Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Phys Rev Lett ; 131(20): 208401, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38039450

RESUMEN

Excitable media are ubiquitous in nature, and in such systems the local excitation tends to self-organize in traveling waves, or in rotating spiral-shaped patterns in two or three spatial dimensions. Examples include waves during a pandemic or electrical scroll waves in the heart. Here we show that such phenomena can be extended to a space of four or more dimensions and propose that connections of excitable elements in a network setting can be regarded as additional spatial dimensions. Numerical simulations are performed in four dimensions using the FitzHugh-Nagumo model, showing that the vortices rotate around a two-dimensional surface which we define as the superfilament. Evolution equations are derived for general superfilaments of codimension two in an N-dimensional space, and their equilibrium configurations are proven to be minimal surfaces. We suggest that biological excitable systems, such as the heart or brain which have nonlocal connections can be regarded, at least partially, as multidimensional excitable media and discuss further possible studies in this direction.

2.
Phys Rev Lett ; 119(25): 258101, 2017 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-29303350

RESUMEN

Meandering spiral waves are often observed in excitable media such as the Belousov-Zhabotinsky reaction and cardiac tissue. We derive a theory for drift dynamics of meandering rotors in general reaction-diffusion systems and apply it to two types of external disturbances: an external field and curvature-induced drift in three dimensions. We find two distinct regimes: with small filament curvature, meandering scroll waves exhibit filament tension, whose sign determines the stability and drift direction. In the regimes of strong external fields or meandering motion close to resonance, however, phase locking of the meander pattern is predicted and observed.


Asunto(s)
Simulación por Computador , Fenómenos Electromagnéticos , Corazón , Movimiento (Física) , Citoesqueleto , Difusión , Modelos Cardiovasculares
3.
Chaos ; 27(9): 093912, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28964120

RESUMEN

The rotating spiral waves that emerge in diverse natural and man-made systems typically exhibit a particle-like behaviour since their adjoint critical eigenmodes (response functions) are often seen to be localised around the spiral core. We present a simple method to numerically compute response functions for circular-core and meandering spirals by recording their drift response to many elementary perturbations. Although our method is computationally more expensive than solving the adjoint system, our technique is fully parallellisable, does not suffer from memory limitations and can be applied to experiments. For a cardiac tissue model with the linear spiral core, we find that the response functions are localised near the turning points of the trajectory.

4.
Phys Rev Lett ; 114(17): 178104, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25978269

RESUMEN

To a reaction-diffusion medium with an inhomogeneous anisotropic diffusion tensor D, we add a fourth spatial dimension such that the determinant of the diffusion tensor is constant in four dimensions. We propose a generalized minimal principle for rotor filaments, stating that the scroll wave filament strives to minimize its surface area in the higher-dimensional space. As a consequence, stationary scroll wave filaments in the original 3D medium are geodesic curves with respect to the metric tensor G=det(D)D(-1). The theory is confirmed by numerical simulations for positive and negative filament tension and a model with a non-stationary spiral core. We conclude that filaments in cardiac tissue with positive tension preferentially reside or anchor in regions where cardiac cells are less interconnected, such as portions of the cardiac wall with a large number of cleavage planes.

5.
J Chem Phys ; 140(18): 184901, 2014 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-24832300

RESUMEN

Chirality is one of the most fundamental properties of many physical, chemical, and biological systems. However, the mechanisms underlying the onset and control of chiral symmetry are largely understudied. We investigate possibility of chirality control in a chemical excitable system (the Belousov-Zhabotinsky reaction) by application of a chiral (rotating) electric field using the Oregonator model. We find that unlike previous findings, we can achieve the chirality control not only in the field rotation direction, but also opposite to it, depending on the field rotation frequency. To unravel the mechanism, we further develop a comprehensive theory of frequency synchronization based on the response function approach. We find that this problem can be described by the Adler equation and show phase-locking phenomena, known as the Arnold tongue. Our theoretical predictions are in good quantitative agreement with the numerical simulations and provide a solid basis for chirality control in excitable media.


Asunto(s)
Difusión , Campos Electromagnéticos , Modelos Teóricos , Simulación por Computador
6.
Comput Biol Med ; 169: 107949, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38199206

RESUMEN

Excitable systems give rise to important phenomena such as heat waves, epidemics and cardiac arrhythmias. Understanding, forecasting and controlling such systems requires reliable mathematical representations. For cardiac tissue, computational models are commonly generated in a reaction-diffusion framework based on detailed measurements of ionic currents in dedicated single-cell experiments. Here, we show that recorded movies at the tissue-level of stochastic pacing in a single variable are sufficient to generate a mathematical model. Via exponentially weighed moving averages, we create additional state variables, and use simple polynomial regression in the augmented state space to quantify excitation wave dynamics. A spatial gradient-sensing term replaces the classical diffusion as it is more robust to noise. Our pipeline for model creation is demonstrated for an in-silico model and optical voltage mapping recordings of cultured human atrial myocytes and only takes a few minutes. Our findings have the potential for widespread generation, use and on-the-fly refinement of personalised computer models for non-linear phenomena in biology and medicine, such as predictive cardiac digital twins.


Asunto(s)
Arritmias Cardíacas , Medicina , Humanos , Miocitos Cardíacos/fisiología , Modelos Cardiovasculares , Simulación por Computador
7.
JACC Clin Electrophysiol ; 10(4): 637-650, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38276927

RESUMEN

BACKGROUND: Voltage mapping to detect ventricular scar is important for guiding catheter ablation, but the field-of-view of unipolar, bipolar, conventional, and microelectrodes as it relates to the extent of viable myocardium (VM) is not well defined. OBJECTIVES: The purpose of this study was to evaluate electroanatomic voltage-mapping (EAVM) with different-size electrodes for identifying VM, validated against high-resolution ex-vivo cardiac magnetic resonance (HR-LGE-CMR). METHODS: A total of 9 swine with early-reperfusion myocardial infarction were mapped with the QDOT microcatheter. HR-LGE-CMR (0.3-mm slices) were merged with EAVM. At each EAVM point, the underlying VM in multisize transmural cylinders and spheres was quantified from ex vivo CMR and related to unipolar and bipolar voltages recorded from conventional and microelectrodes. RESULTS: In each swine, 220 mapping points (Q1, Q3: 216, 260 mapping points) were collected. Infarcts were heterogeneous and nontransmural. Unipolar and bipolar voltage increased with VM volumes from >175 mm3 up to >525 mm3 (equivalent to a 5-mm radius cylinder with height >6.69 mm). VM volumes in subendocardial cylinders with 1- or 3-mm depth correlated poorly with all voltages. Unipolar voltages recorded with conventional and microelectrodes were similar (difference 0.17 ± 2.66 mV) and correlated best to VM within a sphere of radius 10 and 8 mm, respectively. Distance-weighting did not improve the correlation. CONCLUSIONS: Voltage increases with transmural volume of VM but correlates poorly with small amounts of VM, which limits EAVM in defining heterogeneous scar. Microelectrodes cannot distinguish thin from thick areas of subendocardial VM. The field-of-view for unipolar recordings for microelectrodes and conventional electrodes appears to be 8 to 10 mm, respectively, and unexpectedly similar.


Asunto(s)
Infarto del Miocardio , Animales , Porcinos , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/fisiopatología , Imagen por Resonancia Magnética/métodos , Gadolinio , Técnicas Electrofisiológicas Cardíacas/instrumentación , Técnicas Electrofisiológicas Cardíacas/métodos , Microelectrodos , Electrodos , Miocardio/patología , Medios de Contraste
8.
Front Physiol ; 14: 1213218, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37492643

RESUMEN

Intracardiac electrograms (iEGMs) are time traces of the electrical potential recorded close to the heart muscle. We calculate unipolar and bipolar iEGMs analytically for a myocardial slab with parallel myofibers and validate them against numerical bidomain simulations. The analytical solution obtained via the method of mirrors is an infinite series of arctangents. It goes beyond the solid angle theory and is in good agreement with the simulations, even though bath loading effects were not accounted for in the analytical calculation. At a large distance from the myocardium, iEGMs decay as 1/R (unipolar), 1/R 2 (bipolar and parallel), and 1/R 3 (bipolar and perpendicular to the endocardium). At the endocardial surface, there is a mathematical branch cut. Here, we show how a thicker myocardium generates iEGMs with larger amplitudes and how anisotropy affects the iEGM width and amplitude. If only the leading-order term of our expansion is retained, it can be determined how the conductivities of the bath, torso, myocardium, and myofiber direction together determine the iEGM amplitude. Our results will be useful in the quantitative interpretation of iEGMs, the selection of thresholds to characterize viable tissues, and for future inferences of tissue parameters.

9.
Phys Rev E ; 108(3-1): 034218, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37849154

RESUMEN

Electrical turbulence in the heart is considered the culprit of cardiac disease, including the fatal ventricular fibrillation. Optogenetics is an emerging technology that has the capability to produce action potentials of cardiomyocytes to affect the electric wave propagation in cardiac tissue, thereby possessing the potential to control the turbulence, by shining a rotating spiral pattern onto the tissue. In this paper, we present a method to reorder and synchronize electrical turbulence through optogenetics. A generic two-variable reaction-diffusion model and a simplified three-variable ionic cardiac model are used. We discuss cases involving either global or partial illumination.


Asunto(s)
Iluminación , Miocitos Cardíacos , Simulación por Computador , Potenciales de Acción/fisiología , Modelos Cardiovasculares
10.
Phys Rev Lett ; 109(17): 174102, 2012 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-23215191

RESUMEN

A scroll wave in a sufficiently thin layer of an excitable medium with negative filament tension can be stable nevertheless due to filament rigidity. Above a certain critical thickness of the medium, such a scroll wave will have a tendency to deform into a buckled, precessing state. Experimentally this will be seen as meandering of the spiral wave on the surface, the amplitude of which grows with the thickness of the layer, until a breakup to scroll wave turbulence happens. We present a simplified theory for this phenomenon and illustrate it with numerical examples.

11.
PLoS One ; 17(7): e0271351, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35819963

RESUMEN

Electrical waves that rotate in the heart organize dangerous cardiac arrhythmias. Finding the region around which such rotation occurs is one of the most important practical questions for arrhythmia management. For many years, the main method for finding such regions was so-called phase mapping, in which a continuous phase was assigned to points in the heart based on their excitation status and defining the rotation region as a point of phase singularity. Recent analysis, however, showed that in many rotation regimes there exist phase discontinuities and the region of rotation must be defined not as a point of phase singularity, but as a phase defect line. In this paper, we use this novel methodology and perform a comparative study of three different phase definitions applied to in silico data and to experimental data obtained from optical voltage mapping experiments on monolayers of human atrial myocytes. We introduce new phase defect detection algorithms and compare them with those that appeared in literature already. We find that the phase definition is more important than the algorithm to identify sudden spatial phase variations. Sharp phase defect lines can be obtained from a phase derived from local activation times observed during one cycle of arrhythmia. Alternatively, similar quality can be obtained from a reparameterization of the classical phase obtained from observation of a single timeframe of transmembrane potential. We found that the phase defect line length was (35.9 ± 6.2)mm in the Fenton-Karma model and (4.01 ± 0.55)mm in cardiac human atrial myocyte monolayers. As local activation times are obtained during standard clinical cardiac mapping, the methods are also suitable to be applied to clinical datasets. All studied methods are publicly available and can be downloaded from an institutional web-server.


Asunto(s)
Arritmias Cardíacas , Atrios Cardíacos , Algoritmos , Arritmias Cardíacas/diagnóstico , Humanos , Miocitos Cardíacos , Pericardio
12.
Phys Rev E ; 105(1-1): 014214, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35193299

RESUMEN

Spiral waves lead to dangerous arrhythmias in the cardiac system. In 2015 Burton et al. demonstrated the reversal of the spiral wave chirality through the rotating spiral-shaped illumination on the optogenetically modified cardiac monolayers. We show that this process entails the recreation of a spiral wave. We show how this methodology can be used to control and create the desired spatial excitation pattern. We found that the control is sensitive to the area of illuminated region but independent of the phase difference of the existing spiral wave and the applied spiral-shaped light. We also discovered that our methodology can temporarily resynchronize a turbulent system. The results offer numerical evidence for the control of spatial pattern in biological excitable systems with optogenetics.

13.
Phys Rev Lett ; 107(10): 108101, 2011 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-21981533

RESUMEN

The dependency of wave velocity in reaction-diffusion (RD) systems on the local front curvature determines not only the stability of wave propagation, but also the fundamental properties of other spatial configurations such as vortices. This Letter gives the first derivation of a covariant eikonal-curvature relation applicable to general RD systems with spatially varying anisotropic diffusion properties, such as cardiac tissue. The theoretical prediction that waves which seem planar can nevertheless possess a nonvanishing geometrical curvature induced by local anisotropy is confirmed by numerical simulations, which reveal deviations up to 20% from the nominal plane wave speed.


Asunto(s)
Difusión , Modelos Teóricos , Anisotropía , Distribución Normal
14.
Phys Rev E ; 104(3-1): 034408, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34654159

RESUMEN

Nonlinear waves of electrical excitation initiate cardiac contraction. Abnormal wave propagation in the heart, e.g., spiral waves, can lead to sudden cardiac arrest. This study analyzed the dynamics of spiral waves under the influence of an instability called negative filament tension, and examined how the spiral waves can be eliminated through high-frequency pacing. A generic anatomical model of the left ventricle of the human heart and the Aliev-Panfilov model for cardiac tissue were used. The study showed that the source of such arrhythmia is elongated filaments with lengths that can be 10-20 times greater than the characteristic thickness of the heart wall. In anisotropic tissue, the filament elongated before it was annihilated at the base of the heart. The spiral waves were eliminated through overdrive pacing with stimulation periods from 0.8 to 0.95 relative to the spiral wave period. The minimum time for the expulsion was about 10 s.


Asunto(s)
Ventrículos Cardíacos , Modelos Cardiovasculares , Anisotropía , Arritmias Cardíacas , Corazón , Humanos
15.
Phys Rev E ; 103(4-1): 042420, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34005903

RESUMEN

Vortices in excitable media underlie dangerous cardiac arrhythmias. One way to eliminate them is by stimulating the excitable medium with a period smaller than the period of the vortex. So far, this phenomenon has been studied mostly for two-dimensional vortices known as spiral waves. Here we present a first study of this phenomenon for three-dimensional vortices, or scroll waves, in a slab. We consider two main types of scroll waves dynamics: with positive filament tension and with negative filament tension and show that such elimination is possible for some values of the period in all cases. However, in the case of negative filament tension for relatively long stimulation periods, three-dimensional instabilities occur and make elimination impossible. We derive equations of motion for the drift of paced filaments and identify a bifurcation parameter that determines whether the filaments orient themselves perpendicular to the impeding wave train or not.


Asunto(s)
Arritmias Cardíacas , Corazón , Modelos Cardiovasculares
16.
Front Physiol ; 12: 690453, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34630135

RESUMEN

During cardiac arrhythmias, dynamical patterns of electrical activation form and evolve, which are of interest to understand and cure heart rhythm disorders. The analysis of these patterns is commonly performed by calculating the local activation phase and searching for phase singularities (PSs), i.e., points around which all phases are present. Here we propose an alternative framework, which focuses on phase defect lines (PDLs) and surfaces (PDSs) as more general mechanisms, which include PSs as a specific case. The proposed framework enables two conceptual unifications: between the local activation time and phase description, and between conduction block lines and the central regions of linear-core rotors. A simple PDL detection method is proposed and applied to data from simulations and optical mapping experiments. Our analysis of ventricular tachycardia in rabbit hearts (n = 6) shows that nearly all detected PSs were found on PDLs, but the PDLs had a significantly longer lifespan than the detected PSs. Since the proposed framework revisits basic building blocks of cardiac activation patterns, it can become a useful tool for further theory development and experimental analysis.

17.
Phys Rev E ; 99(2-1): 022217, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30934367

RESUMEN

In many oscillatory or excitable systems, dynamical patterns emerge which are stationary or periodic in a moving frame of reference. Examples include traveling waves or spiral waves in chemical systems or cardiac tissue. We present a unified theoretical framework for the drift of such patterns under small external perturbations, in terms of overlap integrals between the perturbation and the adjoint critical eigenfunctions of the linearized operator (i.e., response functions). For spiral waves, the finite radius of the spiral tip trajectory and spiral wave meander are taken into account. Different coordinate systems can be chosen, depending on whether one wants to predict the motion of the spiral-wave tip, the time-averaged tip path, or the center of the meander flower. The framework is applied to analyze the drift of a meandering spiral wave in a constant external field in different regimes.

19.
Front Physiol ; 9: 1431, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30386252

RESUMEN

Cardiac contraction is coordinated by a wave of electrical excitation which propagates through the heart. Combined modeling of electrical and mechanical function of the heart provides the most comprehensive description of cardiac function and is one of the latest trends in cardiac research. The effective numerical modeling of cardiac electromechanics remains a challenge, due to the stiffness of the electrical equations and the global coupling in the mechanical problem. Here we present a short review of the inherent assumptions made when deriving the electromechanical equations, including a general representation for deformation-dependent conduction tensors obeying orthotropic symmetry, and then present an implicit-explicit time-stepping approach that is tailored to solving the cardiac mono- or bidomain equations coupled to electromechanics of the cardiac wall. Our approach allows to find numerical solutions of the electromechanics equations using stable and higher order time integration. Our methods are implemented in a monolithic finite element code GEMS (Ghent Electromechanics Solver) using the PETSc library that is inherently parallelized for use on high-performance computing infrastructure. We tested GEMS on standard benchmark computations and discuss further development of our software.

20.
Phys Rev X ; 8(2): 021077, 2018 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-30210937

RESUMEN

The generation of abnormal excitations in pathological regions of the heart is a main trigger for lethal cardiac arrhythmias. Such abnormal excitations, also called ectopic activity, often arise from areas with local tissue heterogeneity or damage accompanied by localized depolarization. Finding the conditions that lead to ectopy is important to understand the basic biophysical principles underlying arrhythmia initiation and might further refine clinical procedures. In this study, we are the first to address the question of how geometry of the abnormal region affects the onset of ectopy using a combination of experimental, in silico, and theoretical approaches. We paradoxically find that, for any studied geometry of the depolarized region in optogenetically modified monolayers of cardiac cells, primary ectopic excitation originates at areas of maximal curvature of the boundary, where the stimulating electrotonic currents are minimal. It contradicts the standard critical nucleation theory applied to nonlinear waves in reaction-diffusion systems, where a higher stimulus is expected to produce excitation more easily. Our in silico studies reveal that the nonconventional ectopic activity is caused by an oscillatory instability at the boundary of the damaged region, the occurrence of which depends on the curvature of that boundary. The onset of this instability is confirmed using the Schrödinger equation methodology proposed by Rinzel and Keener [SIAM J. Appl. Math. 43, 907 (1983)]. Overall, we show distinctively novel insight into how the geometry of a heterogeneous cardiac region determines ectopic activity, which can be used in the future to predict the conditions that can trigger cardiac arrhythmias.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA