Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(17): 11978-11990, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38626322

RESUMEN

Tethered nonplanar aromatics (TNAs) make up an important class of nonplanar aromatic compounds showing unique features. However, the knowledge on the synthesis, structures, and properties of TNAs remains insufficient. In this work, a new type of TNAs, the tethered aromatic lactams, is synthesized via Pd-catalyzed consecutive intramolecular direct arylations. These molecules possess a helical ladder-type conjugated system of up to 13 fused rings. The overall yields ranged from 3.4 to 4.3%. The largest of the tethered aromatic lactams, 6L-Bu-C14, demonstrates a guest-adaptive hosting capability of TNAs for the first time. When binding fullerene guests, the cavity of 6L-Bu-C14 became more circular to better accommodate spherical fullerene molecules. The host-guest interaction is thoroughly studied by X-ray crystallography, theoretical calculations, fluorescence titration, and nuclear magnetic resonance (NMR) titration experiments. 6L-Bu-C14 shows stronger binding with C70 than with C60 due to the better convex-concave π-π interaction. P and M enantiomers of all tethered aromatic lactams show distinct and persistent chiroptical properties and demonstrate the potential of chiral TNAs as circularly polarized luminescence (CPL) emitters.

2.
Small ; 20(16): e2308583, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38032157

RESUMEN

Perovskite photodetectors with polarization-sensitive properties have gained significant attention due to their potential applications in fields such as imaging and remote sensing. Most perovskite photodetectors concentrate on iodine (I) or bromine (Br)-based materials, primarily due to their straightforward fabrication techniques. The utilization of chloride (Cl)-based perovskites with wider bandgaps, such as CH3NH3PbCl3, is relatively limited. In this work, polarized perovskite photodetectors are prepared by a patterned spatially confined method with polarization sensitivity and excellent optoelectronic properties. The patterned perovskite photodetectors (PP-PDs) not only exhibit outstanding photoelectric conversion performance but also demonstrate polarization sensitivity. PP-PDs showcase remarkable performance, including on/off ratios of 3.4 × 104, an extremely low dark current of 1.56 × 10-11 A, and a rapid response time of microseconds. The responsivity and detectivity of PP-PDs reach 10.6 A W-1 and 3 × 1012 Jones, respectively, positioning them as among the highest-performing MAPbCl3-based photodetectors reported to date. Furthermore, polarization layered imaging sensing is achieved using stepwise scanning of the device. This work provides innovative ideas for realizing high-performance polarized perovskite photodetectors.

3.
Small ; 20(13): e2308877, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37948431

RESUMEN

Tin halide perovskite solar cells (PSCs) are regarded as the most promising lead-free alternatives for photovoltaic applications. However, they still suffer from uncompetitive photovoltaic performance because of the facile Sn2+ oxidation and Sn-related defects. Herein, a defect and carrier management strategy by using diaminopyridine (DP) and 4-bromo-2,6-diaminopyridine (4BrDP) as multifunctional additives for tin halide perovskites is reported. Both DP and 4BrDP induced strong interaction with tin perovskites by coordinate bonding and N─H···I hydrogen bonding, which greatly suppresses the micro-strain and Urbach energy of tin halide perovskite films. The strong hydrogen bonding inhibits the formation of I3 - and related defect density. Meanwhile, the electron-donor species of halogen bond in 4BrDP provides higher reactivity of 2 and 6 sites, which indicates stronger passivation ability with tin halide perovskites. These advances enable a champion power conversion efficiency (PCE) of 13.40% in 4BrDP-processed devices with remarkable improvement in both open-circuit voltage (Voc) of 881 mV and fill factor (FF) of 71.26%. The 4BrDP devices retain 91% and 82% of the pristine PCE after 2000 h storage in N2 atmosphere and 1000 h under 85 °C, respectively. Therefore, this work provides new insight into molecular design for high-performance and stable lead-free optoelectronics.

4.
Angew Chem Int Ed Engl ; 63(8): e202317185, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38179844

RESUMEN

The instability of the buried interface poses a serious challenge for commercializing perovskite photovoltaic technology. Herein, we report a polydentate ligand reinforced chelating strategy to strengthen the stability of buried interface by managing interfacial defects and stress. The bis(2,2,2-trifluoroethyl) (methoxycarbonylmethyl)phosphonate (BTP) is employed to manipulate the buried interface. The C=O, P=O and two -CF3 functional groups in BTP synergistically passivate the defects from the surface of SnO2 and the bottom surface of the perovskite layer. Moreover, The BTP modification contributes to mitigated interfacial residual tensile stress, promoted perovskite crystallization, and reduced interfacial energy barrier. The multidentate ligand modulation strategy is appropriate for different perovskite compositions. Due to much reduced nonradiative recombination and heightened interface contact, the device with BTP yields a promising power conversion efficiency (PCE) of 24.63 %, which is one of the highest efficiencies ever reported for devices fabricated in the air environment. The unencapsulated BTP-modified devices degrade to 98.6 % and 84.2 % of their initial PCE values after over 3000 h of aging in the ambient environment and after 1728 h of thermal stress, respectively. This work provides insights into strengthening the stability of the buried interface by engineering multidentate chelating ligand molecules.

5.
Small ; 19(50): e2304189, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37626466

RESUMEN

The perovskite solar cells (PSCs) have achieved great success in power conversion efficiency due to their excellent optoelectrical properties of perovskite. However, the instability of PSCs severely impedes their commercialization. Recently, in situ cross-linking strategy has been proposed to mitigate stability issues of PSCs, enabling highly efficient and stable PSCs. Here, the critical factors that lead to the degradation of PSCs are first outlined. Then, a comprehensive review of in situ cross-linking strategy in perovskite to enhance the moisture, thermal, illumination, and bending stress resistance properties of PSCs is presented. Furthermore, the detailed mechanism underlying these advantageous effects is discussed pertaining to crystallization regulation, immobilization of ions, water resistance, and release of unfavorable stress. Finally, the current challenges and further development trends of in situ cross-linking strategy in PSCs and extension to other optoelectronic devices are prospected.

6.
Small ; 19(42): e2303821, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37328439

RESUMEN

It is technically challenging to reversibly tune the layer number of 2D materials in the solution. Herein, a facile concentration modulation strategy is demonstrated to reversibly tailor the aggregation state of 2D ZnIn2 S4 (ZIS) atomic layers, and they are implemented for effective photocatalytic hydrogen (H2 ) evolution. By adjusting the colloidal concentration of ZIS (ZIS-X, X = 0.09, 0.25, or 3.0 mg mL-1 ), ZIS atomic layers exhibit the significant aggregation of (006) facet stacking in the solution, leading to the bandgap shift from 3.21 to 2.66 eV. The colloidal stacked layers are further assembled into hollow microsphere after freeze-drying the solution into solid powders, which can be redispersed into colloidal solution with reversibility. The photocatalytic hydrogen evolution of ZIS-X colloids is evaluated, and the slightly aggregated ZIS-0.25 displays the enhanced photocatalytic H2 evolution rates (1.11 µmol m-2 h-1 ). The charge-transfer/recombination dynamics are characterized by time-resolved photoluminescence (TRPL) spectroscopy, and ZIS-0.25 displays the longest lifetime (5.55 µs), consistent with the best photocatalytic performance. This work provides a facile, consecutive, and reversible strategy for regulating the photo-electrochemical properties of 2D ZIS, which is beneficial for efficient solar energy conversion.

7.
Small ; 19(32): e2303200, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37178255

RESUMEN

The interface between the perovskite and electron-transporting material is often treated for defect passivation to improve the photovoltaic performance of devices. A facile 4-Acetamidobenzoic acid (containing an acetamido, a carboxyl, and a benzene ring)-based molecular synergistic passivation (MSP) strategy is developed here to engineer the SnOx /perovskite interface, in which dense SnOx are prepared using an E-beam evaporation technology while the perovskite is deposited with vacuum flash evaporation deposition method. MSP engineering can synergistically passivate defects at the SnOx /perovskite interface by coordinating with Sn4+ and Pb2+ with functional group CO in the acetamido and carboxyl. The optimized solar cell devices can achieve the highest efficiency of 22.51% based on E-Beam deposited SnOx and 23.29% based on solution-processed SnO2 , respectively, accompanied by excellent stability exceeding 3000 h. Further, the self-powered photodetectors exhibit a remarkably low dark current of 5.22 × 10-9  A cm-2 , a response of 0.53 A W-1 at zero bias, a detection limit of 1.3 × 1013  Jones, and a linear dynamic range up to 80.4 dB. This work proposes a molecular synergistic passivation strategy to enhance the efficiency and responsivity of solar cells and self-powered photodetectors.

8.
Angew Chem Int Ed Engl ; 62(10): e202218349, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36647293

RESUMEN

Metal-free perovskites (MFPs) with flexible and degradable properties have been adopted in flexible X-ray detection. For now, figuring out the key factors between structure and device performance are critical to guide the design of MFPs. Herein, MPAZE-NH4 I3 ⋅ H2 O was first designed and synthesized with improved structural stability and device performance. Through theoretical calculations, the introducing methyl group benefits modulating tolerance factor, increases dipole moment and strengthens hydrogen bonds. Meanwhile, H2 O increases the hydrogen bond formation sites and synergistically realizes the band nature modulation, ionic migration inhibition and structural stiffness optimization. Spectra analysis also proves that the improved electron-phonon coupling and carrier recombination lifetime contribute to enhanced performance. Finally, a flexible and degradable X-ray detector was fabricated with the highest sensitivity of 740.8 µC Gyair -1 cm-2 and low detection limit (0.14 nGyair s-1 ).

9.
Macromol Rapid Commun ; 43(22): e2100810, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35080281

RESUMEN

Molecular structural modifications are utilized to improve the short-circuit current (JSC ) of high-voltage organic photovoltaics (OPVs). Herein, the classic non-fullerene acceptor (NFA), BTA3, is chosen as a benchmark, with BTA3b containing the linear alkyl chains on the middle core and JC14 fusing thiophene on the benzotriazole (BTA) unit as a contrast. The photovoltaic devices based on J52-F: BTA3b and J52-F: JC14 achieve wider external quantum efficiency responses with band edges of 730 and 800 nm, respectively than that of the device based on J52-F: BTA3 (715 nm). The corresponding  JSC increases to 14.08 and 15.78 mA cm-2 , respectively, compared to BTA3 (11.56 mA cm-2 ). The smaller Urbach energy and higher electroluminescence efficiency guarantee J52-F: JC14 a decreased energy loss (0.528 eV) and a high open-circuit voltage (VOC ) of 1.07 V. Finally, J52-F: JC14 combination achieves an increased power conversion efficiency (PCE) of 10.33% than that of J52-F: BTA3b (PCE = 9.81%) and J52-F: BTA3 (PCE = 9.04%). Overall, the research results indicate that subtle structure modification of NFAs, especially introducing fused rings, is a simple and effective strategy to extend the photoelectric response, boosting the  JSC and ensuring a high VOC beyond 1.0 V.

10.
Angew Chem Int Ed Engl ; 61(34): e202207397, 2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-35765215

RESUMEN

Although organic solar cells (OSCs) have delivered an impressive power conversion efficiency (PCE) of over 19 %, most of them demonstrated rather limited stability. So far, there are hardly any effective and universal strategies to improve stability of state-of-the-art OSCs. Herein, we developed a hybrid electron-transport layer (ETL) in inverted OSCs using ZnO and a new modifying agent (NMA), and significantly improved the stability and PCEs for all the tested devices. In particular, when applied in the D18 : N3 system, its inverted OSC exhibits so far the highest PCE (18.20 %) among inverted single-junction OSCs, demonstrating an extrapolated T80 lifetime of 7572 h (equivalent to 5 years under outdoor exposure). This is the first report with T80 over 5000 h among OSCs with over 18 % PCE. Furthermore, a high PCE of 16.12 % can be realized even in a large-area device (1 cm2 ). This hybrid ETL strategy provides a strong stimulus for highly prospective commercialization of OSCs.

11.
Angew Chem Int Ed Engl ; 61(38): e202207762, 2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-35880625

RESUMEN

Manipulating the backbone of small molecule acceptors (SMAs) is of particular importance in developing efficient organic solar cells (OSCs). The common design is constructing 2-arm SMAs with linear or curved backbones. Herein, we report an acceptor 4A-DFIC with a 4-arm backbone unexpectedly generated in the reaction of an electron-rich aromatic diamine and hexaketocyclohexane. Single-crystal X-ray diffraction analysis indicates the rigid and twisted molecular plane and the effective molecular stacking of 4A-DFIC in solid state. 4A-DFIC shows a low band gap of 1.40 eV and excellent light-harvesting capability from visible to near-infrared region. Binary and ternary OSCs based on 4A-DFIC gave power conversion efficiencies (PCEs) of 15.76 % and 18.60 % (certified 18.1 %), respectively, which are the highest PCEs for multi-arm SMA-based OSCs to date.

12.
Small ; 17(32): e2102368, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34174144

RESUMEN

Flexible perovskite solar cells (f-PSCs) have been attracting tremendous attention due to their potentially commercial prospects in flexible energy system and mobile energy system. Reducing the energy barriers and charge extraction losses at the interfaces between perovskite and charge transport layers is essential to improve both efficiency and stability of f-PSCs. Herein, 4-trifluoromethylphenylethylamine iodide (CF3 PEAI) is introduced to form a 2D perovskite at the interface between perovskite and hole transport layer (HTL). It is found that the 2D perovskite plays a dual-functional role in aligning energy band between perovskite and HTL and passivating the traps in the 3D perovskite, thus reducing energy loss and charge carrier recombination at the interface, facilitating the hole transfer from perovskite to the Spiro-OMeTAD. Consequently, the photovoltaic performance of f-PSCs is significantly improved, leading to a power conversion efficiency (PCE) of 21.1% and a certified PCE of 20.5%. Furthermore, the long-term stability of f-PSCs is greatly improved through the protection of 2D perovskite layer to the underlying 3D perovskite. This work provides an excellent strategy to produce efficient and stable f-PSCs, which will accelerate their potential applications.

13.
Angew Chem Int Ed Engl ; 60(20): 11242-11246, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33683785

RESUMEN

Drop-casting was used to make MAPbI3 films for solar cells. The crystal growth in drop-cast MAPbI3 films was regulated by adjusting temperature. A mechanism for the formation of different morphology was proposed by combining in situ crystal-growth study with XRD measurements. The crystals in the films made at low temperature (60 °C) and high temperature (≥120 °C) are (110) and (200) oriented, respectively. The different crystal growth mode leads to quite different film morphology. Compared with spin-coating, drop-casting shows much better tolerance to humidity. MAPbI3 solar cells made under 88 % humidity delivered a PCE of 18.17 %, which is the highest PCE for perovskite solar cells made under >70 % humidity without antisolvent assistance.

14.
Chembiochem ; 21(18): 2620-2627, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-32346945

RESUMEN

Peroxidase-mimicking nanozymes that can generate toxic hydroxyl radicals (. OH) hold great promise as antibacterial alternatives. However, most of them display optimal performance under strongly acidic conditions (pH 3-4), and are thus not feasible for many medical uses, including burn infections with a wound pH close to neutral. Herein, we report a copper-based nanozyme (CuCo2 S4 ) that exhibits intrinsic peroxidase-like activity and can convert H2 O2 into . OH at neutral pH. In particular, bimetallic CuCo2 S4 nanoparticles (NPs) exhibited enhanced peroxidase-like activity and antibacterial capacity, superior to that of the corresponding monometallic CuS and CoS NPs. The CuCo2 S4 nanozymes possessed excellent ability to kill various bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). Furthermore, this CuCo2 S4 nanozymes could effectively disrupt MRSA biofilms in vitro and accelerate MRSA-infected burn healing in vivo. This work provides a new peroxidase mimic to combat bacteria in neutral pH milieu and this CuCo2 S4 nanozyme could be a promising antibacterial agent for the treatment of burn infections.


Asunto(s)
Antibacterianos/farmacología , Quemaduras/tratamiento farmacológico , Cobalto/farmacología , Sulfato de Cobre/farmacología , Nanopartículas/química , Peroxidasa/metabolismo , Antibacterianos/química , Biopelículas/efectos de los fármacos , Quemaduras/metabolismo , Quemaduras/microbiología , Cobalto/química , Sulfato de Cobre/química , Concentración de Iones de Hidrógeno , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Peroxidasa/química , Propiedades de Superficie
15.
Macromol Rapid Commun ; 39(8): e1700882, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29436046

RESUMEN

Two conjugated copolymer donors, PTTABDT and PBTTABDT, based on a fused-ring azepinedione acceptor unit, 5-(2-octyldodecyl)-4H-thieno[2',3':4,5]thieno[3,2-c]thieno[2',3':4,5]thieno[2,3-e]azepine-4,6(5H)-dione (TTA), are prepared. PTTABDT possesses a conventional donor-acceptor (D-A) structure with one TTA in the repeat unit, while PBTTABDT has a D-A-A structure with two TTAs in the repeat unit. Compared with PTTABDT, PBTTABDT shows a deeper highest occupied molecular orbital (HOMO) level, a narrower bandgap, and a higher hole mobility, and exhibits better performance in bulk heterojunction solar cells. Power conversion efficiencies of 6.18% and 7.81% are achieved from PTTABDT:PC71 BM and PBTTABDT:PC71 BM solar cells, respectively. The higher performance of PBTTABDT:PC71 BM solar cells results from the enhanced open-circuit voltage (V oc ) and short-circuit current density ( J sc ).


Asunto(s)
Tiofenos/química , Polímeros , Energía Solar
16.
Macromol Rapid Commun ; 38(12)2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28422335

RESUMEN

Two donor-acceptor copolymers based on isomeric acceptor units, [7,7'-bithieno[2',3':4,5]thieno[2,3-d]thieno[3,2-b]pyridine]-5,5'(4H,4'H)-dione (BTTP) and [2,2'-bithieno[2',3':4,5]thieno[2,3-d]thieno[3,2-b]pyridine]-5,5'(4H,4'H)-dione (iBTTP), are developed to study the effect of isomeric structures on photovoltaic performance. Compared with PBDTBTTP, PBDTiBTTP possesses a smaller bandgap for good light harvesting and a better π-π stacking for higher hole mobility. PBDTiBTTP solar cells present balanced mobilities and good nanoscale phase separation, giving a power conversion efficiency (PCE) of 6.51%, with higher short-circuit current (Jsc ) and fill factor (FF).


Asunto(s)
Polímeros/química , Energía Solar , Isomerismo , Luz Solar
17.
Angew Chem Int Ed Engl ; 56(23): 6528-6532, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28452412

RESUMEN

A family of perovskite light absorbers (NH4 )3 Sb2 Ix Br9-x (0≤x≤9) was prepared. These materials show good solubility in ethanol, a low-cost, hypotoxic, and environmentally friendly solvent. The light absorption of (NH4 )3 Sb2 Ix Br9-x films can be tuned by adjusting I and Br content. The absorption onset for (NH4 )3 Sb2 Ix Br9-x films changes from 558 nm to 453 nm as x changes from 9 to 0. (NH4 )3 Sb2 I9 single crystals were prepared, exhibiting a hole mobility of 4.8 cm2 V-1 s-1 and an electron mobility of 12.3 cm2 V-1 s-1 . (NH4 )3 Sb2 I9 solar cells gave an open-circuit voltage of 1.03 V and a power conversion efficiency of 0.51 %.

18.
Small ; 11(41): 5528-32, 2015 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-26312602

RESUMEN

Solution-processed Cu2 O and CuO are used as hole transport materials in perovskite solar cells. The cells show significantly enhanced open circuit voltage Voc, short-circuit current Jsc, and power conversion efficiency (PCE) compared with PEDOT cells. A PCE of 13.35% and good stability are achieved for Cu2O cells, making Cu2O a promising material for further application in perovskite solar cells.

19.
Macromol Rapid Commun ; 35(15): 1362-6, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24821210

RESUMEN

Pentacyclic lactam acceptor unit TPTI invented by our group is proved to be a good building block for efficient D-A copolymers used in organic solar cells. Here, two D-A copolymers PBTTPTI and PTTTPTI are developed by copolymerizing TPTI with 2,2'-bithiophene (BT) or thieno[3,2-b]thiophene (TT). PBTTPTI and PTTTPTI exhibit good solubility and strong interchain π-π interaction even in dilute solution. They possess deep HOMO levels (ca. -5.3 eV), partial crystallinity, and good hole mobilities. Blending with PC71 BM, PBTTPTI and PTTTPTI give decent power conversion efficiencies (PCE) up to 6.83% and 5.86%, with outstanding fill factors (FF) of 74.3% and 71.3%, respectively.


Asunto(s)
Polímeros/química , Energía Solar , Fulerenos/química , Lactamas/química , Microscopía de Fuerza Atómica , Teoría Cuántica , Solubilidad , Tiofenos/química
20.
Phys Chem Chem Phys ; 16(16): 7205-8, 2014 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-24626781

RESUMEN

C70-based acceptors show great potential in polymer solar cells (PSCs). Two high-LUMO C70 acceptors, the 66π OQMF70 and the 64π bis-OQMF70, based on methano[70]fullerene (C70CH2) were developed. An outstanding power conversion efficiency (PCE) of 6.88% was obtained from OQMF70:P3HT solar cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA