impacts on marine organisms. Although mussels are one of the most prominent and frequently studied biological models, the research on their genomic alterations induced by the mixture of two totally different chemicals, is still rare. In present study, local marine mussels Mytilus coruscus were exposed in vivo to BaP (53.74⯱â¯19.79⯵g/L), Pb (2.58⯱â¯0.11â¯mg/L) and their mixture for 6 days. The genotoxic damages were assessed by comet assay, micronucleus (MNi) test, and random amplified polymorphic DNA (RAPD) analysis. Significantly increased though transitory genomic damage was investigated after the exposure and showed consistency using various detecting methods. Additive genotoxicity was only found after 3 days combined exposure by means of MNi test, suggesting that BaP and Pb may play with alternative biological targets during metabolism and/or interaction with the genome. The geno-stability and the recovery capability were further detected both in vivo and in vitro after challenged by BaP. RAPD results showed coherence in BaP induced genotoxicity, together with time-specific alterations. The genomic instability was found to recover in both in vivo and in vitro exposure scenarios in present study. To our knowledge, this is the first study to focus on the genotoxicitiy induced by BaP, Pb and their mixture by multiple detecting techniques. The attempt to utilize model pollutants and marine organism to validate the potential value of RAPD analysis highlighted that it might be a useful tool in the research of genotoxicology, especially on the effect-mechanism interplay at genetic level.
Asunto(s)
Benzo(a)pireno/toxicidad , Daño del ADN , Plomo/toxicidad , Mutágenos/toxicidad , Mytilus/efectos de los fármacos , Animales , Ensayo Cometa , Branquias/química , Branquias/efectos de los fármacos , Técnicas In Vitro , Mytilus/genética , Técnica del ADN Polimorfo Amplificado Aleatorio , Reproducibilidad de los ResultadosRESUMEN
Yeast Saccharomyces cerevisiae strains isolated from different sources generally show extensive genetic and phenotypic diversity. Understanding how genomic variations influence phenotypes is important for developing strategies with improved economic traits. The diploid S. cerevisiae strain NY1308 is used for cellulosic bioethanol production. Whole genome sequencing identified an extensive amount of single nucleotide variations and small insertions/deletions in the genome of NY1308 compared with the S288c genome. Gene annotation of the assembled NY1308 genome showed that 43 unique genes are absent in the S288c genome. Phylogenetic analysis suggested most of the unique genes were obtained through horizontal gene transfer from other species. RNA-Seq revealed that some unique genes were not functional in NY1308 due to unidentified intron sequences. During bioethanol fermentation, NY1308 tends to flocculate when certain inhibitors (derived from the pretreatment of cellulosic feedstock) are present in the fermentation medium. qRT-PCR and genetic manipulation confirmed that the novel gene, NYn43, contributed to the flocculation ability of NY1308. Deletion of NYn43 resulted in a faster fermentation rate for NY1308. This work disclosed the genetic characterization of a bioethanol-producing S. cerevisiae strain and provided a useful paradigm showing how the genetic diversity of the yeast population would facilitate the personalized development of desirable traits.
Asunto(s)
Etanol/metabolismo , Saccharomyces cerevisiae/genética , Diploidia , Fermentación , Genoma Fúngico , Anotación de Secuencia Molecular , Fenotipo , Filogenia , Saccharomyces cerevisiae/clasificación , Saccharomyces cerevisiae/aislamiento & purificación , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMEN
We used the marine bivalve (Mytilus galloprovincialis) to assess a range of biological or biomarker responses following exposure to a model-engineered nanoparticle, C60 fullerene, either alone or in combination with a model polycyclic aromatic hydrocarbon, benzo(α)pyrene [B(α)P]. An integrated biomarker approach was used that included: (i) determination of 'clearance rates' (a physiological indicator at individual level), (ii) histopathological alterations (at tissue level), (iii) DNA strand breaks using the comet assay (at cellular level) and (iv) transcriptional alterations of p53 (anti-oncogene) and ras (oncogene) determined by real-time quantitative polymerase chain reaction (at the molecular/genetic level). In addition, total glutathione in the digestive gland was measured as a proxy for oxidative stress. Here, we report that mussels showed no significant changes in 'clearance rates' after 1 day exposure, however significant increases in 'clearance rates' were found following exposure for 3 days. Histopathology on selected organs (i.e. gills, digestive glands, adductor muscles and mantles) showed increased occurrence of abnormalities in all tissues types, although not all the exposed organisms showed these abnormalities. Significantly, increased levels of DNA strand breaks were found after exposure for 3-days in most individuals tested. In addition, a significant induction for p53 and ras expression was observed in a tissue and chemical-specific pattern, although large amounts of inter-individual variability, compared with other biomarkers, were clearly apparent. Overall, biological responses at different levels showed variable sensitivity, with DNA strand breaks and gene expression alterations exhibiting higher sensitivities. Furthermore, the observed genotoxic responses were reversible after a recovery period, suggesting the ability of mussels to cope with the toxicants C60 and/or B(α)P under our experimental conditions. Overall, in this comprehensive study, we have demonstrated mussels as a suitable model marine invertebrate species to study the potential detrimental effects induced by possible genotoxicants and toxicants, either alone or in combinations at different levels of biological organisation (i.e. molecular to individual levels).
Asunto(s)
Bivalvos/efectos de los fármacos , Daño del ADN , Fulerenos/toxicidad , Proteína p53 Supresora de Tumor/efectos de los fármacos , Proteínas ras/efectos de los fármacos , Animales , Benzo(a)pireno/farmacología , Benzo(a)pireno/toxicidad , Bivalvos/genética , Bivalvos/metabolismo , Ensayo Cometa , ADN/efectos de los fármacos , Fulerenos/farmacología , Regulación de la Expresión Génica , Glutatión/análisis , Glutatión/efectos de los fármacos , Modelos Animales , Especificidad de Órganos , Estrés Oxidativo/efectos de los fármacos , Proteína p53 Supresora de Tumor/genética , Proteínas ras/genéticaRESUMEN
Baker's yeast (Saccharomyces cerevisiae) is the common yeast used in the fields of bread making, brewing, and bioethanol production. Growth rate, stress tolerance, ethanol titer, and byproducts yields are some of the most important agronomic traits of S. cerevisiae for industrial applications. Here, we developed a novel method of constructing S. cerevisiae strains for co-producing bioethanol and ergosterol. The genome of an industrial S. cerevisiae strain, ZTW1, was first reconstructed through treatment with an antimitotic drug followed by sporulation and hybridization. A total of 140 mutants were selected for ethanol fermentation testing, and a significant positive correlation between ergosterol content and ethanol production was observed. The highest performing mutant, ZG27, produced 7.9 % more ethanol and 43.2 % more ergosterol than ZTW1 at the end of fermentation. Chromosomal karyotyping and proteome analysis of ZG27 and ZTW1 suggested that this breeding strategy caused large-scale genome structural variations and global gene expression diversities in the mutants. Genetic manipulation further demonstrated that the altered expression activity of some genes (such as ERG1, ERG9, and ERG11) involved in ergosterol synthesis partly explained the trait improvement in ZG27.
Asunto(s)
Ergosterol/biosíntesis , Etanol/metabolismo , Ingeniería Genética , Microbiología Industrial , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fermentación , Variación Genética , Fenotipo , Proteómica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMEN
Background: The biological function and prognostic significance of endothelial cell specific molecule 1 (ESM1) in various cancers have been validated. This study aimed to explore the expression and clinical diagnosis values in patients with stomach adenocarcinoma (STAD) and esophageal carcinoma (ESCA). Methods: Online database Gene Expression Omnibus was used to screen for abnormally expressed genes in STAD and ESCA. Besides, 36 STAD and 36 ESCA patients were enrolled, and their corresponding control groups were also 36 people each. Reverse transcription-quantitative polymerase chain reaction and Western blot were performed to analyze the expression of ESM1. Overall survival (OS) curve and receiver operating characteristics curve (ROC) analysis were used to assess the prognosis, and the sensitivity and specificity of ESM1 for the diagnosis of STAD and ESCA, respectively. Additionally, the effects of ESM1 on cell viability, migration, and invasion were analyzed by cell counting kit-8, transwell migration and invasion assays. Results: The results showed that the poor OS of STAD and ESCA patients was correlated with high ESM1. Besides, ESM1 was increased in ESCA and STAD in in vivo and in vitro studies. ESM1 has a high accuracy [area under the curve (AUC) > 0.79] at stage I and IV of STAD and ESCA. Knockdown of ESM1 suppressed the cell viability, migration, and invasion and increased the apoptosis rate of AGS and TE1 cells. Conclusion: Our study suggested that ESM1 might be used as a new indicator for the diagnosis and prognosis of early and advanced stage digestive tract cancers.
RESUMEN
Deep-sea mussels, one of the dominant species in most deep-sea ecosystems, have long been used as model organisms to investigate the adaptations and symbiotic relationships of deep-sea macrofauna under laboratory conditions due to their ability to survive under atmospheric pressure. However, the impact of additional abiotic conditions beyond pressure, such as temperature and light, on their physiological characteristics remains unknown. In this study, deep-sea mussels (Gigantidas platifrons) from cold seep of the South China Sea, along with nearshore mussels (Mytilus coruscus) from the East China Sea, were reared in unfavorable abiotic conditions for up to 8 days. Integrated biochemical indexes including antioxidant defense, immune ability and energy metabolism were investigated in the gill and digestive gland, while cytotoxicity was determined in hemocytes of both types of mussels. The results revealed mild bio-responses in two types of mussels in the laboratory, represented by the effective antioxidant defense with constant total antioxidant capability level and malondialdehyde content. There were also disparate adaptations in deep-sea and nearshore mussels. In deep-sea mussels, significantly increased immune response and energy reservation were observed in gills, together with the elevated cytotoxicity in hemocytes, implying the more severe biological adaptation was required, mainly due to the symbiotic bacteria loss under laboratory conditions. On the contrary, insignificant biological responses were exhibited in nearshore mussels except for the increased energy consumption, indicating the trade-off strategy to use more energy to deal with potential stress. Overall, this comparative study highlights the basal bio-responses of deep-sea and nearshore mussels out of their native environments, providing evidence that short-term culture of both mussels under easily achievable laboratory conditions would not dramatically alter their biological status. This finding will assist in broadening the application of deep-sea mussels as model organism in future research regardless of the specialized research equipment.
Asunto(s)
Bivalvos , Animales , Bivalvos/fisiología , Adaptación Fisiológica , Branquias/metabolismo , Antioxidantes/metabolismo , Metabolismo Energético , China , Ecosistema , Mytilus/fisiologíaRESUMEN
Background: Type 2 diabetes mellitus (T2DM) has emerged as a global epidemic issue, with high rates of disability and fatality. Traditional diagnostic biomarkers are typically detected once a metabolic imbalance has already occurred, thus the development of early diagnostic biomarkers is crucial for T2DM. Metabolomics studies have identified several predictive biomarkers for T2DM, including miR-320. Our previous research found that miR-320b was significantly downregulated in T2DM patients, but the underlying mechanism remains unclear. Therefore, this study was designed to investigate the significance of miR-320b for T2DM diagnosis and to explore the involved molecular mechanism. Methods: A total of 50 patients with T2DM and 80 sex- and age-matched healthy subjects were selected. The plasma miR-320b of all participations was detected by qRT-PCR and its correlations with other biomarkers of T2DM were analyzed. Besides, the expression of miR-320b in HepG2 cells was suppressed by miRNA inhibitors. Then the glucose consumption of HepG2 cells was measured. The target gene of miR-320b was predicted by four bioinformatics tools and intersected these prediction results by Venny method. The T2DM relevant target genes were identified by the GeneCards database. To ensure disease relevance, these T2DM relevant target genes were subsequently intersected with the target genes of miR-320b. Protein-protein analysis (PPI) was used to screening the gene with the most connections in these target genes. Finally, the target gene of miR-320b specific to T2DM was confirmed directly by luciferase reporter assay. The expression of target gene in HepG2 cell culture supernatant and plasma of all participations was detected. Results: Our results showed that the expression level of miR-320b was significantly lower in T2DM patients compared to the healthy controls. It was negatively correlated with fasting plasma glucose (FPG), glycated hemoglobin (HbA1C), and homeostasis model assessment of insulin resistance (HOMA-IR), but positively with HOMA-ß. The glucose consumption of HepG2 cells in the miR-320b inhibitor group was significantly lower compared to inhibitor-NC and blank control group. We predicted and confirmed that phosphatase and tensin homolog (PTEN) was the direct target gene of miR-320b using Bioinformation tools and luciferase reporter assay. Moreover, the concentration of PTEN was significantly higher in the HepG2 cell culture supernatant and plasma of T2DM patients. Conclusions: Our research demonstrated a negative correlation between miR-320b and FPG, HbA1C, and HOMA-IR, while exhibiting a positive correlation with HOMA-ß. Suppressing miR-320b expression would impair glucose consumption of HepG2 cells through PI3K pathway by targeting PTEN. These results suggest that miR-320b may be a potential biomarker for diagnosing T2DM and a promising target for therapeutic intervention.
RESUMEN
Hydrothermal vents (HVs) and cold seeps (CSs) are typical deep-sea extreme ecosystems with their own geochemical characteristics to supply the unique living conditions for local communities. Once HVs or CSs stop emission, the dramatic environmental change would pose survival risks to deep-sea organisms. Up to now, limited knowledge has been available to understand the biological responses and adaptive strategy to the extreme environments and their transition from active to extinct stage, mainly due to the technical difficulties and lack of representative organisms. In this study, bathymodiolin mussels, the dominant and successful species surviving in diverse deep-sea extreme ecosystems, were collected from active and extinct HVs (Southwest Indian Ocean) or CSs (South China Sea) via two individual cruises. The transcriptomic analysis and determination of multiple biological indexes in stress defense and metabolic systems were conducted in both gills and digestive glands of mussels, together with the metagenomic analysis of symbionts in mussels. The results revealed the ecosystem- and tissue-specific transcriptional regulation in mussels, addressing the autologous adaptations in antioxidant defense, energy utilization and key compounds (i.e. sulfur) metabolism. In detail, the successful antioxidant defense contributed to conquering the oxidative stress induced during the unavoidable metabolism of xenobiotics commonly existing in the extreme ecosystems; changes in metabolic rate functioned to handle toxic matters in different surroundings; upregulated gene expression of sulfide:quinone oxidoreductase indicated an active sulfide detoxification in mussels from HVs and active stage of HVs & CSs. Coordinately, a heterologous adaptation, characterized by the functional compensation between symbionts and mussels in energy utilization, sulfur and carbon metabolism, was also evidenced by the bacterial metagenomic analysis. Taken together, a new insight was proposed that symbiotic bathymodiolin mussels would develop a "finetuning" strategy combining the autologous and heterologous regulations to fulfill the efficient and effective adaptations for successful survival.
Asunto(s)
Bivalvos , Respiraderos Hidrotermales , Animales , Ecosistema , Antioxidantes , Azufre , Sulfuros , FilogeniaRESUMEN
Microplastics (MPs) and antibiotics often coexist in complex marine environments, yet their combined detrimental effects on marine organisms remain underexplored. This study evaluated the effects of polyethylene microplastics (PE, 200 µg/L) and sulfamethoxazole (SMX, 50 µg/L), both individually and in combination, on Mytilus galloprovincialis. The exposure lasted 6 days, followed by a 6-day recovery period. Bioaccumulation, DNA damage, pollutants transport/metabolism related responses and responding alterations of mitogen-activated protein kinase (MAPK) signaling pathway were detected in gills and digestive glands. Bioaccumulation of SMX/PE in mussels occurred in a tissue-specific manner, co-exposure altered SMX contents in investigated tissues. Co-exposure did not induce extra DNA damage, elevated DNA damage was alleviated during the recovery period in all treated groups. The exposure of SMX/PE exerted different alterations in pollutants transport/metabolism related responses, characterized by multixenobiotic resistance and relative expression of key genes (cytochrome P450 monooxygenase, glutathione S-transferase, ATP-binding cassette transporters). Key molecules (p38 MAPK, c-jun N-terminal kinase, extracellular regulated protein kinase, nuclear factor-κB and tumor protein p53) in MAPK signaling pathway were activated at transcriptional and translational levels after SMX/PE and co-exposure. Co-regulation between MAPK members and pollutants transport/metabolism related factors was revealed, suggesting MAPK signaling pathway served as a regulating hub in exposed mussels to conquer SMX/PE stress. Overall, this study provides new insights on SMX/PE induced health risks in marine mussels and potential mechanism through MAPK cascades regulation.
RESUMEN
The objective of this study was to identify methylation-driven genes and explore their prognostic value in colon adenocarcinoma (COAD). The Cancer Genome Atlas (TCGA) database was used to acquire collated COAD transcriptome gene expression matrix (containing 59,427 transcripts), transcriptome gene methylation level matrix (containing 29,602 methylated modified genes), which included 517 samples containing 41 samples of normal tissue (NT) & 476 samples of COAD, and patient clinical information files (including patient survival time, survival status, age, gender and tumor stage, etc.), for all COAD samples. A total of 9807 differentially expressed genes (DEGs) were obtained by DEG analysis of the COAD transcriptional expression matrix, of which 5874 were up-regulated and 3933 were down-regulated. And 46 methylation-driven DEGs (MD-DEGs) in COAD were obtained by DEG analysis, differential analysis of gene methylation levels, and correlation analysis between them. Next, three prognostic associated MD-DEGs (PMD-DEGs) (IDUA, ZBTB18 and C5orf38) were identified by Cox regression analysis, and a prognostic model composed of the three PMD-DEGs was constructed by least absolute shrinkage and selection operator (LASSO) regression analysis and cross-validation analysis. In addition, survival analysis, the receiver operating characteristics (ROC) curve analysis and independent prognostic analysis were used to evaluate and verify that the prognostic model we constructed could accurately and independently predict the prognosis of COAD patients. Finally, we constructed a nomogram based on the prognosis model to accurately and personalized predict the survival prognosis of COAD patients. In conclusion, we identified the methylation driver gene of COAD and constructed a prognostic model and nomogram to personalized predict the prognosis of patients, which opened a new prospect for accurate diagnosis and treatment in clinical practice.
Asunto(s)
Adenocarcinoma , Neoplasias del Colon , Humanos , Pronóstico , Neoplasias del Colon/genética , Metilación , Adenocarcinoma/genética , TranscriptomaRESUMEN
Crabs can live in diverse lifestyles in both water and benthic environments, which are the basin of microplastics (MPs) inputs. Edible crabs with large consuming quantity, e.g., Scylla serrata were subjected to accumulate MPs in their tissues from surrounding environments and generate biological damages. However, no related research has been conducted. In order to accurately assess the potential risks to both crabs and humans consuming MPs contaminated crabs, S. serrata were exposed to different concentrations (2, 200 and 20,000 µg/L) of polyethylene (PE) microbeads (10-45 µm) for 3 days. The physiological conditions of crabs and a series of biological responses, including DNA damage, antioxidant enzymes activities and their corresponding gene expressions in functional tissues (gills and hepatopancreas) were investigated. PE-MPs accumulated in all tissues of crabs with concentration- and tissue-dependent manner, which was assumed to be via the internal distribution initialized by gills' respiration, filtration and transportation. Significantly increased DNA damages were observed in both gills and hepatopancreas under exposures, however, the physiological conditions of crabs showed no dramatic alterations. Under low and middle concentration exposures, gills energetically activated the first line of antioxidant defense to against oxidative stress, e.g., superoxide dismutase (SOD) and catalase (CAT), but lipid peroxidation damage still occurred under high concentration exposure. In comparison, SOD and CAT composed antioxidant defense in hepatopancreas tended to collapse under severe MPs exposure and the defense mechanism attempted to switch to the secondary antioxidant response by compensatively stimulating the activities of glutathione S-transferase (GST), glutathione peroxidase (GPx) and the content of glutathione (GSH). The diverse antioxidant strategies in gills and hepatopancreas were proposed to be closely related to the accumulation capacity of tissues. The results confirmed the relation between PE-MPs exposure and antioxidant defense in S. serrata, and will help to clarify the biological toxicity and corresponding ecological risks.
Asunto(s)
Antioxidantes , Braquiuros , Animales , Humanos , Antioxidantes/metabolismo , Microplásticos/toxicidad , Microplásticos/metabolismo , Plásticos/metabolismo , Braquiuros/metabolismo , Estrés Oxidativo/fisiología , Catalasa/metabolismo , Superóxido Dismutasa/metabolismo , Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo , Polietileno/metabolismo , Branquias/metabolismo , Peroxidación de Lípido , Glutatión Transferasa/metabolismoRESUMEN
Microplastics (MPs) have been recognized as prominent anthropogenic pollutants that inflict significant harm to marine ecosystems. Various approaches have been proposed to mitigate the risks posed by MPs. Gaining an understanding of the morphology of plastic particles can provide valuable insights into the source and their interaction with marine organisms, which can assist the development of response measures. In this study, we present an automated technique for identifying MPs through segmentation of MPs in microscopic images using a deep convolutional neural network (DCNN) based on a shape classification nomenclature framework. We used MP images from diverse samples to train a Mask Region Convolutional Neural Network (Mask R-CNN) based model for classification. Erosion and dilation operations were added to the model to improve segmentation results. On the testing dataset, the mean F1-score (F1) of segmentation and shape classification was 0.7601 and 0.617, respectively. These results demonstrate the potential of proposed method for the automatic segmentation and shape classification of MPs. Furthermore, by adopting a specific nomenclature, our approach represents a practical step towards the global standardization of MPs categorization criteria. This work also identifies future research directions to improve accuracy and further explore the possibilities of using DCNN for MPs identification.
RESUMEN
Marine mussels can develop hemeic and gonadal neoplasia in the natural environment. Associated with these diseases are the tumor suppressor (TS) p53 and the proto-oncogene ras coded proteins, both of which are highly conserved among molluscs and vertebrates. We report, for the first time, tissue-specific expression analysis of p53 and ras genes in Mytilus edulis by means of quantitative RT-PCR. A tissue-specific response was observed after 6 and 12 days exposure to a sublethal concentration of a model Polycyclic Aromatic Hydrocarbon (PAH), benzo(α)pyrene (B(α)P). This sublethal concentration (56 µg/L) was selected based on an integrated biomarker analysis carried out prior to gene expression analysis, which included a 'clearance rate' assay, histopathological analysis, and DNA strand break measurements. The results indicated that the selected concentration of B(α)P can lead to the induction of DNA strand breaks, tissue damage, and expression of tumor-regulating genes. Both p53 and ras are expressed in a tissue-specific manner, which collaborate with tissue-specific function in response to genotoxic stress. The integrated biological responses in Mytilus edulis strengthen the use of this organism to investigate the fundamental mechanism of development of malignancy in invertebrate which could be translated to other organisms including humans.
Asunto(s)
Benzo(a)pireno/toxicidad , Bivalvos/efectos de los fármacos , Bivalvos/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteínas ras/genética , Animales , Monitoreo del Ambiente , Proto-Oncogenes Mas , Reacción en Cadena en Tiempo Real de la PolimerasaRESUMEN
Sulfamethoxazole (SMX), recognized as emerging pollutant, has been frequently detected in aquatic environment. However, effects induced by SMX and the underneath mechanism on non-target aquatic organisms, marine mussels (Mytilus galloprovincialis), are still largely unknown. In present study, marine mussels were exposed to SMX (nominal concentrations 0.5, 50 and 500 µg/L) for 6 days, followed by 6 days depuration and responses of antioxidant defenses, e.g. superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST), etc., at transcriptional, translational and functional levels were evaluated in two vital tissues, gills and digestive glands. Results showed SMX can be accumulated in mussels while the bio-accumulative ability was low under the experimental condition. A systemic but not completely synchronous antioxidant defense at different levels upon SMX exposure. The transcriptional alteration was more sensitive and had the potential to be used as early warning of SMX induced ecotoxicity. Complementary function of antioxidant enzymes with specific alteration of metabolism related gene (gst) suggested that further researches should focused on SMX metabolism and SMX induced effects simultaneously. Significant tissue-specific antioxidant responses were discovered and gills showed earlier and quicker reacting ability than digestive glands, which was closely related to the functional diversity and different thresholds of xenobiotics allowance.
Asunto(s)
Mytilus , Contaminantes Químicos del Agua , Animales , Antibacterianos/toxicidad , Antioxidantes , Biomarcadores , Sulfametoxazol/toxicidad , Contaminantes Químicos del Agua/toxicidadRESUMEN
Genetic factors have been widely considered to have a substantial effect on the susceptibility to rheumatoid arthritis (RA). The purpose of this study was to determine whether the four newly discovered polymorphisms in a genome-wide association study (GWAS) meta-analysis confer susceptibility to RA in a Chinese Han population. We conducted a case-control study involving 359 RA cases and 873 age-and gender-matched controls and performed genotyping of four single nucleotide polymorphisms (SNPs), rs227163, rs726288, rs3783782 and rs2469434, using the dye terminator-based SNaPshot method. Consequently, we detected significant differences of genotype distribution of rs3783782 in PRKCH between RA and controls. The minor allele frequencies (MAFs) of rs3783782 were significantly higher in RA patients compared to control subjects. Moreover, the rs227163 in TNFRSF9 had higher MAFs in male RA compared with male controls. In addition, the polymorphism of rs3783782 in PRKCH was significantly associated with RA susceptibility (OR = 1.67, 95% CI = 1.32-2.11, p = 1.32 × 10-5). After stratification by gender, the minor (A) allele was strongly associated with increased risk for RA in males (OR = 1.87, 95% CI = 1.34-2.60; p = 1.62 × 10-4) and in females (OR = 1.51, 95% CI = 1.08-2.10; p = 0.014). For rs227163, the minor (C) allele was found to be associated with RA risk only in males (OR = 1.34, 95% CI = 1.02-1.75; p = 0.036). These findings for the first time confirmed that rs3783782 in PRKCH was associated with RA susceptibility in a Chinese population, and rs227163 in TNFRSF9 was associated with RA risk in Chinese males; these SNPs may serve as genetic markers for RA.
Asunto(s)
Artritis Reumatoide/genética , Estudio de Asociación del Genoma Completo/métodos , Polimorfismo de Nucleótido Simple/genética , Proteína Quinasa C/genética , Adulto , Anciano , Alelos , Pueblo Asiatico/genética , Estudios de Casos y Controles , Femenino , Frecuencia de los Genes/genética , Predisposición Genética a la Enfermedad/genética , Genotipo , Humanos , Masculino , Persona de Mediana EdadRESUMEN
The impacts of environmental pollutants on marine organisms can be determined by the routes of exposure. Various routes of exposure, including dietary exposure and waterborne exposure with or without feeding, were applied to study the cytogenetic responses in marine mussels Mytilus galloprovincials to typical pollutants, BaP (53.74 ± 19.79 µg/L) and Cu (47.38 ± 3.10 µg/L). The increased DNA strand breaks and micronucleus formation were found in haemocytes of mussels via the dietary exposure, indicating the vital role of trophic transfer in toxicity induction. The deeper exploration to relate BaP induced cytogenetic alterations with key antioxidant defense factors, SOD and GST, was performed under different exposure routes. The results revealed the significantly inhibited SOD activity via the trophic transfer, suggesting more direct or prompt role of SOD in antioxidant defense. On contrary, gene expressions of both sod and gst were up-regulated upon all routes of exposures, and showed negative correlation with enzyme activities. The results suggested the asynchronous regulation of studied antioxidant factors at transcriptional and enzyme functional level in mussels upon the change of exposure routes. The study brings out the first observation of trophic transfer influenced cytogenetic and antioxidant responses to pollutants and their alterative risk to marine organisms.