Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(7): 4002-4020, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38321934

RESUMEN

Poly(ADP-ribosylation) (PARylation) is a post-translational modification mediated by a subset of ADP-ribosyl transferases (ARTs). Although PARylation-inhibition based therapies are considered as an avenue to combat debilitating diseases such as cancer and myopathies, the role of this modification in physiological processes such as cell differentiation remains unclear. Here, we show that Tankyrase1 (TNKS1), a PARylating ART, plays a major role in myogenesis, a vital process known to drive muscle fiber formation and regeneration. Although all bona fide PARPs are expressed in muscle cells, experiments using siRNA-mediated knockdown or pharmacological inhibition show that TNKS1 is the enzyme responsible of catalyzing PARylation during myogenesis. Via this activity, TNKS1 controls the turnover of mRNAs encoding myogenic regulatory factors such as nucleophosmin (NPM) and myogenin. TNKS1 mediates these effects by targeting RNA-binding proteins such as Human Antigen R (HuR). HuR harbors a conserved TNKS-binding motif (TBM), the mutation of which not only prevents the association of HuR with TNKS1 and its PARylation, but also precludes HuR from regulating the turnover of NPM and myogenin mRNAs as well as from promoting myogenesis. Therefore, our data uncover a new role for TNKS1 as a key modulator of RBP-mediated post-transcriptional events required for vital processes such as myogenesis.


Asunto(s)
Desarrollo de Músculos , Fibras Musculares Esqueléticas , Miogenina , ARN Mensajero , Tanquirasas , Tanquirasas/metabolismo , Tanquirasas/genética , Humanos , ARN Mensajero/metabolismo , ARN Mensajero/genética , Desarrollo de Músculos/genética , Animales , Fibras Musculares Esqueléticas/metabolismo , Ratones , Miogenina/genética , Miogenina/metabolismo , Nucleofosmina , Proteína 1 Similar a ELAV/metabolismo , Proteína 1 Similar a ELAV/genética , Estabilidad del ARN/genética , Poli ADP Ribosilación/genética , Línea Celular , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Diferenciación Celular/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Células HEK293
2.
Nucleic Acids Res ; 51(3): 1375-1392, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36629268

RESUMEN

mRNA stability is the mechanism by which cells protect transcripts allowing their expression to execute various functions that affect cell metabolism and fate. It is well-established that RNA binding proteins (RBPs) such as HuR use their ability to stabilize mRNA targets to modulate vital processes such as muscle fiber formation (myogenesis). However, the machinery and the mechanisms regulating mRNA stabilization are still elusive. Here, we identified Y-Box binding protein 1 (YB1) as an indispensable HuR binding partner for mRNA stabilization and promotion of myogenesis. Both HuR and YB1 bind to 409 common mRNA targets, 147 of which contain a U-rich consensus motif in their 3' untranslated region (3'UTR) that can also be found in mRNA targets in other cell systems. YB1 and HuR form a heterodimer that associates with the U-rich consensus motif to stabilize key promyogenic mRNAs. The formation of this complex involves a small domain in HuR (227-234) that if mutated prevents HuR from reestablishing myogenesis in siHuR-treated muscle cells. Together our data uncover that YB1 is a key player in HuR-mediated stabilization of pro-myogenic mRNAs and provide the first indication that the mRNA stability mechanism is as complex as other key cellular processes such as mRNA decay and translation.


Asunto(s)
Proteína 1 Similar a ELAV , Fibras Musculares Esqueléticas , Factores de Transcripción , Regiones no Traducidas 3' , Proteínas ELAV/genética , Proteínas ELAV/metabolismo , Proteína 1 Similar a ELAV/metabolismo , Desarrollo de Músculos , Fibras Musculares Esqueléticas/metabolismo , Estabilidad del ARN , ARN Mensajero/metabolismo , Línea Celular , Animales , Ratones , Factores de Transcripción/metabolismo
3.
Proc Natl Acad Sci U S A ; 116(35): 17261-17270, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31405989

RESUMEN

Debilitating cancer-induced muscle wasting, a syndrome known as cachexia, is lethal. Here we report a posttranscriptional pathway involving the RNA-binding protein HuR as a key player in the onset of this syndrome. Under these conditions, HuR switches its function from a promoter of muscle fiber formation to become an inducer of muscle loss. HuR binds to the STAT3 (signal transducer and activator of transcription 3) mRNA, which encodes one of the main effectors of this condition, promoting its expression both in vitro and in vivo. While HuR does not affect the stability and the cellular movement of this transcript, HuR promotes the translation of the STAT3 mRNA by preventing miR-330 (microRNA 330)-mediated translation inhibition. To achieve this effect, HuR directly binds to a U-rich element in the STAT3 mRNA-3'untranslated region (UTR) located within the vicinity of the miR-330 seed element. Even though the binding sites of HuR and miR-330 do not overlap, the recruitment of either one of them to the STAT3-3'UTR negatively impacts the binding and the function of the other factor. Therefore, together, our data establish the competitive interplay between HuR and miR-330 as a mechanism via which muscle fibers modulate, in part, STAT3 expression to determine their fate in response to promoters of muscle wasting.


Asunto(s)
Proteína 1 Similar a ELAV/metabolismo , MicroARNs/metabolismo , Atrofia Muscular/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentales/metabolismo , Biosíntesis de Proteínas , ARN Neoplásico/metabolismo , Factor de Transcripción STAT3/biosíntesis , Regiones no Traducidas 3' , Animales , Proteína 1 Similar a ELAV/genética , Masculino , Ratones , Ratones Noqueados , MicroARNs/genética , Atrofia Muscular/genética , Proteínas de Neoplasias/genética , Neoplasias Experimentales/genética , Neoplasias Experimentales/patología , ARN Neoplásico/genética , Factor de Transcripción STAT3/genética
4.
J Cell Physiol ; 236(10): 6836-6851, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33855709

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a disease of progressive scarring caused by excessive extracellular matrix (ECM) deposition and activation of α-SMA-expressing myofibroblasts. Human antigen R (HuR) is an RNA binding protein that promotes protein translation. Upon translocation from the nucleus to the cytoplasm, HuR functions to stabilize messenger RNA (mRNA) to increase protein levels. However, the role of HuR in promoting ECM production, myofibroblast differentiation, and lung fibrosis is unknown. Human lung fibroblasts (HLFs) treated with transforming growth factor ß1 (TGF-ß1) showed a significant increase in translocation of HuR from the nucleus to the cytoplasm. TGF-ß-treated HLFs that were transfected with HuR small interfering RNA had a significant reduction in α-SMA protein as well as the ECM proteins COL1A1, COL3A, and FN1. HuR was also bound to mRNA for ACTA2, COL1A1, COL3A1, and FN. HuR knockdown affected the mRNA stability of ACTA2 but not that of the ECM genes COL1A1, COL3A1, or FN. In mouse models of pulmonary fibrosis, there was higher cytoplasmic HuR in lung structural cells compared to control mice. In human IPF lungs, there was also more cytoplasmic HuR. This study is the first to show that HuR in lung fibroblasts controls their differentiation to myofibroblasts and consequent ECM production. Further research on HuR could assist in establishing the basis for the development of new target therapy for fibrotic diseases, such as IPF.


Asunto(s)
Transdiferenciación Celular , Proteína 1 Similar a ELAV/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/metabolismo , Miofibroblastos/metabolismo , Actinas/genética , Actinas/metabolismo , Animales , Transdiferenciación Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Proteína 1 Similar a ELAV/genética , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/patología , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Regulación de la Expresión Génica , Humanos , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/patología , Pulmón/efectos de los fármacos , Pulmón/patología , Ratones , Miofibroblastos/patología , Factor de Crecimiento Transformador beta1/farmacología
5.
EMBO Rep ; 19(5)2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29592859

RESUMEN

Cellular senescence is a physiological response by which an organism halts the proliferation of potentially harmful and damaged cells. However, the accumulation of senescent cells over time can become deleterious leading to diseases and physiological decline. Our data reveal a novel interplay between senescence and the stress response that affects both the progression of senescence and the behavior of senescent cells. We show that constitutive exposure to stress induces the formation of stress granules (SGs) in proliferative and presenescent cells, but not in fully senescent cells. Stress granule assembly alone is sufficient to decrease the number of senescent cells without affecting the expression of bona fide senescence markers. SG-mediated inhibition of senescence is associated with the recruitment of the plasminogen activator inhibitor-1 (PAI-1), a known promoter of senescence, to these entities. PAI-1 localization to SGs increases the translocation of cyclin D1 to the nucleus, promotes RB phosphorylation, and maintains a proliferative, non-senescent state. Together, our data indicate that SGs may be targets of intervention to modulate senescence in order to impair or prevent its deleterious effects.


Asunto(s)
Senescencia Celular , Gránulos Citoplasmáticos/metabolismo , Inhibidor 1 de Activador Plasminogénico/metabolismo , Estrés Fisiológico , Línea Celular , Núcleo Celular/metabolismo , Ciclina D1/genética , Ciclina D1/metabolismo , Humanos , Fosforilación , Inhibidor 1 de Activador Plasminogénico/genética
6.
Nucleic Acids Res ; 46(15): 7643-7661, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-29939290

RESUMEN

RNA processing is critical for proper spatial and temporal control of gene expression. The ubiquitous nuclear polyadenosine RNA binding protein, PABPN1, post-transcriptionally regulates multiple steps of gene expression. Mutations in the PABPN1 gene expanding an N-terminal alanine tract in the PABPN1 protein from 10 alanines to 11-18 alanines cause the muscle-specific disease oculopharyngeal muscular dystrophy (OPMD), which affects eyelid, pharynx, and proximal limb muscles. Previous work revealed that the Pabpn1 transcript is unstable, contributing to low steady-state Pabpn1 mRNA and protein levels in vivo, specifically in skeletal muscle, with even lower levels in muscles affected in OPMD. Thus, low levels of PABPN1 protein could predispose specific tissues to pathology in OPMD. However, no studies have defined the mechanisms that regulate Pabpn1 expression. Here, we define multiple cis-regulatory elements and a trans-acting factor, HuR, which regulate Pabpn1 expression specifically in mature muscle in vitro and in vivo. We exploit multiple models including C2C12 myotubes, primary muscle cells, and mice to determine that HuR decreases Pabpn1 expression. Overall, we have uncovered a mechanism in mature muscle that negatively regulates Pabpn1 expression in vitro and in vivo, which could provide insight to future studies investigating therapeutic strategies for OPMD treatment.


Asunto(s)
Proteína 1 Similar a ELAV/genética , Regulación de la Expresión Génica , Proteína I de Unión a Poli(A)/genética , Proteínas de Unión al ARN/genética , Animales , Línea Celular , Modelos Animales de Enfermedad , Proteína 1 Similar a ELAV/metabolismo , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular Oculofaríngea/genética , Distrofia Muscular Oculofaríngea/metabolismo , Distrofia Muscular Oculofaríngea/patología , Mutación , Células 3T3 NIH , Proteína I de Unión a Poli(A)/metabolismo , Proteínas de Unión al ARN/metabolismo
7.
Biomolecules ; 14(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39199320

RESUMEN

Translation is one of the main gene expression steps targeted by cellular stress, commonly referred to as translational stress, which includes treatment with anticancer drugs. While translational stress blocks the translation initiation of bulk mRNAs, it nonetheless activates the translation of specific mRNAs known as short upstream open reading frames (uORFs)-mRNAs. Among these, the ATF4 mRNA encodes a transcription factor that reprograms gene expression in cells responding to various stresses. Although the stress-induced translation of the ATF4 mRNA relies on the presence of uORFs (upstream to the main ATF4 ORF), the mechanisms mediating this effect, particularly during chemoresistance, remain elusive. Here, we report that ALKBH5 (AlkB Homolog 5) and FTO (FTO: Fat mass and obesity-associated protein), the two RNA demethylating enzymes, promote the translation of ATF4 mRNA in a transformed liver cell line (Hep3B) treated with the chemotherapeutic drug sorafenib. Using the in vitro luciferase reporter translational assay, we found that depletion of both enzymes reduced the translation of the reporter ATF4 mRNA upon drug treatment. Consistently, depletion of either protein abrogates the loading of the ATF3 mRNA into translating ribosomes as assessed by polyribosome assays coupled to RT-qPCR. Collectively, these results indicate that the ALKBH5 and FTO-mediated translation of the ATF4 mRNA is regulated at its initiation step. Using in vitro methylation assays, we found that ALKBH5 is required for the inhibition of the methylation of a reporter ATF4 mRNA at a conserved adenosine (A235) site located at its uORF2, suggesting that ALKBH5-mediated translation of ATF4 mRNA involves demethylation of its A235. Preventing methylation of A235 by introducing an A/G mutation into an ATF4 mRNA reporter renders its translation insensitive to ALKBH5 depletion, supporting the role of ALKBH5 demethylation activity in translation. Finally, targeting either ALKBH5 or FTO sensitizes Hep3B to sorafenib-induced cell death, contributing to their resistance. In summary, our data show that ALKBH5 and FTO are novel factors that promote resistance to sorafenib treatment, in part by mediating the translation of ATF4 mRNA.


Asunto(s)
Factor de Transcripción Activador 4 , Desmetilasa de ARN, Homólogo 5 de AlkB , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Carcinoma Hepatocelular , Neoplasias Hepáticas , ARN Mensajero , Sorafenib , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Sorafenib/farmacología , Humanos , Factor de Transcripción Activador 4/metabolismo , Factor de Transcripción Activador 4/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Línea Celular Tumoral , Biosíntesis de Proteínas/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Antineoplásicos/farmacología
8.
Life Sci Alliance ; 7(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38538092

RESUMEN

HuR (ElavL1) is one of the main post-transcriptional regulators that determines cell fate. Although the role of HuR in apoptosis is well established, the post-translational modifications that govern this function remain elusive. In this study, we show that PARP1/2-mediated poly(ADP)-ribosylation (PARylation) is instrumental in the pro-apoptotic function of HuR. During apoptosis, a substantial reduction in HuR PARylation is observed. This results in the cytoplasmic accumulation and the cleavage of HuR, both of which are essential events for apoptosis. These effects are mediated by a pADP-ribose-binding motif within the HuR-HNS region (HuR PAR-binding site). Under normal conditions, the association of the HuR PAR-binding site with pADP-ribose is responsible for the nuclear retention of HuR. Mutations within this motif prevent the binding of HuR to its import factor TRN2, leading to its cytoplasmic accumulation and cleavage. Collectively, our findings underscore the role of PARylation in controlling the pro-apoptotic function of HuR, offering insight into the mechanism by which PARP1/2 enzymes regulate cell fate and adaptation to various assaults.


Asunto(s)
Procesamiento Proteico-Postraduccional , Ribosa , Mutación , Diferenciación Celular , Dominios Proteicos
9.
J Biol Chem ; 286(18): 15998-6007, 2011 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-21454676

RESUMEN

Down-regulation of overabundant interleukin (IL)-8 present in cystic fibrosis (CF) airways could ease excessive neutrophil burden and its deleterious consequences for the lung. IL-8 production in airway epithelial cells, stimulated with e.g. inflammatory cytokines IL-1ß and tumor necrosis factor (TNF)-α, is regulated by several signaling pathways including nuclear factor (NF)-κB and p38 mitogen-activated protein kinase (MAPK). We previously demonstrated that the anti-inflammatory drugs dexamethasone and ibuprofen suppress NF-κB; however, only dexamethasone down-regulates cytokine-induced IL-8, highlighting the importance of non-NF-κB mechanisms. Here, we tested the hypothesis that down-regulation of cytokine-induced IL-8 requires modulation of the MAPK phosphatase (MKP)-1/p38 MAPK/mRNA stability pathway. The effects of dexamethasone (5 nm) and ibuprofen (480 µm) on this pathway and IL-8 were studied in CF (CFTE29o-, CFBE41o-) and non-CF (1HAEo-) airway epithelial cells. We observed that dexamethasone, but not ibuprofen, destabilizes IL-8 mRNA and up-regulates MKP-1 mRNA. Further, siRNA silencing of MKP-1, via p38 MAPK, leads to IL-8 overproduction and diminishes the anti-IL-8 potential of dexamethasone. However, MKP-1 overexpression does not significantly alter IL-8 production. By contrast, direct inhibition of p38 MAPK (inhibitor SB203580) efficiently suppresses IL-8 with potency comparable with dexamethasone. Similar to dexamethasone, SB203580 decreases IL-8 mRNA stability. Dexamethasone does not affect p38 MAPK activation, which excludes its effects upstream of p38 MAPK. In conclusion, normal levels of MKP-1 are necessary for a full anti-IL-8 potential of pharmacological agents; however, efficient pharmacological down-regulation of cytokine-induced IL-8 also requires direct effects on p38 MAPK and mRNA stability independently of MKP-1.


Asunto(s)
Fosfatasa 1 de Especificidad Dual/metabolismo , Interleucina-8/biosíntesis , Estabilidad del ARN/fisiología , ARN Mensajero/biosíntesis , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Antiinflamatorios/farmacología , Línea Celular , Dexametasona/farmacocinética , Fosfatasa 1 de Especificidad Dual/genética , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Humanos , Ibuprofeno/farmacología , Imidazoles/farmacología , Interleucina-8/genética , Piridinas/farmacología , Estabilidad del ARN/efectos de los fármacos , ARN Mensajero/genética , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/genética
10.
Biochim Biophys Acta ; 1813(9): 1663-7, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21315776

RESUMEN

The process of muscle cell differentiation into myotubes, termed myogenesis, depends on a complex coordination of myogenic factors, many of which are regulated post-transcriptionally. HuR, an mRNA-binding protein, is responsible for regulating the expression of several such myogenic factors by stabilizing their mRNAs. The critical role for HuR in myogenesis also involves the nucleocytoplasmic shuttling ability of this protein. Indeed, in order to perform its stabilizing functions, HuR must accumulate in the cytoplasm. This requires its dissociation from the import factor Transportin 2 (TRN2) which is actually caused by the cleavage of a portion of cytoplasmic HuR. In this review, we describe the roles of HuR during myogenesis, and the mechanisms regulating its cytoplasmic accumulation. This article is part of a Special Issue entitled: Regulation of Signaling and Cellular Fate through Modulation of Nuclear Protein Import.


Asunto(s)
Antígenos de Superficie/fisiología , Desarrollo de Músculos/fisiología , Proteínas de Unión al ARN/fisiología , Transporte Activo de Núcleo Celular/fisiología , Animales , Antígenos de Superficie/genética , Caspasas/fisiología , Diferenciación Celular/fisiología , Proteínas ELAV , Proteína 1 Similar a ELAV , Técnicas de Silenciamiento del Gen , Humanos , Carioferinas/fisiología , Células Musculares/citología , Células Musculares/fisiología , Procesamiento Proteico-Postraduccional , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/genética , Transducción de Señal/fisiología
11.
J Biol Chem ; 285(41): 31130-8, 2010 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-20675370

RESUMEN

A prolonged activation of the immune system is one of the main causes of hyperproliferation of lymphocytes leading to defects in immune tolerance and autoimmune diseases. Fas ligand (FasL), a member of the TNF superfamily, plays a crucial role in controlling this excessive lymphoproliferation by inducing apoptosis in T cells leading to their rapid elimination. Here, we establish that posttranscriptional regulation is part of the molecular mechanisms that modulate FasL expression, and we show that in activated T cells FasL mRNA is stable. Our sequence analysis indicates that the FasL 3'-untranslated region (UTR) contains two AU-rich elements (AREs) that are similar in sequence and structure to those present in the 3'-UTR of TNFα mRNA. Through these AREs, the FasL mRNA forms a complex with the RNA-binding protein HuR both in vitro and ex vivo. Knocking down HuR in HEK 293 cells prevented the phorbol 12-myristate 13-acetate-induced expression of a GFP reporter construct fused to the FasL 3'-UTR. Collectively, our data demonstrate that the posttranscriptional regulation of FasL mRNA by HuR represents a novel mechanism that could play a key role in the maintenance and proper functioning of the immune system.


Asunto(s)
Regiones no Traducidas 3' , Antígenos de Superficie/metabolismo , Proteína Ligando Fas/biosíntesis , Regulación de la Expresión Génica , Estabilidad del ARN , Proteínas de Unión al ARN/metabolismo , Linfocitos T/metabolismo , Antígenos de Superficie/genética , Antígenos de Superficie/inmunología , Apoptosis/genética , Apoptosis/inmunología , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/metabolismo , Carcinógenos/farmacología , Proteínas ELAV , Proteína 1 Similar a ELAV , Proteína Ligando Fas/genética , Proteína Ligando Fas/inmunología , Humanos , Tolerancia Inmunológica/efectos de los fármacos , Tolerancia Inmunológica/genética , Tolerancia Inmunológica/inmunología , Células Jurkat , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/inmunología , Linfocitos T/inmunología , Acetato de Tetradecanoilforbol/farmacología
12.
Mol Cell Oncol ; 8(1): 1850161, 2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-33553605

RESUMEN

Cellular senescence is a double-edged sword that, depending on the context, acts as either a potent tumor protective mechanism or an age-related driver of diseases such as cancer. Our recent findings show that the rasGAP SH3-binding protein 1 (G3BP1) activates the senescent-associated secretory phenotype (SASP) that, in turn, mediates cancer growth/progression.

13.
EMBO Mol Med ; 13(7): e13591, 2021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-34096686

RESUMEN

Cachexia syndrome develops in patients with diseases such as cancer and sepsis and is characterized by progressive muscle wasting. While iNOS is one of the main effectors of cachexia, its mechanism of action and whether it could be targeted for therapy remains unexplored. Here, we show that iNOS knockout mice and mice treated with the clinically tested iNOS inhibitor GW274150 are protected against muscle wasting in models of both septic and cancer cachexia. We demonstrate that iNOS triggers muscle wasting by disrupting mitochondrial content, morphology, and energy production processes such as the TCA cycle and acylcarnitine transport. Notably, iNOS inhibits oxidative phosphorylation through impairment of complexes II and IV of the electron transport chain and reduces ATP production, leading to energetic stress, activation of AMPK, suppression of mTOR, and, ultimately, muscle atrophy. Importantly, all these effects were reversed by GW274150. Therefore, our data establish how iNOS induces muscle wasting under cachectic conditions and provide a proof of principle for the repurposing of iNOS inhibitors, such as GW274150 for the treatment of cachexia.


Asunto(s)
Caquexia , Neoplasias , Animales , Humanos , Ratones , Mitocondrias , Músculos , Atrofia Muscular
14.
Cells ; 11(1)2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-35011584

RESUMEN

Patients with COPD may be at an increased risk for severe illness from COVID-19 because of ACE2 upregulation, the entry receptor for SARS-CoV-2. Chronic exposure to cigarette smoke, the main risk factor for COPD, increases pulmonary ACE2. How ACE2 expression is controlled is not known but may involve HuR, an RNA binding protein that increases protein expression by stabilizing mRNA. We hypothesized that HuR would increase ACE2 protein expression. We analyzed scRNA-seq data to profile ELAVL1 expression in distinct respiratory cell populations in COVID-19 and COPD patients. HuR expression and cellular localization was evaluated in COPD lung tissue by multiplex immunohistochemistry and in human lung cells by imaging flow cytometry. The regulation of ACE2 expression was evaluated using siRNA-mediated knockdown of HuR. There is a significant positive correlation between ELAVL1 and ACE2 in COPD cells. HuR cytoplasmic localization is higher in smoker and COPD lung tissue; there were also higher levels of cleaved HuR (CP-1). HuR binds to ACE2 mRNA but knockdown of HuR does not change ACE2 protein levels in primary human lung fibroblasts (HLFs). Our work is the first to investigate the association between ACE2 and HuR. Further investigation is needed to understand the mechanistic underpinning behind the regulation of ACE2 expression.


Asunto(s)
Enzima Convertidora de Angiotensina 2/genética , COVID-19/genética , Proteína 1 Similar a ELAV/genética , Regulación de la Expresión Génica , Pulmón/metabolismo , Anciano , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/metabolismo , COVID-19/virología , Células Cultivadas , Proteína 1 Similar a ELAV/metabolismo , Femenino , Fibroblastos/metabolismo , Perfilación de la Expresión Génica/métodos , Humanos , Pulmón/patología , Pulmón/virología , Masculino , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/virología , Interferencia de ARN , RNA-Seq/métodos , SARS-CoV-2/fisiología , Análisis de la Célula Individual/métodos
15.
Mol Cancer ; 9: 210, 2010 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-20687958

RESUMEN

BACKGROUND: Secreted protein, acidic and rich in cysteine (SPARC) is a matricellular protein that mediates cell-matrix interactions. It has been shown, depending on the type of cancer, to possess either pro- or anti-tumorigenic properties. The transcriptional regulation of the SPARC gene expression has not been fully elucidated and the effects of anti-cancer drugs on this process have not been explored. RESULTS: In the present study, we demonstrated that chromatin remodeling factor Brg-1 is recruited to the proximal SPARC promoter region (-130/-56) through an interaction with transcription factor Sp1. We identified Brg-1 as a critical regulator for the constitutive expression levels of SPARC mRNA and protein in mammary carcinoma cell lines and for SPARC secretion into culture media. Furthermore, we found that Brg-1 cooperates with Sp1 to enhance SPARC promoter activity. Interestingly, fenretinide [N-4(hydroxyphenyl) retinamide, 4-HPR], a synthetic retinoid with anti-cancer properties, was found to up-regulate the transcription, expression and secretion of SPARC via induction of the Brg-1 in a dose-dependent manner. Finally, our results demonstrated that fenretinide-induced expression of SPARC contributes significantly to a decreased invasion of mammary carcinoma cells. CONCLUSIONS: Overall, our results reveal a novel cooperative role of Brg-1 and Sp1 in mediating the constitutive and fenretinide-induced expression of SPARC, and provide new insights for the understanding of the anti-cancer effects of fenretinide.


Asunto(s)
ADN Helicasas/fisiología , Fenretinida/farmacología , Neoplasias Mamarias Experimentales/patología , Proteínas Nucleares/fisiología , Osteonectina/genética , Factor de Transcripción Sp1/fisiología , Factores de Transcripción/fisiología , Animales , Secuencia de Bases , ADN , Regulación Neoplásica de la Expresión Génica/fisiología , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/fisiopatología , Ratones , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Células Tumorales Cultivadas
16.
Mol Cell Biol ; 27(15): 5365-80, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17548472

RESUMEN

A high expression level of the beta-actin protein is required for important biological mechanisms, such as maintaining cell shape, growth, and motility. Although the elevated cellular level of the beta-actin protein is directly linked to the long half-life of its mRNA, the molecular mechanisms responsible for this effect are unknown. Here we show that the RNA-binding protein HuR stabilizes the beta-actin mRNA by associating with a uridine-rich element within its 3' untranslated region. Using RNA interference to knock down the expression of HuR in HeLa cells, we demonstrate that HuR plays an important role in the stabilization but not in the nuclear/cytoplasmic distribution of the beta-actin mRNA. HuR depletion in HeLa cells alters key beta-actin-based cytoskeleton functions, such as cell adhesion, migration, and invasion, and these defects correlate with a loss of the actin stress fiber network. Together our data establish that the posttranscriptional event involving HuR-mediated beta-actin mRNA stabilization could be a part of the regulatory mechanisms responsible for maintaining cell integrity, which is a prerequisite for avoiding transformation and tumor formation.


Asunto(s)
Actinas/genética , Antígenos de Superficie/metabolismo , Movimiento Celular , Estabilidad del ARN , Proteínas de Unión al ARN/metabolismo , Secuencias Reguladoras de Ácido Ribonucleico/genética , Actinas/metabolismo , Secuencia de Bases , Sitios de Unión , Adhesión Celular , Núcleo Celular/metabolismo , Proliferación Celular , Proteínas ELAV , Proteína 1 Similar a ELAV , Células HeLa , Humanos , Datos de Secuencia Molecular , Unión Proteica , Interferencia de ARN , Transporte de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Fibras de Estrés/metabolismo
17.
Mol Biol Cell ; 18(7): 2603-18, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17475769

RESUMEN

The inhibition of the ubiquitin-dependent proteasome system (UPS) via specific drugs is one type of approach used to combat cancer. Although it has been suggested that UPS inhibition prevents the rapid decay of AU-rich element (ARE)-containing messages, very little is known about the cellular mechanisms leading to this effect. Here we establish a link between the inhibition of UPS activity, the formation of cytoplasmic stress granules (SGs), and mRNA metabolism. The assembly of the SGs requires the phosphorylation of the translation initiation factor eIF2alpha by a mechanism involving the stress kinase GCN2. On prolonged UPS inhibition and despite the maintenance of eIF2alpha phosphorylation, SGs disassemble and translation recovers in an Hsp72 protein-dependent manner. The formation of these SGs coincides with the disassembly of processing bodies (PBs), known as mRNA decay entities. As soon as the SGs assemble, they recruit ARE-containing messages such as p21(cip1) mRNA, which are stabilized under these conditions. Hence, our findings suggest that SGs could be considered as one of the players that mediate the early response of the cell to proteasome inhibitors by interfering temporarily with mRNA decay pathways.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , Inhibidores de Proteasoma , Ubiquitina/antagonistas & inhibidores , Apoptosis/efectos de los fármacos , Codón sin Sentido/metabolismo , Gránulos Citoplasmáticos/efectos de los fármacos , Factor 2 Eucariótico de Iniciación/metabolismo , Proteínas del Choque Térmico HSP72/metabolismo , Células HeLa , Humanos , Leupeptinas/farmacología , Fosforilación/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Pliegue de Proteína , Transporte de Proteínas/efectos de los fármacos , Estabilidad del ARN/efectos de los fármacos , Elementos de Respuesta/genética
18.
Nat Commun ; 11(1): 4979, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-33020468

RESUMEN

Cellular senescence is a known driver of carcinogenesis and age-related diseases, yet senescence is required for various physiological processes. However, the mechanisms and factors that control the negative effects of senescence while retaining its benefits are still elusive. Here, we show that the rasGAP SH3-binding protein 1 (G3BP1) is required for the activation of the senescent-associated secretory phenotype (SASP). During senescence, G3BP1 achieves this effect by promoting the association of the cyclic GMP-AMP synthase (cGAS) with cytosolic chromatin fragments. In turn, G3BP1, through cGAS, activates the NF-κB and STAT3 pathways, promoting SASP expression and secretion. G3BP1 depletion or pharmacological inhibition impairs the cGAS-pathway preventing the expression of SASP factors without affecting cell commitment to senescence. These SASPless senescent cells impair senescence-mediated growth of cancer cells in vitro and tumor growth in vivo. Our data reveal that G3BP1 is required for SASP expression and that SASP secretion is a primary mediator of senescence-associated tumor growth.


Asunto(s)
Senescencia Celular/fisiología , ADN Helicasas/metabolismo , Neoplasias/patología , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Células A549 , Animales , Carcinogénesis , Línea Celular , Movimiento Celular , Citocinas/metabolismo , ADN Helicasas/antagonistas & inhibidores , ADN Helicasas/deficiencia , Humanos , Inflamación , Ratones , Neoplasias/metabolismo , Nucleotidiltransferasas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/antagonistas & inhibidores , Proteínas de Unión a Poli-ADP-Ribosa/deficiencia , ARN Helicasas/antagonistas & inhibidores , ARN Helicasas/deficiencia , Proteínas con Motivos de Reconocimiento de ARN/antagonistas & inhibidores , Proteínas con Motivos de Reconocimiento de ARN/deficiencia , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Factor de Transcripción ReIA/metabolismo
19.
Mech Ageing Dev ; 192: 111382, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33049246

RESUMEN

Stress granules (SGs) are membraneless organelles formed in response to insult. These granules are related to pathological granules found in age-related neurogenerative diseases such as Parkinson's and Alzheimer's. Previously, we demonstrated that senescent cells, which accumulate with age, exposed to chronic oxidative stress, are unable to form SGs. Here, we show that the senescent cells' inability to form SGs correlates with an upregulation in both the heat-shock response and autophagy pathways, both of which are well-established promoters of SG disassembly. Our data also reveals that the knockdown of HSP70 and ATG5, important components of the heat-shock response and autophagy pathways, respectively, restores the number of SGs formed in senescent cells exposed to chronic oxidative stress. Surprisingly, under these conditions, the depletion of HSP70 or ATG5 did not affect the clearance of these SGs during their recovery from chronic stress. These data reveal that senescent cells possess a unique heat-shock and autophagy-dependent ability to impair the formation of SGs in response to chronic stress, thereby expanding the existing understanding of SG dynamics in senescent cells and their potential contribution to age-related neurodegenerative diseases.


Asunto(s)
Envejecimiento/fisiología , Proteína 5 Relacionada con la Autofagia/metabolismo , Autofagia/fisiología , Gránulos Citoplasmáticos/fisiología , Proteínas HSP70 de Choque Térmico/metabolismo , Respuesta al Choque Térmico/fisiología , Ribonucleoproteínas/metabolismo , Línea Celular , Senescencia Celular , Regulación de la Expresión Génica , Humanos , Estrés Oxidativo/fisiología , Estrés Fisiológico
20.
Nat Commun ; 10(1): 4171, 2019 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-31519904

RESUMEN

The master posttranscriptional regulator HuR promotes muscle fiber formation in cultured muscle cells. However, its impact on muscle physiology and function in vivo is still unclear. Here, we show that muscle-specific HuR knockout (muHuR-KO) mice have high exercise endurance that is associated with enhanced oxygen consumption and carbon dioxide production. muHuR-KO mice exhibit a significant increase in the proportion of oxidative type I fibers in several skeletal muscles. HuR mediates these effects by collaborating with the mRNA decay factor KSRP to destabilize the PGC-1α mRNA. The type I fiber-enriched phenotype of muHuR-KO mice protects against cancer cachexia-induced muscle loss. Therefore, our study uncovers that under normal conditions HuR modulates muscle fiber type specification by promoting the formation of glycolytic type II fibers. We also provide a proof-of-principle that HuR expression can be targeted therapeutically in skeletal muscles to combat cancer-induced muscle wasting.


Asunto(s)
Proteína 1 Similar a ELAV/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/etiología , Atrofia Muscular/metabolismo , Neoplasias/complicaciones , Animales , Línea Celular , Línea Celular Tumoral , Estudios Transversales , Proteína 1 Similar a ELAV/genética , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/fisiología , Inmunohistoquímica , Masculino , Ratones , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA