Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Chem Rev ; 123(7): 3976-4050, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-36990451

RESUMEN

DNA nanotechnology is a unique field, where physics, chemistry, biology, mathematics, engineering, and materials science can elegantly converge. Since the original proposal of Nadrian Seeman, significant advances have been achieved in the past four decades. During this glory time, the DNA origami technique developed by Paul Rothemund further pushed the field forward with a vigorous momentum, fostering a plethora of concepts, models, methodologies, and applications that were not thought of before. This review focuses on the recent progress in DNA origami-engineered nanomaterials in the past five years, outlining the exciting achievements as well as the unexplored research avenues. We believe that the spirit and assets that Seeman left for scientists will continue to bring interdisciplinary innovations and useful applications to this field in the next decade.


Asunto(s)
Nanoestructuras , ADN , Nanotecnología/métodos
2.
Nano Lett ; 24(20): 6102-6111, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38739578

RESUMEN

Acute lung injury (ALI) is a severe inflammatory lung disease, with high mortality rates. Early intervention by reactive oxygen species (ROS) scavengers could reduce ROS accumulation, break the inflammation expansion chain in alveolar macrophages (AMs), and avoid irreversible damage to alveolar epithelial and endothelial cells. Here, we reported cell-penetrating R9 peptide-modified triangular DNA origami nanostructures (tDONs-R9) as a novel nebulizable drug that could reach the deep alveolar regions and exhibit an enhanced uptake preference of macrophages. tDONs-R9 suppressed the expression of pro-inflammatory cytokines and drove polarization toward the anti-inflammatory M2 phenotype in macrophages. In the LPS-induced ALI mouse model, treatment with nebulized tDONs-R9 alleviated the overwhelming ROS, pro-inflammatory cytokines, and neutrophil infiltration in the lungs. Our study demonstrates that tDONs-R9 has the potential for ALI treatment, and the programmable DNA origami nanostructures provide a new drug delivery platform for pulmonary disease treatment with high delivery efficiency and biosecurity.


Asunto(s)
Lesión Pulmonar Aguda , ADN , Nanoestructuras , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/inducido químicamente , Animales , Ratones , ADN/química , Administración por Inhalación , Nanoestructuras/química , Especies Reactivas de Oxígeno/metabolismo , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/metabolismo , Citocinas/metabolismo , Péptidos/química , Nebulizadores y Vaporizadores , Péptidos de Penetración Celular/química , Modelos Animales de Enfermedad , Lipopolisacáridos , Sistemas de Liberación de Medicamentos , Células RAW 264.7
3.
Nano Lett ; 2024 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-39445643

RESUMEN

A major challenge for stem cell therapies, such as using mesenchymal stem cells to treat skin injuries, is the stable engraftment of exogenous cells and the maintenance of their regenerative capacities in the wound areas. DNA-based self-assembly strategies can be used for artificial and multifunctional cell surface engineering to stabilize and enhance their functions for therapeutic applications. Here, we developed DNA nanofiber-decorated stem cells, in which DNA-based, multivalent fiber-like structures were self-assembled in situ on the cell surfaces. These engineered stem cells have demonstrated robust reactive oxygen species (ROS) scavenging effects, specific adhesion to damaged vascular endothelial cells, and the ability to enhance angiogenesis, which were effective and safe for acute or chronic wound healing in a mouse model with excisional skin injury. This DNA nanostructure-engineered stem cell provides a novel therapeutic platform for the treatment of tissue damage.

4.
J Am Chem Soc ; 146(6): 4178-4186, 2024 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-38301245

RESUMEN

DNA origami, comprising a long folded DNA scaffold and hundreds of linear DNA staple strands, has been developed to construct various sophisticated structures, smart devices, and drug delivery systems. However, the size and diversity of DNA origami are usually constrained by the length of DNA scaffolds themselves. Herein, we report a new paradigm of scaling up DNA origami assembly by introducing a novel branched staple concept. Owing to their covalent characteristics, the chemically conjugated branched DNA staples we describe here can be directly added to a typical DNA origami assembly system to obtain super-DNA origami with a predefined number of origami tiles in one pot. Compared with the traditional two-step coassembly system (yields <10%), a much greater yield (>80%) was achieved using this one-pot strategy. The diverse superhybrid DNA origami with the combination of different origami tiles can be also efficiently obtained by the hybrid branched staples. Furthermore, the branched staples can be successfully employed as the effective molecular glues to stabilize micrometer-scale, super-DNA origami arrays (e.g., 10 × 10 array of square origami) in high yields, paving the way to bridge the nanoscale precision of DNA origami with the micrometer-scale device engineering. This rationally developed assembly strategy for super-DNA origami based on chemically conjugated branched staples presents a new avenue for the development of multifunctional DNA origami-based materials.


Asunto(s)
Nanoestructuras , Nanoestructuras/química , Nanotecnología , ADN/química , Análisis de Secuencia por Matrices de Oligonucleótidos , Conformación de Ácido Nucleico
5.
Small ; 20(31): e2310241, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38441385

RESUMEN

The direct use of mesenchymal stem cells (MSCs) as therapeutics for skin injuries is a promising approach, yet it still faces several obstacles, including limited adhesion, retention, and engraftment of stem cells in the wound area, as well as impaired regenerative and healing functions. Here, DNA-based self-assembled composites are reported that can aid the adhesion of MSCs in skin wounds, enhance MSC viability, and accelerate wound closure and re-epithelialization. Rolling-circle amplification (RCA)-derived DNA flowers, equipped with multiple copies of cyclic Arg-Gly-Asp (cRGD) peptides and anti-von Willebrand factor (vWF) aptamers, act as robust scavengers of reactive oxygen species (ROS) and enable synergistic recognition and adhesion to stem cells and damaged vascular endothelial cells. These DNA structure-aided stem cells are retained at localized wound sites, maintain repair function, and promote angiogenesis and growth factor secretion. In both normal and diabetes-prone db/db mice models with excisional skin injuries, facile topical administration of DNA flower-MSCs elicits rapid blood vessel formation and enhances the sealing of the wound edges in a single dose. DNA composite-engineered stem cells warrant further exploration as a new strategy for the treatment of skin and tissue damage.


Asunto(s)
ADN , Células Madre Mesenquimatosas , Piel , Cicatrización de Heridas , Animales , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , ADN/metabolismo , Ratones , Humanos , Especies Reactivas de Oxígeno/metabolismo , Trasplante de Células Madre Mesenquimatosas/métodos
6.
Angew Chem Int Ed Engl ; : e202412804, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225768

RESUMEN

The immunosuppressive tumor microenvironment and limited intratumoral permeation have largely constrained the outcome of tumor therapy. Herein, we report a tailored DNA structure-based nanoplatform with striking tumor-penetrating capability for targeted remodeling of the immunosuppressive tumor microenvironment in vivo. In our design, chemo-immunomodulator (gemcitabine) can be precisely grafted on DNA sequences through a reactive oxygen species (ROS)-sensitive linker. After self-assembly, the gemcitabine-grafted DNA structure can site-specifically organize legumain-activatable melittin pro-peptide (promelittin) on each vertex for intratumoral delivery and further function as the template to load photosensitizers (methylene blue) for ROS production. The tailored DNA nanoplatform can achieve targeted accumulation, highly improved intratumoral permeation, and efficient immunogenic cell death of tumor cells by laser irradiation. Finally, the immunosuppressive tumor microenvironment can be successfully remodeled by reducing multi-type immunosuppressive cells and enhancing the infiltration of cytotoxic lymphocytes in the tumor. This rationally developed multifunctional DNA nanoplatform provides a new avenue for the development of tumor therapy.

7.
J Am Chem Soc ; 145(16): 9343-9353, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37070733

RESUMEN

DNA origami has played an important role in various biomedical applications, including biosensing, bioimaging, and drug delivery. However, the function of the long DNA scaffold involved in DNA origami has yet to be fully exploited. Herein, we report a general strategy for the construction of a genetically encoded DNA origami by employing two complementary DNA strands of a functional gene as the DNA scaffold for gene therapy. In our design, the complementary sense and antisense strands can be directly folded into two DNA origami monomers by their corresponding staple strands. After hybridization, the assembled genetically encoded DNA origami with precisely organized lipids on the surface can function as the template for lipid growth. The lipid-coated and genetically encoded DNA origami can efficiently penetrate the cell membrane for successful gene expression. After decoration with the tumor-targeting group, the antitumor gene (p53) encoded DNA origami can elicit a pronounced upregulation of the p53 protein in tumor cells to achieve efficient tumor therapy. The targeting group-modified, lipid-coated, and genetically encoded DNA origami has mimicked the functions of cell surface ligands, cell membrane, and nucleus for communication, protection, and gene expression, respectively. This rationally developed combination of folding and coating strategies for genetically encoded DNA origami presents a new avenue for the development of gene therapy.


Asunto(s)
Nanoestructuras , Proteína p53 Supresora de Tumor , Proteína p53 Supresora de Tumor/genética , ADN/genética , Sistemas de Liberación de Medicamentos , ADN Complementario , Lípidos , Conformación de Ácido Nucleico , Nanotecnología/métodos
8.
Angew Chem Int Ed Engl ; 62(46): e202311698, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37755438

RESUMEN

Bacteria infection is a significant obstacle in the clinical treatment of exposed wounds facing widespread pathogens. Herein, we report a DNA origami-based bactericide for efficient anti-infection therapy of infected wounds in vivo. In our design, abundant DNAzymes (G4/hemin) can be precisely organized on the DNA origami for controllable generation of reactive oxygen species (ROS) to break bacterial membranes. After the destruction of the membrane, broad-spectrum antibiotic levofloxacin (LEV, loaded in the DNA origami through interaction with DNA duplex) can be easily delivered into the bacteria for successful sterilization. With the incorporation of DNA aptamer targeting bacterial peptidoglycan, the DNA origami-based bactericide can achieve targeted and combined antibacterial therapy for efficiently promoting the healing of infected wounds. This tailored DNA origami-based nanoplatform provides a new strategy for the treatment of infectious diseases in vivo.


Asunto(s)
Aptámeros de Nucleótidos , Infección de Heridas , Humanos , Antibacterianos/uso terapéutico , ADN/uso terapéutico , Aptámeros de Nucleótidos/uso terapéutico , Infección de Heridas/tratamiento farmacológico
9.
Angew Chem Int Ed Engl ; 62(51): e202315093, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37906116

RESUMEN

DNA nanostructures have played an important role in the development of novel drug delivery systems. Herein, we report a DNA origami-based CRISPR/Cas9 gene editing system for efficient gene therapy in vivo. In our design, a PAM-rich region precisely organized on the surface of DNA origami can easily recruit and load sgRNA/Cas9 complex by PAM-guided assembly and pre-designed DNA/RNA hybridization. After loading the sgRNA/Cas9 complex, the DNA origami can be further rolled up by the locking strands with a disulfide bond. With the incorporation of DNA aptamer and influenza hemagglutinin (HA) peptide, the cargo-loaded DNA origami can realize the targeted delivery and effective endosomal escape. After reduction by GSH, the opened DNA origami can release the sgRNA/Cas9 complex by RNase H cleavage to achieve a pronounced gene editing of a tumor-associated gene for gene therapy in vivo. This rationally developed DNA origami-based gene editing system presents a new avenue for the development of gene therapy.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genética , ARN Guía de Sistemas CRISPR-Cas , Terapia Genética , ADN/genética
10.
J Am Chem Soc ; 144(14): 6575-6582, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35357193

RESUMEN

DNA nanotechnology has been widely employed in the construction of various functional nanostructures. However, most DNA nanostructures rely on hybridization between multiple single-stranded DNAs. Herein, we report a general strategy for the construction of a double-stranded DNA-ribonucleoprotein (RNP) hybrid nanostructure by folding double-stranded DNA with a covalently bivalent clustered regularly interspaced short palindromic repeats (CRISPR)/nuclease-dead CRISPR-associated protein (dCas) system. In our design, dCas9 and dCas12a can be efficiently fused together through a flexible and stimuli-responsive peptide linker. After activation by guide RNAs, the covalently bivalent dCas9-12a RNPs (staples) can precisely recognize their target sequences in the double-stranded DNA scaffold and pull them together to construct a series of double-stranded DNA-RNP hybrid nanostructures. The genetically encoded hybrid nanostructure can protect genetic information in the folded state, similar to the natural DNA-protein hybrids present in chromosomes, and elicit efficient stimuli-responsive gene transcription in the unfolded form. This rationally developed double-stranded DNA folding and unfolding strategy presents a new avenue for the development of DNA nanotechnology.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Nanoestructuras , Sistemas CRISPR-Cas , ADN/genética , ADN/metabolismo , Edición Génica , Ribonucleoproteínas
11.
Nat Mater ; 20(3): 395-402, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33257794

RESUMEN

Natural oxidases mainly rely on cofactors and well-arranged amino acid residues for catalysing electron-transfer reactions but suffer from non-recovery of their activity upon externally induced protein unfolding. However, it remains unknown whether residues at the active site can catalyse similar reactions in the absence of the cofactor. Here, we describe a series of self-assembling, histidine-rich peptides, as short as a dipeptide, with catalytic function similar to that of haem-dependent peroxidases. The histidine residues of the peptide chains form periodic arrays that are able to catalyse H2O2 reduction reactions efficiently through the formation of reactive ternary complex intermediates. The supramolecular catalyst exhibiting the highest activity could be switched between inactive and active states without loss of activity for ten cycles of heating/cooling or acidification/neutralization treatments, demonstrating the reversible assembly/disassembly of the active residues. These findings may aid the design of advanced biomimetic catalytic materials and provide a model for primitive cofactor-free enzymes.


Asunto(s)
Materiales Biomiméticos/química , Nanoestructuras/química , Oxidorreductasas/química , Péptidos/química , Catálisis , Dicroismo Circular , Coenzimas , Cristalografía por Rayos X , Histidina/química , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , Peróxido de Hidrógeno/química , Modelos Moleculares , Oxidación-Reducción , Oxidorreductasas/metabolismo , Conformación Proteica , Relación Estructura-Actividad Cuantitativa , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
12.
Nat Mater ; 20(3): 421-430, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32895504

RESUMEN

A major challenge in cancer vaccine therapy is the efficient delivery of antigens and adjuvants to stimulate a controlled yet robust tumour-specific T-cell response. Here, we describe a structurally well defined DNA nanodevice vaccine generated by precisely assembling two types of molecular adjuvants and an antigen peptide within the inner cavity of a tubular DNA nanostructure that can be activated in the subcellular environment to trigger T-cell activation and cancer cytotoxicity. The integration of low pH-responsive DNA 'locking strands' outside the nanostructures enables the opening of the vaccine in lysosomes in antigen-presenting cells, exposing adjuvants and antigens to activate a strong immune response. The DNA nanodevice vaccine elicited a potent antigen-specific T-cell response, with subsequent tumour regression in mouse cancer models. Nanodevice vaccination generated long-term T-cell responses that potently protected the mice against tumour rechallenge.


Asunto(s)
Vacunas contra el Cáncer/inmunología , Melanoma Experimental/terapia , Vacunas de ADN/genética , Vacunas de ADN/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Animales , Presentación de Antígeno , Bacteriófago M13/genética , Vacunas contra el Cáncer/administración & dosificación , Vacunas contra el Cáncer/genética , Pruebas Inmunológicas de Citotoxicidad , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Concentración de Iones de Hidrógeno , Inmunoterapia/métodos , Metástasis Linfática/prevención & control , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/inmunología , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Ratones Endogámicos C57BL , Vacunas de ADN/administración & dosificación
13.
Nano Lett ; 21(8): 3573-3580, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33830773

RESUMEN

The exploitation of strong light-matter interactions in chiral plasmonic nanocavities may enable exceptional physical phenomena and lead to potential applications in nanophotonics, information communication, etc. Therefore, a deep understanding of strong light-matter interactions in chiral plasmonic-excitonic (plexcitonic) systems constructed by a chiral plasmonic nanocavity and molecular excitons is urgently needed. Herein, we systematically studied the strong light-matter interactions in gold nanorod-based chiral plexcitonic systems assembled on DNA origami. Rabi splitting and anticrossing behavior were observed in circular dichroism spectra, manifesting chiroptical characteristic hybridization. The bisignate line shape of the circular dichroism (CD) signal allows the accurate discrimination of hybrid modes. A large Rabi splitting of ∼205/∼199 meV for left-handed/right-handed plexcitonic nanosystems meets the criterion of strong coupling. Our work deepens the understanding of light-matter interactions in chiral plexcitonic nanosystems and will facilitate the development of chiral quantum optics and chiroptical devices.


Asunto(s)
Nanopartículas del Metal , Nanotubos , ADN , Oro , Fenómenos Físicos
14.
Angew Chem Int Ed Engl ; 61(22): e202114706, 2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35301778

RESUMEN

Here, we describe a DNA circuit-aided, origami nanodevice-based plasmonic system, which performs DNA-regulated, cascade amplification of faint chemical/biological signals. In this system, two gold-nanorods (GNRs) are co-assembled onto a DNA lock-containing, tweezer-like DNA origami template. Logic circuits serve as recognition and amplification elements for specific messengers, producing DNA keys for driving conformational changes of the plasmonic nanodevices. In the presence of input signals including nucleic acids, adenosines, chiral tyrosinamides or specific receptors expressed by tumor cells, the plasmonic nanodevices can be activated to perform dynamic structural motions, reporting robust responses via plasmonic circular dichroism (CD) spectral changes. This DNA nanodevice-based system provides a different design to enrich the strategies for constructing synthetic nanomachines, enabling the customized bottom-up nanostructure construction for sensitive biological signaling.


Asunto(s)
Nanopartículas del Metal , Nanoestructuras , Nanotubos , Dicroismo Circular , ADN/química , Oro/química , Nanoestructuras/química , Nanotubos/química
15.
J Am Chem Soc ; 143(47): 19893-19900, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34783532

RESUMEN

DNA origami technique provides a programmable way to construct nanostructures with arbitrary shapes. The dimension of assembled DNA origami, however, is usually limited by the length of the scaffold strand. Herein, we report a general strategy to efficiently organize multiple DNA origami tiles to form super-DNA origami using a flexible and covalent-bound branched DNA structure. In our design, the branched DNA structures (Bn: with a certain number of 2-6 branches) are synthesized by a copper-free click reaction. Equilateral triangular DNA origamis with different numbers of capture strands (Tn: T1, T2, and T3) are constructed as the coassembly tiles. After hybridization with the branched DNA structures, the super-DNA origami (up to 13 tiles) can be efficiently ordered in the predesigned patterns. Compared with traditional DNA junctions (Jn: J2-J6, as control groups) assembled by base pairing between several DNA strands, a higher yield and more compact structures are obtained using our strategy. The highly ordered and discrete DNA origamis can further precisely organize gold nanoparticles into different patterns. This rationally developed DNA origami ordering strategy based on the flexible and covalent-bound branched DNA structure presents a new avenue for the construction of sophisticated DNA architectures with larger molecular weights.


Asunto(s)
ADN/química , Reactivos de Enlaces Cruzados/química , Oro/química , Nanopartículas del Metal/química , Nanosferas/química , Nanotubos/química , Conformación de Ácido Nucleico , Hibridación de Ácido Nucleico , Prueba de Estudio Conceptual
16.
Nanotechnology ; 32(40)2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34153957

RESUMEN

In the past few decades, DNA nanotechnology has been developed a lot due to their appealing features such as structural programmability and easy functionalization. In the emerging field of DNA nanotechnology, DNA molecules are regarded not only as biological information carriers but also as building blocks in the assembly of various two-dimensional and three-dimensional nanostructures, serving as outstanding templates for the bottom-up fabrication of plasmonic nanostructures. By arranging nanoparticles with different components and morphologies on the predesigned DNA templates, various static and dynamic plasmonic nanostructures with tailored optical properties have been obtained. In this review, we summarized recent advances in the design and construction of static and dynamic DNA-based plasmonic nanostructures. In addition, we addressed their emerging applications in the fields of optics and biosensors. At the end of this review, the open questions and future directions of DNA-based plasmonic nanostructure are also discussed.


Asunto(s)
ADN , Nanoestructuras , Nanotecnología , Investigación Biomédica , Técnicas Biosensibles , ADN/química , ADN/ultraestructura , Nanoestructuras/química , Nanoestructuras/ultraestructura , Óptica y Fotónica
17.
Chem Rev ; 119(10): 6273-6289, 2019 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29911864

RESUMEN

Over the past 35 years, DNA has been used to produce various nanometer-scale constructs, nanomechanical devices, and walkers. Construction of complex DNA nanostructures relies on the creation of rigid DNA motifs. Paranemic crossover (PX) DNA is one such motif that has played many roles in DNA nanotechnology. Specifically, PX cohesion has been used to connect topologically closed molecules, to assemble a three-dimensional object, and to create two-dimensional DNA crystals. Additionally, a sequence-dependent nanodevice based on conformational change between PX and its topoisomer, JX2, has been used in robust nanoscale assembly lines, as a key component in a DNA transducer, and to dictate polymer assembly. Furthermore, the PX motif has recently found a new role directly in basic biology, by possibly serving as the molecular structure for double-stranded DNA homology recognition, a prominent feature of molecular biology and essential for many crucial biological processes. This review discusses the many attributes and usages of PX-DNA-its design, characteristics, applications, and potential biological relevance-and aims to accelerate the understanding of PX-DNA motif in its many roles and manifestations.


Asunto(s)
ADN/química , Nanotecnología/métodos , Modelos Moleculares , Nanotecnología/instrumentación , Conformación de Ácido Nucleico
18.
Angew Chem Int Ed Engl ; 60(4): 1853-1860, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33058467

RESUMEN

Chemically modified DNA has been widely developed to fabricate various nucleic acid nanostructures for biomedical applications. Herein, we report a facile strategy for construction of branched antisense DNA and small interfering RNA (siRNA) co-assembled nanoplatform for combined gene silencing in vitro and in vivo. In our design, the branched antisense can efficiently capture siRNA with 3' overhangs through DNA-RNA hybridization. After being equipped with an active targeting group and an endosomal escape peptide by host-guest interaction, the tailored nucleic acid nanostructure functions efficiently as both delivery carrier and therapeutic cargo, which is released by endogenous RNase H digestion. The multifunctional nucleic acid nanosystem elicits an efficient inhibition of tumor growth based on the combined gene silencing of the tumor-associated gene polo-like kinase 1 (PLK1). This biocompatible nucleic acid nanoplatform presents a new strategy for the development of gene therapy.


Asunto(s)
Silenciador del Gen , Terapia Genética , Nanopartículas/química , Neoplasias/terapia , ARN sin Sentido/química , ARN Interferente Pequeño/química , Animales , Células HeLa , Humanos , Ratones , Ratones Endogámicos BALB C , Neoplasias/patología , Prueba de Estudio Conceptual , Interferencia de ARN
19.
Angew Chem Int Ed Engl ; 60(5): 2594-2598, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33089613

RESUMEN

Using the DNA origami technique, we constructed a DNA nanodevice functionalized with small interfering RNA (siRNA) within its inner cavity and the chemotherapeutic drug doxorubicin (DOX), intercalated in the DNA duplexes. The incorporation of disulfide bonds allows the triggered mechanical opening and release of siRNA in response to intracellular glutathione (GSH) in tumors to knockdown genes key to cancer progression. Combining RNA interference and chemotherapy, the nanodevice induced potent cytotoxicity and tumor growth inhibition, without observable systematic toxicity. Given its autonomous behavior, exceptional designability, potent antitumor activity and marked biocompatibility, this DNA nanodevice represents a promising strategy for precise drug design for cancer therapy.


Asunto(s)
Terapia Combinada/métodos , ADN/química , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Humanos
20.
J Am Chem Soc ; 142(27): 11680-11684, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32564606

RESUMEN

Shape complementarity is of paramount importance in molecular recognition, but has rarely been adopted in the self-assembly of colloidal particles, especially in the case of nanoparticles of different shapes. Here, we demonstrated a simple, yet powerful strategy for fabricating gold nanoring-based heterogeneous nanostructures (AuNR-HNs) with well-defined geometries and high yield. The assembly of various geometries of AuNR-HNs is modulated by the shape complementarity of plasmonic nanorings and nanospheres. We also present experimental evidence of dark quadrupolar ring mode excitation in AuNR-HNs through single-particle optical measurements. Our strategy will be beneficial in the study of nanoparticle assembly, photonic element interaction, and the development of plasmon-based optical devices.


Asunto(s)
Oro/química , Nanosferas/química , Nanoestructuras/química , Tamaño de la Partícula , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA