Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nat Rev Mol Cell Biol ; 24(11): 797-815, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37524848

RESUMEN

Heat shock protein 90 (HSP90) is a chaperone with vital roles in regulating proteostasis, long recognized for its function in protein folding and maturation. A view is emerging that identifies HSP90 not as one protein that is structurally and functionally homogeneous but, rather, as a protein that is shaped by its environment. In this Review, we discuss evidence of multiple structural forms of HSP90 in health and disease, including homo-oligomers and hetero-oligomers, also termed epichaperomes, and examine the impact of stress, post-translational modifications and co-chaperones on their formation. We describe how these variations influence context-dependent functions of HSP90 as well as its interaction with other chaperones, co-chaperones and proteins, and how this structural complexity of HSP90 impacts and is impacted by its interaction with small molecule modulators. We close by discussing recent developments regarding the use of HSP90 inhibitors in cancer and how our new appreciation of the structural and functional heterogeneity of HSP90 invites a re-evaluation of how we discover and implement HSP90 therapeutics for disease treatment.


Asunto(s)
Proteínas HSP90 de Choque Térmico , Chaperonas Moleculares , Proteínas HSP90 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Pliegue de Proteína , Proteostasis , Homeostasis
2.
Bioorg Chem ; 136: 106538, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37079988

RESUMEN

In spite of several attempts to develop newer pharmacophores as potential antimicrobial agents, the benzimidazole scaffold is still considered as one of the most sought after structural component towards the design of compounds that act against a wide spectrum of microbes. Herein, we report the design and synthesis of a new structural class of 4-(1,3-thiazol-2-yl)morpholine-benzimidazole hybrids as antimicrobial agents. The most potent analog, 6g shows IC50 of 1.3 µM, 2.7 µM, 10.8 µM, 5.4 µM and 10.8 µM against Cryptococcus neoformans, Candida albicans, Candida parapsilosis, Escherichia coli and Staphylococcus aureus, respectively. Interestingly 6g exhibits selectivity towards the cryptococcal cells with fungicidal behavior. Propidium iodide uptake study shows permeabilization of pathogenic cells in the presence of 6g. Flow cytometric analysis confirms that cell death is predominantly due to apoptosis. Moreover, electron microscopic analysis specifies that it shrinks, disrupts and initiate pore(s) formation in the cell membrane leading to cell lysis.


Asunto(s)
Antiinfecciosos , Criptococosis , Cryptococcus neoformans , Humanos , Bencimidazoles/farmacología , Candida albicans , Morfolinas , Pruebas de Sensibilidad Microbiana , Antifúngicos/farmacología
3.
Biomedicines ; 12(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38927459

RESUMEN

Neurodegenerative disorders, including Alzheimer's disease (AD) and Parkinson's disease (PD), represent debilitating conditions with complex, poorly understood pathologies. Epichaperomes, pathologic protein assemblies nucleated on key chaperones, have emerged as critical players in the molecular dysfunction underlying these disorders. In this study, we introduce the synthesis and characterization of clickable epichaperome probes, PU-TCO, positive control, and PU-NTCO, negative control. Through comprehensive in vitro assays and cell-based investigations, we establish the specificity of the PU-TCO probe for epichaperomes. Furthermore, we demonstrate the efficacy of PU-TCO in detecting epichaperomes in brain tissue with a cellular resolution, underscoring its potential as a valuable tool for dissecting single-cell responses in neurodegenerative diseases. This clickable probe is therefore poised to address a critical need in the field, offering unprecedented precision and versatility in studying epichaperomes and opening avenues for novel insights into their role in disease pathology.

4.
Res Sq ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38645031

RESUMEN

The intricate protein-chaperone network is vital for cellular function. Recent discoveries have unveiled the existence of specialized chaperone complexes called epichaperomes, protein assemblies orchestrating the reconfiguration of protein-protein interaction networks, enhancing cellular adaptability and proliferation. This study delves into the structural and regulatory aspects of epichaperomes, with a particular emphasis on the significance of post-translational modifications in shaping their formation and function. A central finding of this investigation is the identification of specific PTMs on HSP90, particularly at residues Ser226 and Ser255 situated within an intrinsically disordered region, as critical determinants in epichaperome assembly. Our data demonstrate that the phosphorylation of these serine residues enhances HSP90's interaction with other chaperones and co-chaperones, creating a microenvironment conducive to epichaperome formation. Furthermore, this study establishes a direct link between epichaperome function and cellular physiology, especially in contexts where robust proliferation and adaptive behavior are essential, such as cancer and stem cell maintenance. These findings not only provide mechanistic insights but also hold promise for the development of novel therapeutic strategies targeting chaperone complexes in diseases characterized by epichaperome dysregulation, bridging the gap between fundamental research and precision medicine.

5.
Structure ; 31(8): 987-1004.e8, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37343552

RESUMEN

Protein-assembly defects due to an enrichment of aberrant conformational protein variants are emerging as a new frontier in therapeutics design. Understanding the structural elements that rewire the conformational dynamics of proteins and pathologically perturb functionally oriented ensembles is important for inhibitor development. Chaperones are hub proteins for the assembly of multiprotein complexes and an enrichment of aberrant conformers can affect the cellular proteome, and in turn, phenotypes. Here, we integrate computational and experimental tools to investigte how N-glycosylation of specific residues in glucose-regulated protein 94 (GRP94) modulates internal dynamics and alters the conformational fitness of regions fundamental for the interaction with ATP and synthetic ligands and impacts substructures important for the recognition of interacting proteins. N-glycosylation plays an active role in modulating the energy landscape of GRP94, and we provide support for leveraging the knowledge on distinct glycosylation variants to design molecules targeting GRP94 disease-associated conformational states and assemblies.


Asunto(s)
Chaperonas Moleculares , Glicosilación , Ligandos , Chaperonas Moleculares/química , Conformación Proteica , Unión Proteica
6.
Biomedicines ; 11(10)2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37892973

RESUMEN

Drugs with a long residence time at their target sites are often more efficacious in disease treatment. The mechanism, however, behind prolonged retention at the site of action is often difficult to understand for non-covalent agents. In this context, we focus on epichaperome agents, such as zelavespib and icapamespib, which maintain target binding for days despite rapid plasma clearance, minimal retention in non-diseased tissues, and rapid metabolism. They have shown significant therapeutic value in cancer and neurodegenerative diseases by disassembling epichaperomes, which are assemblies of tightly bound chaperones and other factors that serve as scaffolding platforms to pathologically rewire protein-protein interactions. To investigate their impact on epichaperomes in vivo, we conducted pharmacokinetic and target occupancy measurements for zelavespib and monitored epichaperome assemblies biochemically in a mouse model. Our findings provide evidence of the intricate mechanism through which zelavespib modulates epichaperomes in vivo. Initially, zelavespib becomes trapped when epichaperomes bound, a mechanism that results in epichaperome disassembly, with no change in the expression level of epichaperome constituents. We propose that the initial trapping stage of epichaperomes is a main contributing factor to the extended on-target residence time observed for this agent in clinical settings. Zelavespib's residence time in tumors seems to be dictated by target disassembly kinetics rather than by frank drug-target unbinding kinetics. The off-rate of zelavespib from epichaperomes is, therefore, much slower than anticipated from the recorded tumor pharmacokinetic profile or as determined in vitro using diluted systems. This research sheds light on the underlying processes that make epichaperome agents effective in the treatment of certain diseases.

7.
Nat Commun ; 14(1): 3742, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37353488

RESUMEN

Systems-level assessments of protein-protein interaction (PPI) network dysfunctions are currently out-of-reach because approaches enabling proteome-wide identification, analysis, and modulation of context-specific PPI changes in native (unengineered) cells and tissues are lacking. Herein, we take advantage of chemical binders of maladaptive scaffolding structures termed epichaperomes and develop an epichaperome-based 'omics platform, epichaperomics, to identify PPI alterations in disease. We provide multiple lines of evidence, at both biochemical and functional levels, demonstrating the importance of these probes to identify and study PPI network dysfunctions and provide mechanistically and therapeutically relevant proteome-wide insights. As proof-of-principle, we derive systems-level insight into PPI dysfunctions of cancer cells which enabled the discovery of a context-dependent mechanism by which cancer cells enhance the fitness of mitotic protein networks. Importantly, our systems levels analyses support the use of epichaperome chemical binders as therapeutic strategies aimed at normalizing PPI networks.


Asunto(s)
Neoplasias , Mapas de Interacción de Proteínas , Humanos , Proteoma/metabolismo , Mapeo de Interacción de Proteínas , Neoplasias/genética , Aclimatación
8.
STAR Protoc ; 3(2): 101318, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35496791

RESUMEN

Epichaperomes are disease-associated pathologic scaffolds composed of tightly bound chaperones and co-chaperones. They provide opportunities for precision medicine where aberrant protein-protein interaction networks, rather than a single protein, are detected and targeted. This protocol describes the synthesis and characterization of two 124I-labeled epichaperome probes, [124I]-PU-H71 and [124I]-PU-AD, both which have translated to clinical studies. It shows specific steps in the use of these reagents to image and quantify epichaperome-positivity in tumor bearing mice through positron emission tomography. For complete details on the use and execution of this protocol, please refer to Bolaender et al. (2021), Inda et al. (2020), and Pillarsetty et al. (2019).


Asunto(s)
Neoplasias , Mapas de Interacción de Proteínas , Animales , Radioisótopos de Yodo , Ratones , Neoplasias/patología , Tomografía Computarizada por Rayos X
9.
FEBS J ; 289(8): 2047-2066, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34028172

RESUMEN

The increasingly appreciated prevalence of complicated stressor-to-phenotype associations in human disease requires a greater understanding of how specific stressors affect systems or interactome properties. Many currently untreatable diseases arise due to variations in, and through a combination of, multiple stressors of genetic, epigenetic, and environmental nature. Unfortunately, how such stressors lead to a specific disease phenotype or inflict a vulnerability to some cells and tissues but not others remains largely unknown and unsatisfactorily addressed. Analysis of cell- and tissue-specific interactome networks may shed light on organization of biological systems and subsequently to disease vulnerabilities. However, deriving human interactomes across different cell and disease contexts remains a challenge. To this end, this opinion article links stressor-induced protein interactome network perturbations to the formation of pathologic scaffolds termed epichaperomes, revealing a viable and reproducible experimental solution to obtaining rigorous context-dependent interactomes. This article presents our views on how a specialized 'omics platform called epichaperomics may complement and enhance the currently available conventional approaches and aid the scientific community in defining, understanding, and ultimately controlling interactome networks of complex diseases such as Alzheimer's disease. Ultimately, this approach may aid the transition from a limited single-alteration perspective in disease to a comprehensive network-based mindset, which we posit will result in precision medicine paradigms for disease diagnosis and treatment.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/genética , Humanos , Fenotipo , Medicina de Precisión , Proteínas
10.
Nat Commun ; 12(1): 4669, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34344873

RESUMEN

Diseases are a manifestation of how thousands of proteins interact. In several diseases, such as cancer and Alzheimer's disease, proteome-wide disturbances in protein-protein interactions are caused by alterations to chaperome scaffolds termed epichaperomes. Epichaperome-directed chemical probes may be useful for detecting and reversing defective chaperomes. Here we provide structural, biochemical, and functional insights into the discovery of epichaperome probes, with a focus on their use in central nervous system diseases. We demonstrate on-target activity and kinetic selectivity of a radiolabeled epichaperome probe in both cells and mice, together with a proof-of-principle in human patients in an exploratory single group assignment diagnostic study (ClinicalTrials.gov Identifier: NCT03371420). The clinical study is designed to determine the pharmacokinetic parameters and the incidence of adverse events in patients receiving a single microdose of the radiolabeled probe administered by intravenous injection. In sum, we introduce a discovery platform for brain-directed chemical probes that specifically modulate epichaperomes and provide proof-of-principle applications in their use in the detection, quantification, and modulation of the target in complex biological systems.


Asunto(s)
Sistema Nervioso Central/metabolismo , Chaperonas Moleculares/metabolismo , Mapeo de Interacción de Proteínas/instrumentación , Proteoma/metabolismo , Animales , Biomarcadores de Tumor/metabolismo , Barrera Hematoencefálica/metabolismo , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Supervivencia Celular/efectos de los fármacos , Sistema Nervioso Central/efectos de los fármacos , Glioblastoma/diagnóstico , Glioblastoma/metabolismo , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Ratones , Sondas Moleculares/química , Sondas Moleculares/farmacocinética , Sondas Moleculares/farmacología , Sondas Moleculares/uso terapéutico , Tomografía de Emisión de Positrones
11.
Commun Biol ; 4(1): 1333, 2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34824367

RESUMEN

Cancer cell plasticity due to the dynamic architecture of interactome networks provides a vexing outlet for therapy evasion. Here, through chemical biology approaches for systems level exploration of protein connectivity changes applied to pancreatic cancer cell lines, patient biospecimens, and cell- and patient-derived xenografts in mice, we demonstrate interactomes can be re-engineered for vulnerability. By manipulating epichaperomes pharmacologically, we control and anticipate how thousands of proteins interact in real-time within tumours. Further, we can essentially force tumours into interactome hyperconnectivity and maximal protein-protein interaction capacity, a state whereby no rebound pathways can be deployed and where alternative signalling is supressed. This approach therefore primes interactomes to enhance vulnerability and improve treatment efficacy, enabling therapeutics with traditionally poor performance to become highly efficacious. These findings provide proof-of-principle for a paradigm to overcome drug resistance through pharmacologic manipulation of proteome-wide protein-protein interaction networks.


Asunto(s)
Epigénesis Genética , Genoma , Chaperonas Moleculares/genética , Neoplasias/genética , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas , Animales , Femenino , Xenoinjertos , Humanos , Ratones , Transducción de Señal
12.
Artículo en Inglés | MEDLINE | ID: mdl-30936118

RESUMEN

Cancer is often associated with alterations in the chaperome, a collection of chaperones, cochaperones, and other cofactors. Changes in the expression levels of components of the chaperome, in the interaction strength among chaperome components, alterations in chaperome constituency, and in the cellular location of chaperome members, are all hallmarks of cancer. Here we aim to provide an overview on how chemical biology has played a role in deciphering such complexity in the biology of the chaperome in cancer and in other diseases. The focus here is narrow and on pathologic changes in the chaperome executed by enhancing the interaction strength between components of distinct chaperome pathways, specifically between those of HSP90 and HSP70 pathways. We will review chemical tools and chemical probe-based assays, with a focus on HSP90. We will discuss how kinetic binding, not classical equilibrium binding, is most appropriate in the development of drugs and probes for the chaperome in disease. We will then present our view on how chaperome inhibitors may become potential drugs and diagnostics in cancer.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Neoplasias/metabolismo , Animales , Antineoplásicos/farmacología , Biología , Toma de Decisiones , Diseño de Fármacos , Células HEK293 , Humanos , Células K562 , Cinética , Ratones , Células 3T3 NIH , Neoplasias/tratamiento farmacológico , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA