Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 42(24): e114462, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37934086

RESUMEN

Mammalian cells repress expression of repetitive genomic sequences by forming heterochromatin. However, the consequences of ectopic repeat expression remain unclear. Here we demonstrate that inhibitors of EZH2, the catalytic subunit of the Polycomb repressive complex 2 (PRC2), stimulate repeat misexpression and cell death in resting splenic B cells. B cells are uniquely sensitive to these agents because they exhibit high levels of histone H3 lysine 27 trimethylation (H3K27me3) and correspondingly low DNA methylation at repeat elements. We generated a pattern recognition receptor loss-of-function mouse model, called RIC, with mutations in Rigi (encoding for RIG-I), Ifih1 (MDA5), and Cgas. In both wildtype and RIC mutant B cells, EZH2 inhibition caused loss of H3K27me3 at repetitive elements and upregulated their expression. However, NF-κB-dependent expression of inflammatory chemokines and subsequent cell death was suppressed by the RIC mutations. We further show that inhibition of EZH2 in cancer cells requires the same pattern recognition receptors to activate an interferon response. Together, the results reveal chemokine expression induced by EZH2 inhibitors in B cells as a novel inflammatory response to genomic repeat expression. Given the overlap of genes induced by EZH2 inhibitors and Epstein-Barr virus infection, this response can be described as a form of viral mimicry.


Asunto(s)
Linfocitos B , Proteína Potenciadora del Homólogo Zeste 2 , Infecciones por Virus de Epstein-Barr , Animales , Ratones , Linfocitos B/efectos de los fármacos , Linfocitos B/metabolismo , Metilación de ADN , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Infecciones por Virus de Epstein-Barr/genética , Herpesvirus Humano 4/genética , Histonas/metabolismo , Secuencias Repetitivas de Ácidos Nucleicos
2.
Mol Cell ; 73(1): 1-2, 2019 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-30609388

RESUMEN

PD-L1 plays a central role in immune recognition of cancer cells. In this issue of Molecular Cell, Jin et al. (2019) report that a phosphorylated retinoblastoma protein contacts the DNA-binding domain of p65 NF-κB, thereby blocking transcription of PD-L1.


Asunto(s)
Antígeno B7-H1 , Factor de Transcripción ReIA/genética , Regulación de la Expresión Génica , FN-kappa B/genética , Proteína de Retinoblastoma , Transducción de Señal
3.
EMBO J ; 41(4): e106825, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35023164

RESUMEN

Despite extensive analysis of pRB phosphorylation in vitro, how this modification influences development and homeostasis in vivo is unclear. Here, we show that homozygous Rb∆K4 and Rb∆K7 knock-in mice, in which either four or all seven phosphorylation sites in the C-terminal region of pRb, respectively, have been abolished by Ser/Thr-to-Ala substitutions, undergo normal embryogenesis and early development, notwithstanding suppressed phosphorylation of additional upstream sites. Whereas Rb∆K4 mice exhibit telomere attrition but no other abnormalities, Rb∆K7 mice are smaller and display additional hallmarks of premature aging including infertility, kyphosis, and diabetes, indicating an accumulative effect of blocking pRb phosphorylation. Diabetes in Rb∆K7 mice is insulin-sensitive and associated with failure of quiescent pancreatic ß-cells to re-enter the cell cycle in response to mitogens, resulting in induction of DNA damage response (DDR), senescence-associated secretory phenotype (SASP), and reduced pancreatic islet mass and circulating insulin level. Pre-treatment with the epigenetic regulator vitamin C reduces DDR, increases cell cycle re-entry, improves islet morphology, and attenuates diabetes. These results have direct implications for cell cycle regulation, CDK-inhibitor therapeutics, diabetes, and longevity.


Asunto(s)
Envejecimiento/fisiología , Ácido Ascórbico/farmacología , Diabetes Mellitus Experimental/prevención & control , Proteína de Retinoblastoma/metabolismo , Animales , Senescencia Celular/efectos de los fármacos , Quinasa 2 Dependiente de la Ciclina/antagonistas & inhibidores , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología , Factor de Transcripción E2F1/metabolismo , Desarrollo Embrionario/genética , Femenino , Fibroblastos/efectos de los fármacos , Técnicas de Sustitución del Gen , Células Secretoras de Insulina/patología , Ratones , Fosforilación , Embarazo , Proteína de Retinoblastoma/genética , Telómero/genética
4.
Nat Rev Mol Cell Biol ; 14(5): 297-306, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23594950

RESUMEN

Inactivation of the RB protein is one of the most fundamental events in cancer. Coming to a molecular understanding of its function in normal cells and how it impedes cancer development has been challenging. Historically, the ability of RB to regulate the cell cycle placed it in a central role in proliferative control, and research focused on RB regulation of the E2F family of transcription factors. Remarkably, several recent studies have found additional tumour-suppressor functions of RB, including alternative roles in the cell cycle, maintenance of genome stability and apoptosis. These advances and new structural studies are combining to define the multifunctionality of RB.


Asunto(s)
Proteína de Retinoblastoma/genética , Proteína de Retinoblastoma/metabolismo , Animales , Apoptosis/genética , Ciclo Celular/genética , Inestabilidad Genómica , Humanos
5.
PLoS Pathog ; 18(5): e1010551, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35560034

RESUMEN

Clear evidence supports a causal link between Merkel cell polyomavirus (MCPyV) and the highly aggressive human skin cancer called Merkel cell carcinoma (MCC). Integration of viral DNA into the human genome facilitates continued expression of the MCPyV small tumor (ST) and large tumor (LT) antigens in virus-positive MCCs. In MCC tumors, MCPyV LT is truncated in a manner that renders the virus unable to replicate yet preserves the LXCXE motif that facilitates its binding to and inactivation of the retinoblastoma tumor suppressor protein (pRb). We previously developed a MCPyV transgenic mouse model in which MCC tumor-derived ST and truncated LT expression were targeted to the stratified epithelium of the skin, causing epithelial hyperplasia, increased proliferation, and spontaneous tumorigenesis. We sought to determine if any of these phenotypes required the association between the truncated MCPyV LT and pRb. Mice were generated in which K14-driven MCPyV ST/LT were expressed in the context of a homozygous RbΔLXCXE knock-in allele that attenuates LT-pRb interactions through LT's LXCXE motif. We found that many of the phenotypes including tumorigenesis that develop in the K14-driven MCPyV transgenic mice were dependent upon LT's LXCXE-dependent interaction with pRb. These findings highlight the importance of the MCPyV LT-pRb interaction in an in vivo model for MCPyV-induced tumorigenesis.


Asunto(s)
Carcinoma de Células de Merkel , Poliomavirus de Células de Merkel , Infecciones por Polyomavirus , Neoplasias Cutáneas , Infecciones Tumorales por Virus , Animales , Antígenos Transformadores de Poliomavirus/genética , Antígenos Transformadores de Poliomavirus/metabolismo , Antígenos Virales de Tumores/genética , Antígenos Virales de Tumores/metabolismo , Transformación Celular Neoplásica , Hiperplasia/patología , Células de Merkel/metabolismo , Células de Merkel/patología , Poliomavirus de Células de Merkel/genética , Ratones , Neoplasias Cutáneas/patología
6.
Mol Cell ; 64(6): 1074-1087, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27889452

RESUMEN

Repetitive genomic regions include tandem sequence repeats and interspersed repeats, such as endogenous retroviruses and LINE-1 elements. Repressive heterochromatin domains silence expression of these sequences through mechanisms that remain poorly understood. Here, we present evidence that the retinoblastoma protein (pRB) utilizes a cell-cycle-independent interaction with E2F1 to recruit enhancer of zeste homolog 2 (EZH2) to diverse repeat sequences. These include simple repeats, satellites, LINEs, and endogenous retroviruses as well as transposon fragments. We generated a mutant mouse strain carrying an F832A mutation in Rb1 that is defective for recruitment to repetitive sequences. Loss of pRB-EZH2 complexes from repeats disperses H3K27me3 from these genomic locations and permits repeat expression. Consistent with maintenance of H3K27me3 at the Hox clusters, these mice are developmentally normal. However, susceptibility to lymphoma suggests that pRB-EZH2 recruitment to repetitive elements may be cancer relevant.


Asunto(s)
Factor de Transcripción E2F1/genética , Proteína Potenciadora del Homólogo Zeste 2/genética , Silenciador del Gen , Linfoma/genética , Secuencias Repetitivas de Ácidos Nucleicos , Proteína de Retinoblastoma/genética , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/patología , Factor de Transcripción E2F1/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Predisposición Genética a la Enfermedad , Histonas/genética , Histonas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/patología , Linfoma/metabolismo , Linfoma/mortalidad , Linfoma/patología , Mesenterio/metabolismo , Mesenterio/patología , Ratones , Mutación , Cultivo Primario de Células , Unión Proteica , Proteína de Retinoblastoma/metabolismo , Neoplasias del Bazo/genética , Neoplasias del Bazo/metabolismo , Neoplasias del Bazo/mortalidad , Neoplasias del Bazo/patología , Análisis de Supervivencia
7.
J Biol Chem ; 296: 100108, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33219128

RESUMEN

The retinoblastoma tumor suppressor protein (RB) plays an important role in biological processes such as cell cycle control, DNA damage repair, epigenetic regulation, and genome stability. The canonical model of RB regulation is that cyclin-CDKs phosphorylate and render RB inactive in late G1/S, promoting entry into S phase. Recently, monophosphorylated RB species were described to have distinct cell-cycle-independent functions, suggesting that a phosphorylation code dictates diversity of RB function. However, a biologically relevant, functional role of RB phosphorylation at non-CDK sites has remained elusive. Here, we investigated S838/T841 dual phosphorylation, its upstream stimulus, and downstream functional output. We found that mimicking T-cell receptor activation in Jurkat leukemia cells induced sequential activation of downstream kinases including p38 MAPK and RB S838/T841 phosphorylation. This signaling pathway disrupts RB and condensin II interaction with chromatin. Using cells expressing a WT or S838A/T841A mutant RB fragment, we present evidence that deficiency for this phosphorylation event prevents condensin II release from chromatin.


Asunto(s)
Cromatina/metabolismo , Proteína de Retinoblastoma/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Adenosina Trifosfatasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Epigénesis Genética/genética , Humanos , Complejos Multiproteicos/metabolismo , Mutación/genética , Fosforilación/genética , Fosforilación/fisiología , Receptores de Antígenos de Linfocitos T/metabolismo
8.
BMC Bioinformatics ; 21(1): 221, 2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32471392

RESUMEN

BACKGROUND: The use of RNA-sequencing (RNA-seq) in molecular biology research and clinical settings has increased significantly over the past decade. Despite its widespread adoption, there is a lack of simple and interactive tools to analyze and explore RNA-seq data. Many established tools require programming or Unix/Bash knowledge to analyze and visualize results. This requirement presents a significant barrier for many researchers to efficiently analyze and present RNA-seq data. RESULTS: Here we present BEAVR, a Browser-based tool for the Exploration And Visualization of RNA-seq data. BEAVR is an easy-to-use tool that facilitates interactive analysis and exploration of RNA-seq data. BEAVR is developed in R and uses DESeq2 as its engine for differential gene expression (DGE) analysis, but assumes users have no prior knowledge of R or DESeq2. BEAVR allows researchers to easily obtain a table of differentially-expressed genes with statistical testing and then visualize the results in a series of graphs, plots and heatmaps. Users are able to customize many parameters for statistical testing, dealing with variance, clustering methods and pathway analysis to generate high quality figures. CONCLUSION: BEAVR simplifies analysis for novice users but also streamlines the RNA-seq analysis process for experts by automating several steps. BEAVR and its documentation can be found on GitHub at https://github.com/developerpiru/BEAVR. BEAVR is available as a Docker container at https://hub.docker.com/r/pirunthan/beavr.


Asunto(s)
RNA-Seq/métodos , Programas Informáticos , Análisis por Conglomerados , Gráficos por Computador , Interpretación Estadística de Datos , Humanos
9.
Genes Dev ; 25(9): 889-94, 2011 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-21536729

RESUMEN

The Hippo pathway coordinates organ size and cell proliferation. The retinoblastoma family of proteins regulates progression through the G0/G1 phase of the cell cycle. Disruption of either pathway contributes to cancer formation. Three recent studies in Genes & Development reveal how cellular proliferation is coordinated between these pathways. Here we discuss the implications of these studies and the new questions that they raise.


Asunto(s)
Proteínas de Interacción con los Canales Kv/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Ciclo Celular/fisiología , Senescencia Celular/fisiología , Desarrollo Embrionario/genética , Desarrollo Embrionario/fisiología , Regulación de la Expresión Génica , Humanos , Neoplasias/fisiopatología , Tamaño de los Órganos/fisiología , Proteínas Tirosina Quinasas/metabolismo , Proteína de Retinoblastoma/metabolismo , Proteína p130 Similar a la del Retinoblastoma/genética , Proteína p130 Similar a la del Retinoblastoma/metabolismo , Transducción de Señal , Quinasas DyrK
10.
Genes Dev ; 24(13): 1351-63, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20551166

RESUMEN

Condensation and segregation of mitotic chromosomes is a critical process for cellular propagation, and, in mammals, mitotic errors can contribute to the pathogenesis of cancer. In this report, we demonstrate that the retinoblastoma protein (pRB), a well-known regulator of progression through the G1 phase of the cell cycle, plays a critical role in mitotic chromosome condensation that is independent of G1-to-S-phase regulation. Using gene targeted mutant mice, we studied this aspect of pRB function in isolation, and demonstrate that it is an essential part of pRB-mediated tumor suppression. Cancer-prone Trp53(-/-) mice succumb to more aggressive forms of cancer when pRB's ability to condense chromosomes is compromised. Furthermore, we demonstrate that defective mitotic chromosome structure caused by mutant pRB accelerates loss of heterozygosity, leading to earlier tumor formation in Trp53(+/-) mice. These data reveal a new mechanism of tumor suppression, facilitated by pRB, in which genome stability is maintained by proper condensation of mitotic chromosomes.


Asunto(s)
Cromatina/metabolismo , Mitosis/genética , Neoplasias/metabolismo , Proteína de Retinoblastoma/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Ciclo Celular/genética , Línea Celular , Proliferación Celular , Cromatina/genética , Inestabilidad Cromosómica/genética , Segregación Cromosómica , Cultura , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Ratones , Mutación/genética , Fenotipo , Proteína de Retinoblastoma/genética , Análisis de Supervivencia , Proteínas Supresoras de Tumor/genética
11.
Nat Cell Biol ; 9(2): 225-32, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17187060

RESUMEN

The retinoblastoma protein (pRB) negatively regulates the progression from G1 to S phase of the cell cycle, in part, by repressing E2F-dependent transcription. pRB also possesses E2F-independent functions that contribute to cell-cycle control--for example, during pRB-mediated cell-cycle arrest pRB associates with Skp2, the F-box protein of the Skp1-Cullin-F-box protein (SCF) E3 ubiquitin ligase complex, and promotes the stability of the cyclin-dependent kinase-inhibitor p27(Kip1) through an unknown mechanism. Degradation of p27(Kip1) is mediated by ubiquitin-dependent targeting of p27(Kip1) by SCF -Skp2 (ref. 4). Here, we report a novel interaction between pRB and the anaphase-promoting complex/cyclosome (APC/C) that controls p27(Kip1) stability by targeting Skp2 for ubiquitin-mediated degradation. Cdh1, an activator of APC/C, not only interacts with pRB but is also required for a pRB-induced cell-cycle arrest. The results reveal an unexpected physical convergence between the pRB tumour-suppressor protein and E3 ligase complexes, and raise the possibility that pRB may direct APC/C to additional targets during pRB-mediated cell-cycle exit.


Asunto(s)
Anafase , Proteína de Retinoblastoma/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Cadherinas/metabolismo , Ciclo Celular , Línea Celular Tumoral , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Fase G1 , Humanos , Fase S , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Ubiquitina/metabolismo
12.
Elife ; 122024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023520

RESUMEN

Dormancy in cancer is a clinical state in which residual disease remains undetectable for a prolonged duration. At a cellular level, rare cancer cells cease proliferation and survive chemotherapy and disseminate disease. We created a suspension culture model of high-grade serous ovarian cancer (HGSOC) dormancy and devised a novel CRISPR screening approach to identify survival genes in this context. In combination with RNA-seq, we discovered the Netrin signaling pathway as critical to dormant HGSOC cell survival. We demonstrate that Netrin-1, -3, and its receptors are essential for low level ERK activation to promote survival, and that Netrin activation of ERK is unable to induce proliferation. Deletion of all UNC5 family receptors blocks Netrin signaling in HGSOC cells and compromises viability during the dormancy step of dissemination in xenograft assays. Furthermore, we demonstrate that Netrin-1 and -3 overexpression in HGSOC correlates with poor outcome. Specifically, our experiments reveal that Netrin overexpression elevates cell survival in dormant culture conditions and contributes to greater spread of disease in a xenograft model of abdominal dissemination. This study highlights Netrin signaling as a key mediator HGSOC cancer cell dormancy and metastasis.


High-grade serous ovarian cancer (or HGSOC for short) is the fifth leading cause of cancer-related deaths in women. It is generally diagnosed at an advanced stage of disease when the cancer has already spread to other parts of the body. Surgical removal of tumors and subsequent treatment with chemotherapy often reduces the signs and symptoms of the disease for a time but some cancer cells tend to survive so that patients eventually relapse. The HGSOC cells typically spread from the ovaries by moving through the liquid surrounding organs in the abdomen. The cells clump together and enter an inactive state known as dormancy that allows them to survive chemotherapy and low-nutrient conditions. Understanding how to develop new drug therapies that target dormant cancer cells is thought to be an important step in prolonging the life of HGSOC patients. Cancer cells are hardwired to multiply and grow, so Perampalam et al. reasoned that becoming dormant poses challenges for HGSOC cells, which may create unique vulnerabilities not shared by proliferating cancer cells. To find out more, the researchers used HGSOC cells that had been isolated from patients and grown in the laboratory. The team used a gene editing technique to screen HGSOC cells for genes required by the cells to survive when they are dormant. The experiments found that genes involved in a cell signaling pathway, known as Netrin signaling, were critical for the cells to survive. Previous studies have shown that Netrin signaling helps the nervous system form in embryos and inhibits a program of controlled cell death in some cancers. Perampalam et al. discovered that Netrins were present in the environment immediately surrounding dormant HGSOC cells. Human HGSOC patients with higher levels of Netrin gene expression had poorer prognoses than patients with lower levels of Netrin gene expression. Further experiments demonstrated that Netrins help dormant HGSOC cells to spread around the body. These findings suggest that Netrin signalling may provide useful targets for future drug therapies against dormant cells in some ovarian cancers. This could include repurposing drugs already in development or creating new inhibitors of this pathway.


Asunto(s)
Carcinoma Epitelial de Ovario , Supervivencia Celular , Netrinas , Neoplasias Ováricas , Transducción de Señal , Humanos , Femenino , Animales , Línea Celular Tumoral , Carcinoma Epitelial de Ovario/genética , Carcinoma Epitelial de Ovario/metabolismo , Carcinoma Epitelial de Ovario/patología , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Netrinas/metabolismo , Netrinas/genética , Ratones , Netrina-1/metabolismo , Netrina-1/genética , Proliferación Celular , Receptores de Netrina/metabolismo , Receptores de Netrina/genética
13.
J Virol ; 86(24): 13313-23, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23015707

RESUMEN

The human papillomavirus (HPV) E7 oncoprotein binds cellular factors, preventing or retargeting their function and thereby making the infected cell conducive for viral replication. A key target of E7 is the product of the retinoblastoma susceptibility locus (pRb). This interaction results in the release of E2F transcription factors and drives the host cell into the S phase of the cell cycle. E7 binds pRb via a high-affinity binding site in conserved region 2 (CR2) and also targets a portion of cellular pRb for degradation via the proteasome. Evidence suggests that a secondary binding site exists in CR3, and that this interaction influences pRb deregulation. Additionally, evidence suggests that CR3 also participates in the degradation of pRb. We have systematically analyzed the molecular mechanisms by which CR3 contributes to deregulation of the pRb pathway by utilizing a comprehensive series of mutations in residues predicted to be exposed on the surface of HPV16 E7 CR3. Despite differences in the ability to interact with cullin 2, all CR3 mutants degrade pRb comparably to wild-type E7. We identified two specific patches of residues on the surface of CR3 that contribute to pRb binding independently of the high-affinity CR2 binding site. Mutants within CR3 that affect pRb binding are less effective than the wild-type E7 in overcoming pRb-induced cell cycle arrest. This demonstrates that the interaction between HPV16 E7 CR3 and pRb is functionally important for alteration of the cell cycle.


Asunto(s)
Proteínas E7 de Papillomavirus/fisiología , Proteína de Retinoblastoma/metabolismo , Secuencia de Bases , Sitios de Unión , Ciclo Celular , Línea Celular , Cartilla de ADN , Humanos , Modelos Moleculares , Proteínas E7 de Papillomavirus/química , Reacción en Cadena de la Polimerasa , Unión Proteica , Técnicas del Sistema de Dos Híbridos
14.
Cell Mol Life Sci ; 69(12): 2009-24, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22223110

RESUMEN

The concept that aneuploidy is a characteristic of malignant cells has long been known; however, the idea that aneuploidy is an active contributor to tumorigenesis, as opposed to being an associated phenotype, is more recent in its evolution. At the same time, we are seeing the emergence of novel roles for tumor suppressor genes and oncogenes in genome stability. These include the adenomatous polyposis coli gene (APC), p53, the retinoblastoma susceptibility gene (RB1), and Ras. Originally, many of these genes were thought to be tumor suppressive or oncogenic solely because of their role in proliferative control. Because of the frequency with which they are disrupted in cancer, chromosome instability caused by their dysfunction may be more central to tumorigenesis than previously thought. Therefore, this review will highlight how the proper function of cell cycle regulatory genes contributes to the maintenance of genome stability, and how their mutation in cancer obligatorily connects proliferation and chromosome instability.


Asunto(s)
Aneuploidia , Proliferación Celular , Transformación Celular Neoplásica/genética , Inestabilidad Cromosómica/genética , Neoplasias/genética , Poliposis Adenomatosa del Colon/genética , Poliposis Adenomatosa del Colon/metabolismo , Animales , Puntos de Control del Ciclo Celular/genética , Humanos , Ratones , Oncogenes/genética , Ratas , Neoplasias de la Retina/genética , Neoplasias de la Retina/metabolismo , Retinoblastoma/genética , Retinoblastoma/metabolismo , Proteína de Retinoblastoma/genética , Proteína de Retinoblastoma/metabolismo , Huso Acromático/genética , Huso Acromático/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo
15.
Biochem J ; 434(2): 297-308, 2011 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-21143199

RESUMEN

The pRB (retinoblastoma protein) has a central role in the control of the G(1)-S phase transition of the cell cycle that is mediated in part through the regulation of E2F transcription factors. Upon S-phase entry pRB is phosphorylated extensively, which in turn releases bound E2Fs to drive the expression of the genes required for S-phase progression. In the present study, we demonstrate that E2F1-maintains the ability to interact with ppRB (hyperphosphorylated pRB). This interaction is dependent upon the 'specific' E2F1-binding site located in the C-terminal domain of pRB. A unique region of the marked box domain of E2F1 contacts the 'specific' site to mediate the interaction with ppRB. The mechanistic basis of the interaction between E2F1 and ppRB is subtle. A single substitution between valine and proline residues in the marked box distinguishes E2F1's ability to interact with ppRB from the inability of E2F3 to bind to the 'specific' site in ppRB. The E2F1-pRB interaction at the 'specific' site also maintains the ability to regulate the transcriptional activation of E2F1 target genes. These data reveal a mechanism by which E2F1 regulation by pRB can persist, when pRB is hyperphosphorylated and presumed to be inactive.


Asunto(s)
Quinasas Ciclina-Dependientes/metabolismo , Factor de Transcripción E2F1/genética , Proteína de Retinoblastoma/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Quinasas Ciclina-Dependientes/genética , Factor de Transcripción E2F1/metabolismo , Humanos , Ratones , Datos de Secuencia Molecular , Fosforilación , Ratas , Fase S , Activación Transcripcional
16.
Cell Div ; 17(1): 2, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35321751

RESUMEN

In cancer, dormancy refers to a clinical state in which microscopic residual disease becomes non-proliferative and is largely refractory to chemotherapy. Dormancy was first described in breast cancer where disease can remain undetected for decades, ultimately leading to relapse and clinical presentation of the original malignancy. A long latency period can be explained by withdrawal from cell proliferation (cellular dormancy), or a balance between proliferation and cell death that retains low levels of residual disease (tumor mass dormancy). Research into cellular dormancy has revealed features that define this state. They include arrest of cell proliferation, altered cellular metabolism, and unique cell dependencies and interactions with the microenvironment. These characteristics can be shared by dormant cells derived from disparate primary disease sites, suggesting common features exist between them.High-grade serous ovarian cancer (HGSOC) disseminates to locations throughout the abdominal cavity by means of cellular aggregates called spheroids. These growth-arrested and therapy-resistant cells are a strong contributor to disease relapse. In this review, we discuss the similarities and differences between ovarian cancer cells in spheroids and dormant properties reported for other cancer disease sites. This reveals that elements of dormancy, such as cell cycle control mechanisms and changes to metabolism, may be similar across most forms of cellular dormancy. However, HGSOC-specific aspects of spheroid biology, including the extracellular matrix organization and microenvironment, are obligatorily disease site specific. Collectively, our critical review of current literature highlights places where HGSOC cell dormancy may offer a more tractable experimental approach to understand broad principles of cellular dormancy in cancer.

17.
Cancers (Basel) ; 14(24)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36551676

RESUMEN

The Farnesoid X Receptor (FXR) belongs to the nuclear receptor superfamily and is an essential bile acid (BA) receptor that regulates the expression of genes involved in the metabolism of BAs. FXR protects the liver from BA overload, which is a major etiology of hepatocellular carcinoma. Herein, we investigated the changes in gene expression and chromatin accessibility in hepatocytes by performing RNA-seq in combination with the Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq) using a novel FXR knockout mouse model (Fxrex5Δ: Nr1h4ex5Δ/ex5Δ) generated through CRISPR/Cas9. Consistent with previous Fxr knockout models, we found that Fxrex5Δ mice develop late-onset HCC associated with increased serum and hepatic BAs. FXR deletion was associated with a dramatic loss of chromatin accessibility, primarily at promoter-associated transcription factor binding sites. Importantly, several genes involved in BA biosynthesis and circadian rhythm were downregulated following loss of FXR, also displayed reduced chromatin accessibility at their promoter regions. Altogether, these findings suggest that FXR helps to maintain a transcriptionally active state by regulating chromatin accessibility through its binding and recruitment of transcription factors and coactivators.

18.
J Clin Invest ; 131(4)2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33444292

RESUMEN

DREAM (Dp, Rb-like, E2F, and MuvB) is a transcriptional repressor complex that regulates cell proliferation, and its loss causes neonatal lethality in mice. To investigate DREAM function in adult mice, we used an assembly-defective p107 protein and conditional deletion of its redundant family member p130. In the absence of DREAM assembly, mice displayed shortened survival characterized by systemic amyloidosis but no evidence of excessive cellular proliferation. Amyloid deposits were found in the heart, liver, spleen, and kidneys but not the brain or bone marrow. Using laser-capture microdissection followed by mass spectrometry, we identified apolipoproteins as the most abundant components of amyloids. Intriguingly, apoA-IV was the most detected amyloidogenic protein in amyloid deposits, suggesting apoA-IV amyloidosis (AApoAIV). AApoAIV is a recently described form, whereby WT apoA-IV has been shown to predominate in amyloid plaques. We determined by ChIP that DREAM directly regulated Apoa4 and that the histone variant H2AZ was reduced from the Apoa4 gene body in DREAM's absence, leading to overexpression. Collectively, we describe a mechanism by which epigenetic misregulation causes apolipoprotein overexpression and amyloidosis, potentially explaining the origins of nongenetic amyloid subtypes.


Asunto(s)
Amiloide/metabolismo , Apolipoproteínas A/metabolismo , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas/metabolismo , Complejos Multiproteicos/inmunología , Proteína p107 Similar a la del Retinoblastoma/deficiencia , Amiloide/genética , Animales , Apolipoproteínas A/genética , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas/genética , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas/patología , Ratones , Ratones Noqueados , Complejos Multiproteicos/genética , Especificidad de Órganos/genética , Proteína p107 Similar a la del Retinoblastoma/metabolismo
19.
Cancer Cell Int ; 10: 8, 2010 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-20298605

RESUMEN

BACKGROUND: The interaction between viral oncoproteins such as Simian virus 40 TAg, adenovirus E1A, and human papilloma virus E7, and the retinoblastoma protein (pRB) occurs through a well characterized peptide sequence, LXCXE, on the viral protein and a well conserved groove in the pocket domain of pRB. Cellular proteins, such as histone deacetylases, also use this mechanism to interact with the retinoblastoma protein to repress transcription at cell cycle regulated genes. For these reasons this region of the pRB pocket domain is thought to play a critical role in growth suppression. RESULTS: In this study, we identify and characterize a tumor derived allele of the retinoblastoma gene (RB1) that possesses a discrete defect in its ability to interact with LXCXE motif containing proteins that compromises proliferative control. To assess the frequency of similar mutations in the RB1 gene in human cancer, we screened blood and tumor samples for similar alleles. We screened almost 700 samples and did not detect additional mutations, indicating that this class of mutation is rare. CONCLUSIONS: Our work provides proof of principal that alleles encoding distinct, partial loss of function mutations in the retinoblastoma gene that specifically lose LXCXE dependent interactions, are found in human cancer.

20.
Mol Cell Biol ; 40(2)2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31685548

RESUMEN

Interphase chromosomes are organized into topologically associated domains in order to establish and maintain integrity of transcriptional programs that remain poorly understood. Here, we show that condensin II and TFIIIC are recruited to bidirectionally transcribed promoters by a mechanism that is dependent on the retinoblastoma (RB) protein. Long-range chromosome contacts are disrupted by loss of condensin II loading, which leads to altered expression at bidirectional gene pairs. This study demonstrates that mammalian condensin II functions to organize long-range chromosome contacts and regulate transcription at specific genes. In addition, RB dependence of condensin II suggests that widespread misregulation of chromosome contacts and transcriptional alterations are a consequence of RB mutation.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Cromosomas/metabolismo , Proteínas de Unión al ADN/metabolismo , Complejos Multiproteicos/metabolismo , Proteína de Retinoblastoma/metabolismo , Factores de Transcripción TFIII/metabolismo , Animales , Células Cultivadas , Cromosomas/genética , Epigénesis Genética , Interfase , Ratones , Regiones Promotoras Genéticas , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA