Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Neurobiol Dis ; 177: 105983, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36586468

RESUMEN

Nucleus basalis of Meynert (NbM), one of the earliest targets of Alzheimer's disease (AD), may act as a seed for pathological spreading to its connected regions. However, the underlying basis of regional vulnerability to NbM dysconnectivity remains unclear. NbM functional dysconnectivity was assessed using resting-state fMRI data of health controls and mild cognitive impairment (MCI) patients from the Alzheimer's disease Neuroimaging Initiative (ADNI2/GO phase). Transcriptional correlates of NbM dysconnectivity was explored by leveraging public intrinsic and differential post-mortem brain-wide gene expression datasets from Allen Human Brain Atlas (AHBA) and Mount Sinai Brain Bank (MSBB). By constructing an individual-level tissue-specific gene set risk score (TGRS), we evaluated the contribution of NbM dysconnectivity-correlated gene sets to change rate of cerebral spinal fluid (CSF) biomarkers during preclinical stage of AD, as well as to MCI onset age. An independent cohort of health controls and MCI patients from ADNI3 was used to validate our main findings. Between-group comparison revealed significant connectivity reduction between the right NbM and right middle temporal gyrus in MCI. This regional vulnerability to NbM dysconnectivity correlated with intrinsic expression of genes enriched in protein and immune functions, as well as with differential expression of genes enriched in cholinergic receptors, immune, vascular and energy metabolism functions. TGRS of these NbM dysconnectivity-correlated gene sets are associated with longitudinal amyloid-beta change at preclinical stages of AD, and contributed to MCI onset age independent of traditional AD risks. Our findings revealed the transcriptional vulnerability to NbM dysconnectivity and their crucial role in explaining preclinical amyloid-beta change and MCI onset age, which offer new insights into the early AD pathology and encourage more investigation and clinical trials targeting NbM.


Asunto(s)
Enfermedad de Alzheimer , Prosencéfalo Basal , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Prosencéfalo Basal/patología , Núcleo Basal de Meynert/metabolismo , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Péptidos beta-Amiloides/metabolismo
2.
Int J Cancer ; 152(5): 998-1012, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36305649

RESUMEN

Increasing evidence indicates that glioma topographic location is linked to the cellular origin, molecular alterations and genetic profile. This research aims to (a) reveal the underlying mechanisms of tumor location predilection in glioblastoma multiforme (GBM) and lower-grade glioma (LGG) and (b) leverage glioma location features to predict prognosis. MRI images from 396 GBM and 190 LGG (115 astrocytoma and 75 oligodendroglioma) patients were standardized to construct frequency maps and analyzed by voxel-based lesion-symptom mapping. We then investigated the spatial correlation between glioma distribution with gene expression in healthy brains. We also evaluated transcriptomic differences in tumor tissue from predilection and nonpredilection sites. Furthermore, we quantitively characterized tumor anatomical localization and explored whether it was significantly related to overall survival. Finally, we employed a support vector machine to build a survival prediction model for GBM patients. GBMs exhibited a distinct location predilection from LGGs. GBMs were nearer to the subventricular zone and more likely to be localized to regions enriched with synaptic signaling, whereas astrocytoma and oligodendroglioma tended to occur in areas associated with the immune response. Synapse, neurotransmitters and calcium ion channel-related genes were all activated in GBM tissues coming from predilection regions. Furthermore, we characterized tumor location features in terms of a series of tumor-to-predilection distance metrics, which were able to predict GBM 1-year survival status with an accuracy of 0.71. These findings provide new perspectives on our understanding of tumor anatomic localization. The spatial features of glioma are of great value in individual therapy and prognosis prediction.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Glioblastoma , Glioma , Oligodendroglioma , Humanos , Neoplasias Encefálicas/patología , Transcriptoma , Oligodendroglioma/genética , Glioma/patología , Glioblastoma/patología
3.
Amino Acids ; 54(1): 111-121, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35028704

RESUMEN

Recently, the detailed etiology and pathogenesis of Parkinson's disease (PD) have not been fully clarified yet. Increasing evidences suggested that the disturbance of peripheral branched-chain amino acids (BCAAs) metabolism can promote the occurrence and progression of neurodegenerative diseases through neuroinflammatory signaling. Although there are several studies on the metabolomics of PD, longitudinal study of metabolic pathways is still lacking. Therefore, the purpose of the present study was to determine the longitudinal alterations in serum amino acid profiles in PD mouse model. Gas chromatography-mass spectrometry (GC-MS) was applied to detect serum amino acid concentrations in C57BL/6 mice after 0, 3 and 4 weeks of oral administration with rotenone. Then the data were analysed by principal component analysis (PCA) and orthogonal projection to latent structures (OPLS) analysis. Finally, the correlations between different kinds of serum amino acids and behaviors in rotenone-treated mice were also explored. Compared with 0-week mice, the levels of L-isoleucine and L-leucine were down-regulated in 3-week and 4-week mice, especially in 4-week mice. Moreover, the comprehensive analysis showed that L-isoleucine and L-leucine were negatively correlated with pole-climbing time and positively correlated with fecal weight and water content of PD mice. These results not only suggested that L-isoleucine and L-leucine may be potential biomarkers, but also pointed out the possibility of treating PD by intervening in the circulating amino acids metabolism.


Asunto(s)
Enfermedad de Parkinson , Rotenona , Aminoácidos de Cadena Ramificada/metabolismo , Animales , Estudios Longitudinales , Metabolómica , Ratones , Ratones Endogámicos C57BL , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología
4.
Microb Pathog ; 160: 105187, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34530073

RESUMEN

Gut microbiota and amino acids that are one of their metabolites play important roles in the mechanism of pathology of Parkinson's disease (PD). It has been reported that the level of amino acids in vivo participate in neurodegeneration by regulating adaptive immune response, while the current researches on alteration of amino acids in gut microbiota are still insufficient. We hypothesized that alterations in gut microbiota might be accompanied by altered concentrations of amino acids, leading to the occurrence of PD. In this study, we collected stool samples from PD and healthy controls to analyse fecal microbiome and targeted metabolome by 16S ribosomal RNA (16S rRNA) gene sequencing and gas chromatography coupled to mass spectrometry (GC-MS). At the genus level, there was a greater abundance of Alistipes, Rikenellaceae_RC9_gut_group, Bifidobacterium, Parabacteroides, while Faecalibacterium was decreased in fecal samples from PD patients. Moreover, fecal branched chain amino acids (BCAAs) and aromatic amino acids concentrations were significantly reduced in PD patients compared to controls. Our study not only finds the abundance of certain gut microbiota in PD,but also reveals that it is related to BCAAs and aromatic amino acids. These findings are beneficial to identifying new therapeutic targets for PD by regulating diet and/or gut microbiota.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad de Parkinson , Heces , Humanos , Metaboloma , ARN Ribosómico 16S/genética
5.
J Affect Disord ; 365: 341-350, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39178958

RESUMEN

PURPOSE: The discovery of the glymphatic system, crucial for cerebrospinal and interstitial fluid exchange, has enhanced our grasp of brain protein balance and its potential role in neurodegenerative disease prevention and therapy. Detecting early neurodegenerative shifts via noninvasive biomarkers could be key in identifying at-risk individuals for Alzheimer's disease (AD). Our research explores a diffusion tensor imaging (DTI) method that measures cortical mean diffusivity (cMD), potentially a more sensitive indicator of neurodegeneration than traditional macrostructural methods. MATERIALS AND METHODS: We analyzed 67 post-traumatic stress disorder (PTSD)-diagnosed veterans from the Alzheimer's Disease Neuroimaging Initiative database. Participants underwent structural MRI, DTI, Aß PET imaging, and cognitive testing. We focused on the DTI-ALPS technique to assess glymphatic function and its relation to cMD, cortical Aß accumulation, and thickness, accounting for age and APOE ε4 allele variations. RESULTS: The cohort, all male with an average age of 68.1 (SD 3.4), showed a strong inverse correlation between DTI-ALPS and cMD in AD-affected regions, especially in the entorhinal, parahippocampal, and fusiform areas. Higher DTI-ALPS readings were consistently linked with greater cortical thickness, independent of Aß deposits and genetic risk factors. Age and cMD emerged as inversely proportional predictors of DTI-ALPS, indicating a complex interaction with age. CONCLUSION: The study confirms a meaningful association between glymphatic efficiency and cMD in AD-sensitive zones, accentuating cortical microstructural alterations in PTSD. It positions DTI-ALPS as a viable biomarker for assessing glymphatic function in PTSD, implicating changes in DTI-ALPS as indicative of glymphatic impairment.


Asunto(s)
Enfermedad de Alzheimer , Corteza Cerebral , Imagen de Difusión Tensora , Sistema Glinfático , Trastornos por Estrés Postraumático , Veteranos , Humanos , Trastornos por Estrés Postraumático/diagnóstico por imagen , Trastornos por Estrés Postraumático/fisiopatología , Trastornos por Estrés Postraumático/patología , Masculino , Anciano , Sistema Glinfático/diagnóstico por imagen , Sistema Glinfático/fisiopatología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Corteza Cerebral/fisiopatología , Persona de Mediana Edad , Veteranos/psicología , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Péptidos beta-Amiloides/metabolismo
6.
Comput Biol Med ; 158: 106801, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36989741

RESUMEN

Parkinson's disease (PD) is characterized by dopaminergic neurons degeneration in the substantia nigra pars compacta. Increasing evidence indicates that peripheral CD4+ T cells, a vital pathological component of PD, have been implicated in systemic inflammation activation, blood-brain barrier (BBB) dysfunction, central nervous system infiltration, and consequent neurons degeneration. However, there is no consensus on CD4+ T cell types' exact phenotypic characteristics in systemic inflammation and the mechanism of CD4+ T cells traffic into the BBB in patients with PD. In this study, we employed single-cell RNA sequencing (scRNA-seq) to elucidate the potential mechanism of T cells on the breakdown of BBB. The PD-associated Cytotoxic CD4+ T cells (CD4+ CTLs) were characterized by a significant increase in proportion as well as enhancement of interferon-gamma (IFNG) response and cell adhesion. Meanwhile, TBX21, IRF1 and NFATC2, identified as the key transcription factors in effector CD4+ T cells differentiation, induced overexpression of target genes-IFNG in CD4+ CTLs. Interestingly, endothelial cells (ECs) in PD patients were discovered to be more responsive to IFNG than other cell types of midbrain. Furthermore, the cell-cell communication analysis between CD4+ T cells and midbrain cells identified IFNG/IFNGR1 and SPP1/ITGB1 as the ligand-receptor pairs to mediate CD4+ CTLs' infiltration into the central nervous system (CNS) through the weakened ECs' tight junction. Together, these results suggested that PD-specific peripheral CD4+ CTLs might influence BBB function by migrating to mesencephalic endothelial cells (ECs) and activating the IFNG response in ECs.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/metabolismo , Interferón gamma/metabolismo , Transcriptoma/genética , Células Endoteliales/metabolismo , Células Endoteliales/patología , Mesencéfalo/metabolismo , Mesencéfalo/patología , Inflamación , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/patología
7.
Alzheimers Res Ther ; 15(1): 58, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36941645

RESUMEN

BACKGROUND: Cortical and subcortical microstructural modifications are critical to understanding the pathogenic changes in frontotemporal lobar degeneration (FTLD) subtypes. In this study, we investigated cortical and subcortical microstructure underlying cognitive and language impairments across behavioral variant of frontotemporal dementia (bvFTD), semantic variant of primary progressive aphasia (svPPA), and nonfluent variant of primary progressive aphasia (nfvPPA) subtypes. METHODS: The current study characterized 170 individuals with 3 T MRI structural and diffusion-weighted imaging sequences as portion of the Frontotemporal Lobar Degeneration Neuroimaging Initiative study: 41 bvFTD, 35 nfvPPA, 34 svPPA, and 60 age-matched cognitively unimpaired controls. To determine the severity of the disease, clinical dementia rating plus national Alzheimer's coordinating center behavior and language domains sum of boxes scores were used; other clinical measures, including the Boston naming test and verbal fluency test, were also evaluated. We computed surface-based cortical thickness and cortical and subcortical microstructural metrics using tract-based spatial statistics and explored their relationships with clinical and cognitive assessments. RESULTS: Compared with controls, those with FTLD showed substantial cortical mean diffusivity alterations extending outside the regions with cortical thinning. Tract-based spatial statistics revealed that anomalies in subcortical white matter diffusion were widely distributed across the frontotemporal and parietal areas. Patients with bvFTD, nfvPPA, and svPPA exhibited distinct patterns of cortical and subcortical microstructural abnormalities, which appeared to correlate with disease severity, and separate dimensions of language functions. CONCLUSIONS: Our findings imply that cortical and subcortical microstructures may serve as sensitive biomarkers for the investigation of neurodegeneration-associated microstructural alterations in FTLD subtypes. Flowchart of the study design (see materials and methods for detailed description).


Asunto(s)
Disfunción Cognitiva , Demencia Frontotemporal , Degeneración Lobar Frontotemporal , Trastornos del Desarrollo del Lenguaje , Afasia Progresiva Primaria no Fluente , Humanos , Demencia Frontotemporal/patología , Degeneración Lobar Frontotemporal/complicaciones , Degeneración Lobar Frontotemporal/diagnóstico por imagen , Degeneración Lobar Frontotemporal/patología , Afasia Progresiva Primaria no Fluente/patología , Disfunción Cognitiva/diagnóstico por imagen , Gravedad del Paciente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA