RESUMEN
BACKGROUND: We have evaluated the effects of taurine and aqueous garlic extract (AGE) as a dietary supplement on osteoporotic fracture (OPF) healing in the ovariectomized rat femur fracture model. METHODS: In this experimental animal study,twenty-four osteoporosis-remodeled female Wistar albino rats were randomly divided into 3 groups (n: 8) according to their supplemented diet; control, taurine, and AGE groups. Unilateral femur middiaphysis mini-open osteotomy was stabilized with Kirschner wires. Six weeks after osteotomy, the rats were sacrificed before the femurs were harvested and OPF healing was evaluated with biochemical, histologic, microcomputed-tomography, and scintigraphic methods. RESULTS: As an indicator of the antiosteoporotic effect, the calcium levels of the taurine group were significantly lower than the AGE and control groups in biochemical analyzes (p < 0.01). In histological studies, the new bone diameter and new bone volume values of the taurine group were significantly higher than the control group (p = 0.002 and p = 0.032, respectively), while higher trabecular-compact callus was observed in the taurine and AGE groups, respectively, compared to the control group. In morphological analyses, taurine and AGE groups had significantly higher bone volume/tissue volume, trabecular number, bone surface density, and lower trabecular separation than the control group (p < 0.05). The scintigraphic imaging showed a significant increase in osteoblastic activity of the taurine group compared to the control group (p = 0.005). DISCUSSION: Taurine and AGE have positive anabolic effects, respectively, on the healing of OPFs, demonstrated by biochemical, histological, morphological, and scintigraphic methods.
Asunto(s)
Ajo , Fracturas Osteoporóticas , Femenino , Animales , Ratas , Humanos , Fracturas Osteoporóticas/patología , Taurina/farmacología , Taurina/uso terapéutico , Ratas Wistar , Densidad Ósea , Antioxidantes , Dieta , Suplementos Dietéticos , OvariectomíaRESUMEN
BACKGROUND: Type 2 diabetes mellitus (T2DM) is a metabolic disease affecting a huge population worldwide. Teucrium polium L. has been used as a folk medicine for the treatment of T2DM in Anatolia, Turkey. The antihyperglycemic effect of the plant was reported previously. However, there was no detailed study on the underlying molecular mechanisms. In this study, we generated a research plan to clarify the active constituents of the extract and uncover the molecular mechanisms using network pharmacology analysis. METHODS: For this purpose, we composed a dataset of 126 compounds for the phytochemical profile of the aerial parts of T. polium. Drug-likeness of the compounds was evaluated, and 52 compounds were selected for further investigation. A total of 252 T2DM related targets hit by selected compounds were subjected to DAVID database. RESULTS: The KEGG pathway analysis showed enrichment for the TNF signaling pathway, insulin resistance, the HIF-1 signaling pathway, apoptosis, the PI3K-AKT signaling pathway, the FOXO signaling pathway, the insulin signaling pathway, and type 2 diabetes mellitus which are related to T2DM . AKT1, IL6, STAT3, TP53, INS, and VEGFA were found to be key targets in protein-protein interaction. Besides these key targets, with this study the role of GSK3ß, GLUT4, and PDX1 were also discussed through literature and considered as important targets in the antidiabetic effect of T. polium. Various compounds of T. polium were shown to interact with the key targets activating PI3K-AKT and insulin signaling pathways. CONCLUSIONS: According to these findings, mainly phenolic compounds were identified as the active components and IRS1/PI3K/AKT signaling and insulin resistance were identified as the main pathways regulated by T. polium. This study reveals the relationship of the compounds in T. polium with the targets of T2DM in human. Our findings suggested the use of T. polium as an effective herbal drug in the treatment of T2DM and provides new insights for further research on the antidiabetic effect of T. polium.