Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
J Transl Med ; 21(1): 736, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37853459

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is the third most deadly and fourth most diagnosed cancer worldwide. Despite the progress in early diagnosis and advanced therapeutic options, CRC shows a poor prognosis with a 5 year survival rate of ~ 45%. PRDM2/RIZ, a member of PR/SET domain family (PRDM), expresses two main molecular variants, the PR-plus isoform (RIZ1) and the PR-minus (RIZ2). The imbalance in their expression levels in favor of RIZ2 is observed in many cancer types. The full length RIZ1 has been extensively investigated in several cancers where it acts as a tumor suppressor, whereas few studies have explored the RIZ2 oncogenic properties. PRDM2 is often target of frameshift mutations and aberrant DNA methylation in CRC. However, little is known about its role in CRC. METHODS: We combined in-silico investigation of The Cancer Genome Atlas (TCGA) CRC datasets, cellular and molecular assays, transcriptome sequencing and functional annotation analysis to assess the role of RIZ2 in human CRC. RESULTS: Our in-silico analysis on TCGA datasets confirmed that PRDM2 gene is frequently mutated and transcriptionally deregulated in CRC and revealed that a RIZ2 increase is highly correlated with a significant RIZ1 downregulation. Then, we assayed several CRC cell lines by qRT-PCR analysis for the main PRDM2 transcripts and selected DLD1 cell line, which showed the lowest RIZ2 levels. Therefore, we overexpressed RIZ2 in these cells to mimic TCGA datasets analysis results and consequently to assess the PRDM2/RIZ2 role in CRC. Data from RNA-seq disclosed that RIZ2 overexpression induced profound changes in CRC cell transcriptome via EGF pathway deregulation, suggesting that RIZ2 is involved in the EGF autocrine regulation of DLD1 cell behavior. Noteworthy, the forced RIZ2 expression increased cell viability, growth, colony formation, migration and organoid formation. These effects could be mediated by the release of high EGF levels by RIZ2 overexpressing DLD1 cells. CONCLUSIONS: Our findings add novel insights on the putative RIZ2 tumor-promoting functions in CRC, although additional efforts are warranted to define the underlying molecular mechanism.


Asunto(s)
Neoplasias Colorrectales , Factor de Crecimiento Epidérmico , Humanos , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Receptores ErbB , Regulación Neoplásica de la Expresión Génica , Genes Supresores de Tumor , Células Tumorales Cultivadas
2.
Int J Mol Sci ; 23(16)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36012280

RESUMEN

Breast cancer is a heterogeneous disease that represents the most common cancer around the world; it comprises 12% of new cases according to the World Health Organization. Despite new approaches in early diagnosis and current treatment, breast cancer is still the leading cause of death for cancer mortality. New targeted therapies against key signalling transduction molecules are required. Phosphoinositide 3-kinase (PI3K) regulates multiple biological functions such as proliferation, survival, migration, and growth. It is well established that PI3K isoform-selective inhibitors show fewer toxic side effects compared to broad spectrum inhibition of PI3K (pan-PI3K inhibitors). Therefore, we tested the PI3K p110δ-selective inhibitor, IC87114, and Vps34-selective inhibitor, Vps34-IN1, on the breast cancer cell lines MCF-7 and MDA-MB-231, representing hormone-responsive and triple-negative breast cancer cells, respectively. Our data show that both inhibitors decreased migration of MCF-7 and MDA-MB-231 cells, and Vps34 also significantly impacted MCF-7 cell proliferation. Three-dimensional (3D) in vitro culture models show that IC87114 and Vps34-IN1 treatment reduced the growth of MCF-7 and MDA-MB-231 cells in 3D tumour spheroid cultures. This study identifies IC87114 and Vps34-IN1 as potential therapeutic approaches in breast cancer.


Asunto(s)
Neoplasias de la Mama , Fosfatidilinositol 3-Quinasas Clase III , Inhibidores de las Quinasa Fosfoinosítidos-3 , Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Fosfatidilinositol 3-Quinasas Clase III/antagonistas & inhibidores , Fosfatidilinositol 3-Quinasa Clase Ia , Femenino , Humanos , Células MCF-7 , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Transducción de Señal , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo
3.
Cell Commun Signal ; 19(1): 110, 2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34772427

RESUMEN

Despite the considerable efforts in screening and diagnostic protocols, prostate cancer still represents the second leading cause of cancer-related death in men. Many patients with localized disease and low risk of recurrence have a favourable outcome. In a substantial proportion of patients, however, the disease progresses and becomes aggressive. The mechanisms that promote prostate cancer progression remain still debated. Many findings point to the role of cross-communication between prostate tumor cells and their surrounding microenvironment during the disease progression. Such a connection fosters survival, proliferation, angiogenesis, metastatic spreading and drug-resistance of prostate cancer. Recent years have seen a profound interest in understanding the way by which prostate cancer cells communicate with the surrounding cells in the microenvironment. In this regard, direct cell-to-cell contacts and soluble factors have been identified. Increasing evidence indicates that PC cells communicate with the surrounding cells through the release of extracellular vesicles, mainly the exosomes. By directly acting in stromal or prostate cancer epithelial cells, exosomes represent a critical intercellular communication system. By querying the public database ( https://pubmed.ncbi.nlm.nih.gov ) for the past 10 years, we have found more than four hundred papers. Among them, we have extrapolated the most relevant about the role of exosomes in prostate cancer malignancy and progression. Emerging data concerning the use of these vesicles in diagnostic management and therapeutic guidance of PC patients are also presented. Video Abstract.


Asunto(s)
Exosomas
4.
Int J Mol Sci ; 20(22)2019 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-31726691

RESUMEN

Sirtuins, a family of nicotinamide adenine dinucleotide (NAD+)-dependent lysine deacetylases, are promising targets for anticancer treatment. Recently, we characterized a novel pan-sirtuin (SIRT) inhibitor, MC2494, displaying antiproliferative effects and able to induce death pathways in several human cancer cell lines and decrease tumor growth in vivo. Based on the chemical scaffold of MC2494, and by applying a structure-activity relationship approach, we developed a small library of derivative compounds and extensively analyzed their enzymatic action at cellular level as well as their ability to induce cell death. We also investigated the effect of MC2494 on regulation of cell cycle progression in different cancer cell lines. Our investigations indicated that chemical substitutions applied to MC2494 scaffold did not confer higher efficacy in terms of biological activity and SIRT1 inhibition, but carbethoxy-containing derivatives showed higher SIRT2 specificity. The carbethoxy derivative of MC2494 and its 2-methyl analog displayed the strongest enzymatic activity. Applied chemical modifications improved the enzymatic selectivity of these SIRT inhibitors. Additionally, the observed activity of MC2494 via cell cycle and apoptotic regulation and inhibition of cell migration supports the potential role of SIRTs as targets in tumorigenesis and makes SIRT-targeting molecules good candidates for novel pharmacological approaches in personalized medicine.


Asunto(s)
Antineoplásicos , Inhibidores de Histona Desacetilasas , Proteínas de Neoplasias , Neoplasias , Sirtuina 1 , Sirtuina 2 , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Células HL-60 , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Células K562 , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Molibdoferredoxina , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Neoplasias/patología , Sirtuina 1/antagonistas & inhibidores , Sirtuina 1/metabolismo , Sirtuina 2/antagonistas & inhibidores , Sirtuina 2/metabolismo , Células U937
6.
Bioconjug Chem ; 26(8): 1662-71, 2015 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-26108715

RESUMEN

Prostate cancer (PC) represents the most common type of cancer among males and is the second leading cause of cancer death in men in Western society. Current options for PC therapy remain unsatisfactory, since they often produce uncomfortable long-term side effects, such as impotence (70%) and incontinence (5-20%) even in the first stages of the disease. Light-triggered therapies, such as photodynamic therapy, have the potential to provide important advances in the treatment of localized and partially metastasized prostate cancer. We have designed a novel molecular conjugate (DR2) constituted of a photosensitizer (pheophorbide a, Pba), connected to a nonsteroidal anti-androgen molecule through a small pegylated linker. This study aims at investigating whether DR2 represents a valuable approach for PC treatment based on light-induced production of single oxygen and nitric oxide (NO) in vitro. Besides being able to efficiently bind the androgen receptor (AR), the 2-trifluoromethylnitrobenzene ring on the DR2 backbone is able to release cytotoxic NO under the exclusive control of light, thus augmenting the general photodynamic effect. Although DR2 is similarly internalized in cells expressing different levels of androgen receptor, the AR ligand prevents its efflux through the ABCG2-pump. In vitro phototoxicity experiments demonstrated the ability of DR2 to kill cancer cells more efficiently than Pba, while no dark toxicity was observed. Overall, the presented approach is very promising for further development of AR-photosensitizer conjugates in the multimodal photodynamic treatment of prostate cancer.


Asunto(s)
Antagonistas de Andrógenos/farmacología , Clorofila/análogos & derivados , Fotoquimioterapia , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Neoplasias de la Próstata/patología , Receptores Androgénicos/química , Antineoplásicos/farmacología , Clorofila/química , Humanos , Técnicas In Vitro , Masculino , Neoplasias de la Próstata/tratamiento farmacológico , Células Tumorales Cultivadas
7.
Steroids ; 205: 109380, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38311094

RESUMEN

Triple-negative breast cancer is a rare but highly heterogeneous breast cancer subtype with a limited choice of specific treatments. Chemotherapy remains the only efficient treatment, but its side effects and the development of resistance consolidate the urgent need to discover new targets. In TNBC, filamin A expression correlates to grade and TNM stage. Accordingly, this protein could constitute a new target for this BC subtype. Even if most of the data indicates its direct involvement in cancer progression, some contrasting results underline the need to deepen the studies. To elucidate a possible function of this protein as a TNBC marker, we summarized the main characteristic of filamin A and its involvement in physiological and pathological processes such as cancer. Lastly, we scrutinized its actions in triple-negative breast cancer and highlighted the need to increase the number of studies useful to better clarify the role of this versatile protein as a marker and target in TNBC, alone or in "collaboration" with other proteins with a relevant role in this BC subgroup.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Filaminas/genética
8.
Cell Biosci ; 13(1): 60, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36941697

RESUMEN

Prostate cancer (PC) represents the most diagnosed and the second most lethal cancer in men worldwide. Its development and progression occur in concert with alterations in the surrounding tumor microenvironment (TME), made up of stromal cells and extracellular matrix (ECM) that dynamically interact with epithelial PC cells affecting their growth and invasiveness. PC cells, in turn, can functionally sculpt the TME through the secretion of various factors, including neurotrophins. Among them, the nerve growth factor (NGF) that is released by both epithelial PC cells and carcinoma-associated fibroblasts (CAFs) triggers the activation of various intracellular signaling cascades, thereby promoting the acquisition of a metastatic phenotype. After many years of investigation, it is indeed well established that aberrations and/or derangement of NGF signaling are involved not only in neurological disorders, but also in the pathogenesis of human proliferative diseases, including PC. Another key feature of cancer progression is the nerve outgrowth in TME and the concept of nerve dependence related to perineural invasion is currently emerging. NGF released by cancer cells can be a driver of tumor neurogenesis and nerves infiltrated in TME release neurotransmitters, which might stimulate the growth and sustainment of tumor cells.In this review, we aim to provide a snapshot of NGF action in the interactions between TME, nerves and PC cells. Understanding the molecular basis of this dialogue might expand the arsenal of therapeutic strategies against this widespread disease.

9.
Cells ; 12(3)2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36766714

RESUMEN

Steroid hormones and growth factors control neuritogenesis through their cognate receptors under physiological and pathological conditions. We have already shown that nerve growth factor and androgens induce neurite outgrowth of PC12 cells through a reciprocal crosstalk between the NGF receptor, TrkA and the androgen receptor. Here, we report that androgens or NGF induce neuritogenesis in PC12 cells through inactivation of RhoA. Ectopic expression of the dominant negative RhoA N19 promotes, indeed, the neurite-elongation of unchallenged and androgen- or NGF-challenged PC12 cells and the increase in the expression levels of ßIII tubulin, a specific neuronal marker. Pharmacological inhibition of the Ser/Thr kinase ROCK, an RhoA effector, induces neuritogenesis in unchallenged PC12 cells, and potentiates the effect of androgens and NGF, confirming the role of RhoA/ROCK axis in the neuritogenesis induced by androgen and NGF, through the phosphorylation of Akt. These findings suggest that therapies based on new selective androgen receptor modulators and/or RhoA/ROCK inhibitors might exert beneficial effects in the treatment of neuro-disorders, neurological diseases and ageing-related processes.


Asunto(s)
Andrógenos , Neuritas , Animales , Ratas , Andrógenos/farmacología , Andrógenos/metabolismo , Factor de Crecimiento Nervioso/farmacología , Factor de Crecimiento Nervioso/metabolismo , Neuritas/metabolismo , Proyección Neuronal , Células PC12 , Receptores Androgénicos/metabolismo
10.
Cancers (Basel) ; 15(19)2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37835408

RESUMEN

Pancreatic cancer (PaC) is one of the most lethal tumors worldwide, difficult to diagnose, and with inadequate therapeutical chances. The most used therapy is gemcitabine, alone or in combination with nanoparticle albumin-bound paclitaxel (nab-paclitaxel), and the multidrug FOLFIRINOX. Unfortunately, PaC develops resistance early, thus reducing the already poor life expectancy of patients. The mechanisms responsible for drug resistance are not fully elucidated, and exosomes seem to be actively involved in this phenomenon, thanks to their ability to transfer molecules regulating this process from drug-resistant to drug-sensitive PaC cells. These extracellular vesicles are released by both normal and cancer cells and seem to be essential mediators of intercellular communications, especially in cancer, where they are secreted at very high numbers. This review illustrates the role of exosomes in PaC drug resistance. This manuscript first provides an overview of the pharmacological approaches used in PaC and, in the last part, focuses on the mechanisms exploited by the exosomes released by cancer cells to induce drug resistance.

11.
Cell Death Discov ; 9(1): 437, 2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38040692

RESUMEN

Aging induces a slow and progressive decrease in muscle mass and function, causing sarcopenia. Androgens control muscle trophism and exert important anabolic functions through the binding to the androgen receptor. Therefore, analysis of the androgen receptor-mediated actions in skeletal muscle might provide new hints for a better understanding of sarcopenia pathogenesis. In this study, we report that expression of the androgen receptor in skeletal muscle biopsies from 20 subjects is higher in young, as compared with old subjects. Co-immunoprecipitation experiments reveal that the androgen receptor is complexed with filamin A mainly in young, that in old subjects. Therefore, we have in depth analyzed the role of such complex using C2C12 myoblasts that express a significant amount of the androgen receptor. In these cells, hormone stimulation rapidly triggers the assembly of the androgen receptor/filamin A complex. Such complex prevents the senescence induced by oxidative stress in C2C12 cells, as disruption of the androgen receptor/filamin A complex by Rh-2025u stapled peptide re-establishes the senescent phenotype in C2C12 cells. Simultaneously, androgen stimulation of C2C12 cells rapidly triggers the activation of various signaling effectors, including Rac1, focal adhesion kinase, and mitogen-activated kinases. Androgen receptor blockade by bicalutamide or perturbation of androgen receptor/filamin A complex by Rh-2025u stapled peptide both reverse the hormone activation of signaling effectors. These findings further reinforce the role of the androgen receptor and its extranuclear partners in the rapid hormone signaling that controls the functions of C2C12 cells. Further investigations are needed to promote clinical interventions that might ameliorate muscle cell function as well the clinical outcome of age-related frailty.

12.
Front Endocrinol (Lausanne) ; 13: 840787, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35222290

RESUMEN

Prostate cancer is the second most frequently diagnosed cancer in men and several therapeutic approaches are currently available for patient's care. Although the androgen receptor status represents a good predictor of response to androgen deprivation therapy, prostate cancer frequently becomes resistant to this approach and spreads. The molecular mechanisms that contribute to progression and drug-resistance of this cancer remain still debated. However, few therapeutic options are available for patient's management, at this stage. Recent years have seen a great expansion of the studies concerning the role of stromal-epithelial interactions and tumor microenvironment in prostate cancer progression. The findings so far collected have provided new insights into diagnostic and clinical management of prostate cancer patients. Further, new fascinating aspects concerning the intersection of the androgen receptor with survival factors as well as calcium channels have been reported in cultured prostate cancer cells and mouse models. The results of these researches have opened the way for a better understanding of the basic mechanisms involved in prostate cancer invasion and drug-resistance. They have also significantly expanded the list of new biomarkers and druggable targets in prostate cancer. The primary aim of this manuscript is to provide an update of these issues, together with their translational aspects. Exploiting the power of novel promising therapeutics would increase the success rate in the diagnostic path and clinical management of patients with advanced disease.


Asunto(s)
Antagonistas de Andrógenos , Neoplasias de la Próstata , Antagonistas de Andrógenos/uso terapéutico , Animales , Humanos , Masculino , Ratones , Próstata/patología , Neoplasias de la Próstata/tratamiento farmacológico , Microambiente Tumoral
13.
Cancers (Basel) ; 14(22)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36428610

RESUMEN

The globalization and the changes in consumer lifestyles are forcing us to face a deep transformation in food demand and in the organization of the entire food production system. In this new era, the food-loss and food-waste security nexus is relevant in the global debate and avoiding unsustainable waste in agri-food systems as well as the supply chain is a big challenge. "Food waste" is useful for the recovery of its valuable components, thus it can assume the connotation of a "food by-product". Sustainable utilization of agri-food waste by-products provides a great opportunity. Increasing evidence shows that agri-food by-products are a source of different bioactive molecules that lower the inflammatory state and, hence, the aggressiveness of several proliferative diseases. This review aims to summarize the effects of agri-food by-products derivatives, already recognized as promising therapeutics in human diseases, including different cancer types, such as breast, prostate, and colorectal cancer. Here, we examine products modulating or interfering in the signaling mediated by the epidermal growth factor receptor.

14.
Cancers (Basel) ; 14(14)2022 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-35884410

RESUMEN

A major challenge in the clinical management of prostate cancer (PC) is to inhibit tumor growth and prevent metastatic spreading. In recent years, considerable efforts have been made to discover new compounds useful for PC therapy, and promising advances in this field were reached. Drugs currently used in PC therapy frequently induce resistance and PC progresses toward metastatic castration-resistant forms (mCRPC), making it virtually incurable. Curcumin, a commercially available nutritional supplement, represents an attractive therapeutic agent for mCRPC patients. In the present study, we compared the effects of chemotherapeutic drugs such as docetaxel, paclitaxel, and cisplatin, to curcumin, on two PC cell lines displaying a different metastatic potential: DU145 (moderate metastatic potential) and PC-3 (high metastatic potential). Our results revealed a dose-dependent reduction of DU145 and PC-3 cell viability upon treatment with curcumin similar to chemotherapeutic agents (paclitaxel, cisplatin, and docetaxel). Furthermore, we explored the EGFR-mediated signaling effects on ERK activation in DU145 and PC-3 cells. Our results showed that DU145 and PC-3 cells overexpress EGFR, and the treatment with chemotherapeutic agents or curcumin reduced EGFR expression levels and ERK activation. Finally, chemotherapeutic agents and curcumin reduced the size of DU145 and PC-3 spheroids and have the potential to induce apoptosis and also in Matrigel. In conclusion, despite different studies being carried out to identify the potential synergistic curcumin combinations with chemopreventive/therapeutic efficacy for inhibiting PC growth, the results show the ability of curcumin used alone, or in combinatorial approaches, to impair the size and the viability of PC-derived spheroids.

15.
Eur J Med Chem ; 238: 114435, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35598411

RESUMEN

TRPM8 has recently emerged as a druggable target in prostate cancer (PC) and TRPM8 modulators have been proposed as potential anticancer agents in this pathology. We have recently demonstrated their effectiveness in a castration-resistant prostate cancer (CRPC) model that is usually resistant to androgen deprivation therapy (ADT) and is considered the most aggressive form of PC. This is why the discovery of selective, effective, and potent TRPM8 modulators would improve the molecular arsenal in support of PC standard-of-care treatments. In the present paper we describe the design and the synthesis of a new series of TRPM8 antagonists, preliminarily characterized in vitro for their potency and selectivity by fluorimetric calcium assays. The preliminary screening allowed the identification of several potent (0.11 µM < IC50 < 0.49 µM) and selective compounds. The most potent derivatives were further characterized by patch-clamp electrophysiology assays, confirming their noteworthy activity. Moreover, the behavior of these compounds was investigated in 2D and 3D models of PC. These TRPM8 antagonists showed remarkable efficacy in inhibiting the growth induced by androgen in various PC cells as well as in CRPC models, confirming their potential as anticancer agents.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Canales Catiónicos TRPM , Antagonistas de Andrógenos , Andrógenos , Humanos , Masculino , Proteínas de la Membrana , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/patología
16.
Front Cell Dev Biol ; 9: 676568, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34268306

RESUMEN

Triple-negative breast cancer is a heterogeneous disease that still lacks specific therapeutic approaches. The identification of new biomarkers, predictive of the disease's aggressiveness and pharmacological response, is a challenge for a more tailored approach in the clinical management of patients. Nerve growth factor, initially identified as a key factor for neuronal survival and differentiation, turned out to be a multifaceted molecule with pleiotropic effects in quite divergent cell types, including cancer cells. Many solid tumors exhibit derangements of the nerve growth factor and its receptors, including the tropomyosin receptor kinase A. This receptor is expressed in triple-negative breast cancer, although its role in the pathogenesis and aggressiveness of this disease is still under investigation. We now report that triple-negative breast cancer-derived MDA-MB-231 and MDA-MB-453 cells express appreciable levels of tropomyosin receptor kinase A and release a biologically active nerve growth factor. Activation of tropomyosin receptor kinase by nerve growth factor treatment positively affects the migration, invasion, and proliferation of triple-negative breast cancer cells. An increase in the size of triple-negative breast cancer cell spheroids is also detected. This latter effect might occur through the nerve growth factor-induced release of matrix metalloproteinase 9, which contributes to the reorganization of the extracellular matrix and cell invasiveness. The tropomyosin receptor kinase A inhibitor GW441756 reverses all these responses. Co-immunoprecipitation experiments in both cell lines show that nerve growth factor triggers the assembly of the TrkA/ß1-integrin/FAK/Src complex, thereby activating several downstream effectors. GW441756 prevents the complex assembly induced by nerve growth factor as well as the activation of its dependent signaling. Pharmacological inhibition of the tyrosine kinases Src and FAK (focal adhesion kinase), together with the silencing of ß1-integrin, shows that the tyrosine kinases impinge on both proliferation and motility, while ß1-integrin is needed for motility induced by nerve growth factor in triple-negative breast cancer cells. The present data support the key role of the nerve growth factor/tropomyosin receptor kinase A pathway in triple-negative breast cancer and offer new hints in the diagnostic and therapeutic management of patients.

17.
Cells ; 11(1)2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-35011576

RESUMEN

Prostate cancer (PC) is one of the most widespread malignancies among males worldwide. The androgen receptor (AR) plays a major role in prostate cancer development and progression and is the main target of PC therapy. Nonetheless, its action is not yet fully elucidated. We report here that the AR associates with Filamin A (FlnA) promoting migration and invasiveness of various PC-derived cells after androgen challenging. Inhibition of the AR/FlnA complex assembly by a very low concentration of Rh-2025u, an AR-derived peptide specifically interfering with this association, impairs such phenotype in monolayer cells and in 3D models. This study, together with our recent data in cancer-associated fibroblasts (CAFs), indicates that targeting the AR/FlnA complex could improve the clinical management of invasive PC, as the limited number of new drugs reaching the market suggests that we must re-examine the way invasive PC is currently treated. In this context, the synthesis of new biologically active molecules, such as the Rh-2025u peptide, which has been shown to efficiently interfere in the complex assembly in CAFs and PC cells, should overcome the limits of current available therapies, mostly based on hormone antagonists.


Asunto(s)
Filaminas/metabolismo , Péptidos/farmacología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Receptores Androgénicos/metabolismo , Andrógenos/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Humanos , Ligandos , Masculino , Modelos Biológicos , Invasividad Neoplásica , Fenotipo , Fosforilación/efectos de los fármacos , Neoplasias de la Próstata/genética , Unión Proteica/efectos de los fármacos , Receptores Androgénicos/genética , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patología , Transcripción Genética/efectos de los fármacos , Proteína de Unión al GTP rac1/metabolismo
18.
Sci Rep ; 11(1): 23232, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34853378

RESUMEN

Transient receptor potential melastatin-8 (TRPM8) represents an emerging target in prostate cancer, although its mechanism of action remains unclear. Here, we have characterized and investigated the effects of TRPM8 modulators in prostate cancer aggressiveness disclosing the molecular mechanism underlying their biological activity. Patch-clamp and calcium fluorometric assays were used to characterize the synthesized compounds. Androgen-stimulated prostate cancer-derived cells were challenged with the compounds and the DNA synthesis was investigated in a preliminary screening. The most effective compounds were then employed to inhibit the pro-metastatic behavior of in various PC-derived cells, at different degree of malignancy. The effect of the compounds was then assayed in prostate cancer cell-derived 3D model and the molecular targets of selected compounds were lastly identified using transcriptional and non-transcriptional reporter assays. TRPM8 antagonists inhibit the androgen-dependent prostate cancer cell proliferation, migration and invasiveness. They are highly effective in reverting the androgen-induced increase in prostate cancer cell spheroid size. The compounds also revert the proliferation of castrate-resistant prostate cancer cells, provided they express the androgen receptor. In contrast, no effects were recorded in prostate cancer cells devoid of the receptor. Selected antagonists interfere in non-genomic androgen action and abolish the androgen-induced androgen receptor/TRPM8 complex assembly as well as the increase in intracellular calcium levels in prostate cancer cells. Our results shed light in the processes controlling prostate cancer progression and make the transient receptor potential melastatin-8 as a 'druggable' target in the androgen receptor-expressing prostate cancers.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Canales Catiónicos TRPM/agonistas , Canales Catiónicos TRPM/antagonistas & inhibidores , Andrógenos/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Humanos , Masculino , Invasividad Neoplásica , Receptores Androgénicos , Esferoides Celulares
19.
Cell Death Dis ; 12(1): 127, 2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33500395

RESUMEN

Prostate cancer represents the major cause of cancer-related death in men and patients frequently develop drug-resistance and metastatic disease. Most studies focus on hormone-resistance mechanisms related to androgen receptor mutations or to the acquired property of prostate cancer cells to over-activate signaling pathways. Tumor microenvironment plays a critical role in prostate cancer progression. However, the mechanism involving androgen/androgen receptor signaling in cancer associated fibroblasts and consequences for prostate cancer progression still remains elusive. We now report that prostate cancer associated fibroblasts express a transcriptional-incompetent androgen receptor. Upon androgen challenging, the receptor co-localizes with the scaffold protein filamin A in the extra-nuclear compartment of fibroblasts, thus mediating their migration and invasiveness. Cancer-associated fibroblasts move towards epithelial prostate cancer cells in 2D and 3D cultures, thereby inducing an increase of the prostate cancer organoid size. Androgen enhances both these effects through androgen receptor/filamin A complex assembly in cancer-associated fibroblasts. An androgen receptor-derived stapled peptide, which disrupts the androgen receptor/filamin A complex assembly, abolishes the androgen-dependent migration and invasiveness of cancer associated fibroblasts. Notably, the peptide impairs the androgen-induced invasiveness of CAFs in 2D models and reduces the overall tumor area in androgen-treated 3D co-culture. The androgen receptor in association with ß1 integrin and membrane type-matrix metalloproteinase 1 activates a protease cascade triggering extracellular matrix remodeling. The peptide also impairs the androgen activation of this cascade. This study offers a potential new marker, the androgen receptor/filamin A complex, and a new therapeutic approach targeting intracellular pathways activated by the androgen/androgen receptor axis in prostate cancer-associated fibroblasts. Such a strategy, alone or in combination with conventional therapies, may allow a more efficient treatment of prostate cancer.


Asunto(s)
Filaminas/metabolismo , Neoplasias de la Próstata/genética , Humanos , Masculino , Transfección , Microambiente Tumoral
20.
Exp Mol Med ; 52(2): 192-203, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32060354

RESUMEN

Reactive oxygen species (ROS) constitute a group of highly reactive molecules that have evolved as regulators of important signaling pathways. It is now well accepted that moderate levels of ROS are required for several cellular functions, including gene expression. The production of ROS is elevated in tumor cells as a consequence of increased metabolic rate, gene mutation and relative hypoxia, and excess ROS are quenched by increased antioxidant enzymatic and nonenzymatic pathways in the same cells. Moderate increases of ROS contribute to several pathologic conditions, among which are tumor promotion and progression, as they are involved in different signaling pathways and induce DNA mutation. However, ROS are also able to trigger programmed cell death (PCD). Our review will emphasize the molecular mechanisms useful for the development of therapeutic strategies that are based on modulating ROS levels to treat cancer. Specifically, we will report on the growing data that highlight the role of ROS generated by different metabolic pathways as Trojan horses to eliminate cancer cells.


Asunto(s)
Neoplasias/genética , Neoplasias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , ADN/genética , Humanos , Redes y Vías Metabólicas/genética , Redes y Vías Metabólicas/fisiología , Mutación/genética , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA