RESUMEN
Molecules containing short-lived, radioactive nuclei are uniquely positioned to enable a wide range of scientific discoveries in the areas of fundamental symmetries, astrophysics, nuclear structure, and chemistry. Recent advances in the ability to create, cool, and control complex molecules down to the quantum level, along with recent and upcoming advances in radioactive species production at several facilities around the world, create a compelling opportunity to coordinate and combine these efforts to bring precision measurement and control to molecules containing extreme nuclei. In this manuscript, we review the scientific case for studying radioactive molecules, discuss recent atomic, molecular, nuclear, astrophysical, and chemical advances which provide the foundation for their study, describe the facilities where these species are and will be produced, and provide an outlook for the future of this nascent field.
RESUMEN
High-precision mass measurements of exotic ^{95-97}Ag isotopes close to the N=Z line have been conducted with the JYFLTRAP double Penning trap mass spectrometer, with the silver ions produced using the recently commissioned inductively heated hot cavity catcher laser ion source at the Ion Guide Isotope Separator On-Line facility. The atomic mass of ^{95}Ag was directly determined for the first time. In addition, the atomic masses of ß-decaying 2^{+} and 8^{+} states in ^{96}Ag have been identified and measured for the first time, and the precision of the ^{97}Ag mass has been improved. The newly measured masses, with a precision of ≈1 keV/c^{2}, have been used to investigate the N=50 neutron shell closure, confirming it to be robust. Empirical shell-gap and pairing energies determined with the new ground-state mass data are compared with the state-of-the-art ab initio calculations with various chiral effective field theory Hamiltonians. The precise determination of the excitation energy of the ^{96m}Ag isomer in particular serves as a benchmark for ab initio predictions of nuclear properties beyond the ground state, specifically for odd-odd nuclei situated in proximity to the proton dripline below ^{100}Sn. In addition, density functional theory calculations and configuration-interaction shell-model calculations are compared with the experimental results. All theoretical approaches face challenges to reproduce the trend of nuclear ground-state properties in the silver isotopic chain across the N=50 neutron shell and toward the proton dripline.
RESUMEN
High-accuracy mass measurements of neutron-deficient Yb isotopes have been performed at TRIUMF using TITAN's multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS). For the first time, an MR-TOF-MS was used on line simultaneously as an isobar separator and as a mass spectrometer, extending the measurements to two isotopes further away from stability than otherwise possible. The ground state masses of ^{150,153}Yb and the excitation energy of ^{151}Yb^{m} were measured for the first time. As a result, the persistence of the N=82 shell with almost unmodified shell gap energies is established up to the proton drip line. Furthermore, the puzzling systematics of the h_{11/2}-excited isomeric states of the N=81 isotones are unraveled using state-of-the-art mean field calculations.
RESUMEN
A compact ion source combining electron impact and thermal ionization has been developed and commissioned in two Multiple-Reflection Time-Of-Flight Mass Spectrometer (MR-TOF-MS) setups at the Fragment Separator Ion Catcher at the GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, Germany, and at TRIUMF's Ion Trap for Atomic and Nuclear science at TRIUMF Canada's particle accelerator center, Vancouver, Canada. The ion source is notable for its compact dimensions of 50 mm in height and 68 mm in diameter. The ion source is currently in daily operation at both facilities. Design, simulations, and results of combining ions from thermal and electron-impact ionization of different gases (perfluoropropane and sulfur hexafluoride) are presented in this work. The systematic effects of heating power on the thermal source were studied in detail. The source has demonstrated stable and long-term production of reference ions over a wide mass range for the MR-TOF-MS. This versatile ion source has also been used to optimize and investigate the transport of ions with different chemical reactivity and ionization potentials.
RESUMEN
Owing to the favorable depth-dose distribution and the radiobiological properties of heavy ion radiation, ion beam therapy shows an improved success/toxicity ratio compared to conventional radiotherapy. The sharp dose gradients and very high doses in the Bragg peak region, which represent the larger physical advantage of ion beam therapy, make it also extremely sensitive to range uncertainties. The use of ß +-radioactive ion beams would be ideal for simultaneous treatment and accurate online range monitoring through PET imaging. Since all the unfragmented primary ions are potentially contributing to the PET signal, these beams offer an improved image quality while preserving the physical and radiobiological advantages of the stable counterparts. The challenging production of radioactive ion beams and the difficulties in reaching high intensities, have discouraged their clinical application. In this context, the project Biomedical Applications of Radioactive ion Beams (BARB) started at GSI (Helmholtzzentrum für Schwerionenforschung GmbH) with the main goal to assess the technical feasibility and investigate possible advantages of radioactive ion beams on the pre-clinical level. During the first experimental campaign 11C and 10C beams were produced and isotopically separated with the FRagment Separator (FRS) at GSI. The ß +-radioactive ion beams were produced with a beam purity of 99% for all the beam investigated (except one case where it was 94%) and intensities potentially sufficient to treat a small animal tumors within few minutes of irradiation time, â¼ 106 particle per spill for the 10C and â¼ 107 particle per spill for the 11C beam, respectively. The impact of different ion optical parameters on the depth dose distribution was studied with a precision water column system. In this work, the measured depth dose distributions are presented together with results from Monte Carlo simulations using the FLUKA software.
RESUMEN
Several techniques are under development for image-guidance in particle therapy. Positron (ß+) emission tomography (PET) is in use since many years, because accelerated ions generate positron-emitting isotopes by nuclear fragmentation in the human body. In heavy ion therapy, a major part of the PET signals is produced by ß+-emitters generated via projectile fragmentation. A much higher intensity for the PET signal can be obtained using ß+-radioactive beams directly for treatment. This idea has always been hampered by the low intensity of the secondary beams, produced by fragmentation of the primary, stable beams. With the intensity upgrade of the SIS-18 synchrotron and the isotopic separation with the fragment separator FRS in the FAIR-phase-0 in Darmstadt, it is now possible to reach radioactive ion beams with sufficient intensity to treat a tumor in small animals. This was the motivation of the BARB (Biomedical Applications of Radioactive ion Beams) experiment that is ongoing at GSI in Darmstadt. This paper will present the plans and instruments developed by the BARB collaboration for testing the use of radioactive beams in cancer therapy.
RESUMEN
A novel method for (ultra-)high-resolution spatial mass separation in time-of-flight mass spectrometers is presented. Ions are injected into a time-of-flight analyzer from a radio frequency (rf) trap, dispersed in time-of-flight according to their mass-to-charge ratios and then re-trapped dynamically in the same rf trap. This re-trapping technique is highly mass-selective and after sufficiently long flight times can provide even isobaric separation. A theoretical treatment of the method is presented and the conditions for optimum performance of the method are derived. The method has been implemented in a multiple-reflection time-of-flight mass spectrometer and mass separation powers (FWHM) in excess of 70,000, and re-trapping efficiencies of up to 35% have been obtained for the protonated molecular ion of caffeine. The isobars glutamine and lysine (relative mass difference of 1/4000) have been separated after a flight time of 0.2 ms only. Higher mass separation powers can be achieved using longer flight times. The method will have important applications, including isobar separation in nuclear physics and (ultra-)high-resolution precursor ion selection in multiple-stage tandem mass spectrometry. Graphical Abstract á .