Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cell ; 165(7): 1762-1775, 2016 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-27315483

RESUMEN

Maternal obesity during pregnancy has been associated with increased risk of neurodevelopmental disorders, including autism spectrum disorder (ASD), in offspring. Here, we report that maternal high-fat diet (MHFD) induces a shift in microbial ecology that negatively impacts offspring social behavior. Social deficits and gut microbiota dysbiosis in MHFD offspring are prevented by co-housing with offspring of mothers on a regular diet (MRD) and transferable to germ-free mice. In addition, social interaction induces synaptic potentiation (LTP) in the ventral tegmental area (VTA) of MRD, but not MHFD offspring. Moreover, MHFD offspring had fewer oxytocin immunoreactive neurons in the hypothalamus. Using metagenomics and precision microbiota reconstitution, we identified a single commensal strain that corrects oxytocin levels, LTP, and social deficits in MHFD offspring. Our findings causally link maternal diet, gut microbial imbalance, VTA plasticity, and behavior and suggest that probiotic treatment may relieve specific behavioral abnormalities associated with neurodevelopmental disorders. VIDEO ABSTRACT.


Asunto(s)
Trastorno del Espectro Autista/microbiología , Dieta Alta en Grasa , Microbioma Gastrointestinal , Obesidad/complicaciones , Conducta Social , Animales , Disbiosis/fisiopatología , Femenino , Vida Libre de Gérmenes , Vivienda para Animales , Limosilactobacillus reuteri , Masculino , Ratones , Ratones Endogámicos C57BL , Oxitocina/análisis , Oxitocina/metabolismo , Embarazo , Área Tegmental Ventral
2.
Genome Med ; 15(1): 11, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36805764

RESUMEN

BACKGROUND: TREM2 is a transmembrane receptor expressed by myeloid cells and acts to regulate their immune response. TREM2 governs the response of microglia to amyloid and tau pathologies in the Alzheimer's disease (AD) brain. TREM2 is also present in a soluble form (sTREM2), and its CSF levels fluctuate as a function of AD progression. Analysis of stroke and AD mouse models revealed that sTREM2 proteins bind to neurons, which suggests sTREM2 may act in a non-cell autonomous manner to influence neuronal function. sTREM2 arises from the proteolytic cleavage of the membrane-associated receptor. However, alternatively spliced TREM2 species lacking a transmembrane domain have been postulated to contribute to the pool of sTREM2. Thus, both the source of sTREM2 species and its actions in the brain remain unclear. METHODS: The expression of TREM2 isoforms in the AD brain was assessed through the analysis of the Accelerating Medicines Partnership for Alzheimer's Disease Consortium transcriptomics data, as well as qPCR analysis using post-mortem samples of AD patients and of the AD mouse model 5xFAD. TREM2 cleavage and secretion were studied in vitro using HEK-293T and HMC3 cell lines. Synaptic plasticity, as evaluated by induction of LTP in hippocampal brain slices, was employed as a measure of sTREM2 actions. RESULTS: Three distinct TREM2 transcripts, namely ENST00000373113 (TREM2230), which encodes the full-length transmembrane receptor, and the alternatively spliced isoforms ENST00000373122 (TREM2222) and ENST00000338469 (TREM2219), are moderately increased in specific brain regions of patients with AD. We provide experimental evidence that TREM2 alternatively spliced isoforms are translated and secreted as sTREM2. Furthermore, our functional analysis reveals that all sTREM2 species inhibit LTP induction, and this effect is abolished by the GABAA receptor antagonist picrotoxin. CONCLUSIONS: TREM2 transcripts can give rise to a heterogeneous pool of sTREM2 which acts to inhibit LTP. These results provide novel insight into the generation, regulation, and function of sTREM2 which fits into the complex biology of TREM2 and its role in human health and disease. Given that sTREM2 levels are linked to AD pathogenesis and progression, our finding that sTREM2 species interfere with LTP furthers our understanding about the role of TREM2 in AD.


Asunto(s)
Enfermedad de Alzheimer , Potenciación a Largo Plazo , Animales , Ratones , Humanos , Enfermedad de Alzheimer/genética , Isoformas de Proteínas/genética , Encéfalo , Línea Celular , Modelos Animales de Enfermedad , Glicoproteínas de Membrana/genética , Receptores Inmunológicos/genética
3.
eNeuro ; 9(2)2022.
Artículo en Inglés | MEDLINE | ID: mdl-35396255

RESUMEN

The opioid crisis has contributed to a growing population of children exposed to opioids during fetal development; however, many of the long-term effects of opioid exposure on development are unknown. We previously demonstrated that opioids have deleterious effects on endocannabinoid plasticity at glutamate synapses in the dorsal striatum of adolescent rodents, but it is unclear whether prenatal opioid exposure produces similar neuroadaptations. Using a mouse model of prenatal methadone exposure (PME), we performed proteomics, phosphoproteomics, and patch-clamp electrophysiology in the dorsolateral striatum (DLS) and dorsomedial striatum (DMS) to examine synaptic functioning in adolescent PME offspring. PME impacted the proteome and phosphoproteome in a region- and sex-dependent manner. Many proteins and phosphorylated proteins associated with glutamate transmission were differentially abundant in PME offspring, which was associated with reduced glutamate release in the DLS and altered the rise time of excitatory events in the DMS. Similarly, the intrinsic excitability properties of DMS neurons were significantly affected by PME. Last, pathway analyses revealed an enrichment in retrograde endocannabinoid signaling in the DLS, but not in the DMS, of males. Electrophysiology studies confirmed that endocannabinoid-mediated synaptic depression was impaired in the DLS, but not DMS, of PME-males. These results indicate that PME induces persistent neuroadaptations in the dorsal striatum and could contribute to the aberrant behavioral development described in offspring with prenatal opioid exposure.


Asunto(s)
Analgésicos Opioides , Ácido Glutámico , Analgésicos Opioides/farmacología , Cuerpo Estriado/metabolismo , Endocannabinoides/metabolismo , Femenino , Ácido Glutámico/metabolismo , Humanos , Masculino , Embarazo , Sinapsis/metabolismo
4.
Mol Neurodegener ; 15(1): 62, 2020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-33115519

RESUMEN

BACKGROUND: Triggering receptor expressed on myeloid cells 2 (TREM2) is expressed in the brain exclusively on microglia and genetic variants are linked to neurodegenerative diseases including Alzheimer's disease (AD), frontotemporal dementia (FTD) and Nasu Hakola Disease (NHD). The Trem2 variant R47H, confers substantially elevated risk of developing late onset Alzheimer's disease, while NHD-linked Trem2 variants like Y38C, are associated with development of early onset dementia with white matter pathology. However, it is not known how these Trem2 species, predisposes individuals to presenile dementia. METHODS: To investigate if Trem2 Y38C or loss of Trem2 alters neuronal function we generated a novel mouse model to introduce the NHD Trem2 Y38C variant in murine Trem2 using CRISPR/Cas9 technology. Trem2Y38C/Y38C and Trem2-/- mice were assessed for Trem2 expression, differentially expressed genes, synaptic protein levels and synaptic plasticity using biochemical, electrophysiological and transcriptomic approaches. RESULTS: While mice harboring the Trem2 Y38C exhibited normal expression levels of TREM2, the pathological outcomes phenocopied Trem2-/- mice at 6 months. Transcriptomic analysis revealed altered expression of neuronal and oligodendrocytes/myelin genes. We observed regional decreases in synaptic protein levels, with the most affected synapses in the hippocampus. These alterations were associated with reduced synaptic plasticity. CONCLUSION: Our findings provide in vivo evidence that Trem2 Y38C disrupts normal TREM2 functions. Trem2Y38C/Y38C and Trem2-/- mice demonstrated altered gene expression, changes in microglia morphology, loss of synaptic proteins and reduced hippocampal synaptic plasticity at 6 months in absence of any pathological triggers like amyloid. This suggests TREM2 impacts neuronal functions providing molecular insights on the predisposition of individuals with TREM2 variants resulting in presenile dementia.


Asunto(s)
Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/patología , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Sinapsis/patología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/patología , Mutación , Neuronas/metabolismo , Sinapsis/metabolismo
5.
Nat Neurosci ; 17(8): 1073-82, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24974795

RESUMEN

At hippocampal synapses, activation of group I metabotropic glutamate receptors (mGluRs) induces long-term depression (LTD), which requires new protein synthesis. However, the underlying mechanism remains elusive. Here we describe the translational program that underlies mGluR-LTD and identify the translation factor eIF2α as its master effector. Genetically reducing eIF2α phosphorylation, or specifically blocking the translation controlled by eIF2α phosphorylation, prevented mGluR-LTD and the internalization of surface AMPA receptors (AMPARs). Conversely, direct phosphorylation of eIF2α, bypassing mGluR activation, triggered a sustained LTD and removal of surface AMPARs. Combining polysome profiling and RNA sequencing, we identified the mRNAs translationally upregulated during mGluR-LTD. Translation of one of these mRNAs, oligophrenin-1, mediates the LTD induced by eIF2α phosphorylation. Mice deficient in phospho-eIF2α-mediated translation are impaired in object-place learning, a behavioral task that induces hippocampal mGluR-LTD in vivo. Our findings identify a new model of mGluR-LTD, which promises to be of value in the treatment of mGluR-LTD-linked cognitive disorders.


Asunto(s)
Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Aprendizaje/fisiología , Depresión Sináptica a Largo Plazo/genética , Biosíntesis de Proteínas , Receptores AMPA/fisiología , Receptores de Glutamato Metabotrópico/metabolismo , Animales , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosforilación/genética , Receptores AMPA/deficiencia , Percepción Espacial/fisiología
6.
Synapse ; 60(1): 45-55, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16596625

RESUMEN

The medial prefrontal cortex (mPFC) has been associated with diverse functions including attentional processes, visceromotor activity, decision making, goal directed behavior, and working memory. The present report examined the effects of stimulation of the midline thalamus, concentrating on ventral nuclei of the midline thalamus, on evoked activity at the mPFC. The nucleus reuniens (RE) of the ventral midline thalamus is a major source of projections to the hippocampus and to the mPFC, and has been shown to exert pronounced excitatory effects on the hippocampus. No previous study has systematically examined the actions of the ventral midline thalamus on the mPFC. We showed that stimulation of the dorsal and ventral midline thalamus, but not of an intermediate region lying between them (null zone), produced short latency, large amplitude evoked potentials throughout the dorsoventral extent of the medial PFC. The largest effects were elicited with ventral midline stimulation (rhomboid/reuniens nuclei) at the ventral mPFC--the prelimbic (PL) and infralimbic (IL) cortices. Specifically, stimulation of RE produced evoked potentials (early negative component, N2) at the PL cortex at a mean latency of 22.6 msec and mean amplitude of 0.85 mV, indicative of monosynaptic effects. In addition, we showed that paired pulse stimulation of RH/RE produced strong facilitatory actions (paired pulse facilitation) at IL (83%) and PL (75%). These findings indicate that RE exerts strong direct excitatory effects on the mPFC, and coupled with the demonstration that RE produces similar actions on the hippocampus, indicates that RE is in a position to influence and possibly coordinate the activity of these two forebrain structures subserving memory.


Asunto(s)
Mapeo Encefálico , Núcleos Talámicos de la Línea Media/fisiología , Vías Nerviosas/fisiología , Corteza Prefrontal/fisiología , Animales , Estimulación Eléctrica , Potenciales Evocados/fisiología , Masculino , Memoria/fisiología , Ratas , Ratas Sprague-Dawley
7.
Hippocampus ; 16(11): 959-65, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17009334

RESUMEN

Hippocampal sharp waves (SPWs) are among the earliest neural population patterns observed in infant mammals. Similarly, startles are among the earliest behavioral events observed. Here we provide evidence indicating that these two events are linked mechanistically soon after birth in freely moving and head-fixed 1 to 4-day-old rats. EMG electrodes and intrahippocampal silicon depth electrodes were used to detect the presence of startles and SPWs, respectively. In intact pups, the majority of sharp waves were preceded by startles (average latency: 161 ms). When the hippocampal formation was surgically separated from the brainstem, however, sharp waves and startles still occurred, but now independently. In addition, unrelated to startles or SPWs, gamma oscillations were detected in several subjects, as were neocortical "spindles" that propagated passively into the hippocampus. The co-occurrence of sharp waves and startles provides the opportunity for Hebbian changes in synaptic efficacy and, thus, is poised to contribute to the assembly of neural circuits early in development.


Asunto(s)
Potenciales de Acción/fisiología , Hipocampo/fisiología , Reflejo de Sobresalto/fisiología , Animales , Animales Recién Nacidos , Conducta Animal , Estado de Descerebración/fisiopatología , Electroencefalografía/métodos , Electromiografía/métodos , Femenino , Técnicas In Vitro , Masculino , Red Nerviosa/fisiología , Ratas , Ratas Sprague-Dawley
8.
Biol Cybern ; 90(5): 318-26, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15221392

RESUMEN

Partial coherence measures the linear relationship between two signals after the influence of a third signal has been removed. Gersch proposed in 1970 that partial coherence could be used to identify sources of driving for multivariate time series. This idea, referred to in this paper as Gersch Causality, has received wide acceptance and has been applied extensively to a variety of fields in the signal processing community. Neurobiological data from a given sensor include both the signals of interest and other unrelated processes collectively referred to as measurement noise. We show that partial-coherence-based Gersch Causality is extremely sensitive to signal-to-noise ratio; that is, for a group of three or more simultaneously recorded time series, the time series with the highest signal-to-noise ratio (i.e., relatively noise free) is often identified as the "driver" of the group, irrespective of the true underlying patterns of connectivity. This hypothesis is tested both theoretically and on experimental time series acquired from limbic brain structures during the theta rhythm.


Asunto(s)
Relojes Biológicos/fisiología , Modelos Neurológicos , Neuronas/fisiología , Animales , Masculino , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA