Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 18(44): 30770-30776, 2016 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-27796378

RESUMEN

TiO2 is widely investigated as a negative electrode for lithium-ion batteries. In sodium-ion batteries, however, the sodiation-desodiation mechanism of TiO2 is still unclear. Here, we report a new sodiation-desodiation mechanism for an anatase TiO2/C electrode in an ionic liquid electrolyte at 90 °C, where it shows a high reversible capacity of 278 mA h g-1. During the first charge process, TiO2 reacts with Na ions to form a Na2TiIITiIVO4 solid solution. During the first discharge process, the solid solution converts into a mixture of TiO2, Na2TiO3, and TiO, with the former two being X-ray amorphous. In the subsequent cycle, the mixture acts as the active material, reversibly reacting with Na ions to re-form the Na2TiIITiIVO4 solid solution. This mechanism, which has not been reported for Na or Li ion insertion-extraction in anatase TiO2, can help understand this promising electrode material and develop safe sodium-ion batteries with high energy density.

2.
J Colloid Interface Sci ; 673: 26-36, 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38870665

RESUMEN

Sb-based materials are considered as promising anode materials for sodium-ion batteries (SIBs) due to their excellent sodium storage capacities and suitable potentials. However, the Sb-based anodes usually suffer from intense volume expansion and severe pulverization during the alloying-dealloying process, resulting in poor cycling performance. Herein, a composite anode with Sb/Sb2O3 nanoparticles embedded in N-doped porous carbon is prepared by the gas-solid dual template method. The volume change of the anode material is mitigated by the carbon layer enwrapping and the confinement of the porous structure. Nitrogen doping provides abundant sodium storage sites, thus enhancing the storage capacity of sodium ion. Furthermore, to gain the accurate kinetic interpretation of the electrochemical process, an ex-situ transmission electron microscope (TEM) characterization combined with distribution of relaxation times (DRT) is conducted. The Sb/Sb2O3@NPC-1.0 demonstrates excellent electrochemical performance, achieving 340.3 mAh g-1 at 1A g-1, and maintains a capacity of 86.7 % after 1000 cycles. This work paves the way for the practical application of SIBs with high-performance and long-life Sb-based anodes.

3.
Foods ; 12(23)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38231786

RESUMEN

Soluble starch (SS) could significantly accelerate the process of bovine serum albumin (BSA) cold-set gelation by glucono-δ-lactone (GDL) and microbial transglutaminase (MTGase) coupling inducers, and enhance the mechanical properties. Hardness, WHC, loss modulus (G″) and storage modulus (G') of the gel increased significantly, along with the addition of SS, and gelation time was also shortened from 41 min (SS free) to 9 min (containing 4.0% SS); the microstructure also became more and more dense. The results from FTIR, fluorescence quenching and circular dichroism (CD) suggested that SS could bind to BSA to form their composites, and the hydrogen bond was probably the dominant force. Moreover, the ability of SS to bind the original free water in BSA gel was relatively strong, thereby indirectly increasing the concentration of BSA and improving the texture properties of the gel. The acceleration of gelling could also be attributed to the fact that SS reduced the negative charge of BSA aggregates and further promoted the rapid formation of the gel. The embedding efficiency (EE) of quercetin in BSA-SS cold-set gel increased from 68.3% (SS free) to 87.45% (containing 4.0% SS), and a controlled-released effect was detected by simulated gastrointestinal digestion tests. The work could put forward new insights into protein gelation accelerated by polysaccharide, and provide a candidate for the structural design of new products in the food and pharmaceutical fields.

4.
Nanomicro Lett ; 15(1): 192, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37555908

RESUMEN

Aqueous sodium-ion batteries have attracted extensive attention for large-scale energy storage applications, due to abundant sodium resources, low cost, intrinsic safety of aqueous electrolytes and eco-friendliness. The electrochemical performance of aqueous sodium-ion batteries is affected by the properties of electrode materials and electrolytes. Among various electrode materials, Mn-based electrode materials have attracted tremendous attention because of the abundance of Mn, low cost, nontoxicity, eco-friendliness and interesting electrochemical performance. Aqueous electrolytes having narrow electrochemical window also affect the electrochemical performance of Mn-based electrode materials. In this review, we introduce systematically Mn-based electrode materials for aqueous sodium-ion batteries from cathode and anode materials and offer a comprehensive overview about their recent development. These Mn-based materials include oxides, Prussian blue analogues and polyanion compounds. We summarize and discuss the composition, crystal structure, morphology and electrochemical properties of Mn-based electrode materials. The improvement methods based on electrolyte optimization, element doping or substitution, optimization of morphology and carbon modification are highlighted. The perspectives of Mn-based electrode materials for future studies are also provided. We believe this review is important and helpful to explore and apply Mn-based electrode materials in aqueous sodium-ion batteries.

5.
J Nanosci Nanotechnol ; 11(3): 2336-43, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21449390

RESUMEN

NiO-Ce0.8Sm0.2O1.9 (NiO-SDC) nanocomposite powders applied as promising anode material for low-temperature solid oxide fuel cells (SOFCs) were synthesized by hydroxide co-precipitation method using NH3 x H2O, NaOH and NH3 x H2O + NaOH as precipitation agents. The crystal phases, morphologies and sintering behavior of the synthesized NiO-SDC nanocomposite powders were investigated by means of X-ray diffraction (XRD), transmission electron microscopy (TEM) and sintering experiments. The effect of precipitation agents on the synthesis of the NiO-SDC nanocomposite powders was discussed. Results show that different precipitation agents influence greatly the synthesis and characteristics of the NiO-SDC nanocomposite powders. The NiO-SDC nanocomposite powders synthesized with NH3 x H2O deviate from the original composition due to the loss of Ni. The loss of Ni is avoided and nano-sized NiO-SDC composite powders are synthesized, when NaOH and NH3 x H2O + NaOH are used as precipitation agents. The NiO-SDC nanocomposite powders can be synthesized at relatively low temperature using NH3 x H2O + NaOH as precipitation agent, and the synthesized NiO-SDC nanocomposite powders show good sintering characteristics.


Asunto(s)
Cerio/química , Cristalización/métodos , Nanoestructuras/química , Nanoestructuras/ultraestructura , Níquel/química , Precipitación Química , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Nanotecnología/métodos , Tamaño de la Partícula , Polvos , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA