Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Bioinformatics ; 21(1): 492, 2020 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-33129268

RESUMEN

BACKGROUND: The ability to compare samples or studies easily using metabarcoding so as to better interpret microbial ecology results is an upcoming challenge. A growing number of metabarcoding pipelines are available, each with its own benefits and limitations. However, very few have been developed to offer the opportunity to characterize various microbial communities (e.g., archaea, bacteria, fungi, photosynthetic microeukaryotes) with the same tool. RESULTS: BIOCOM-PIPE is a flexible and independent suite of tools for processing data from high-throughput sequencing technologies, Roche 454 and Illumina platforms, and focused on the diversity of archaeal, bacterial, fungal, and photosynthetic microeukaryote amplicons. Various original methods were implemented in BIOCOM-PIPE to (1) remove chimeras based on read abundance, (2) align sequences with structure-based alignments of RNA homologs using covariance models, and (3) a post-clustering tool (ReClustOR) to improve OTUs consistency based on a reference OTU database. The comparison with two other pipelines (FROGS and mothur) and Amplicon Sequence Variant definition highlighted that BIOCOM-PIPE was better at discriminating land use groups. CONCLUSIONS: The BIOCOM-PIPE pipeline makes it possible to analyze 16S, 18S and 23S rRNA genes in the same packaged tool. The new post-clustering approach defines a biological database from previously analyzed samples and performs post-clustering of reads with this reference database by using open-reference clustering. This makes it easier to compare projects from various sequencing runs, and increased the congruence among results. For all users, the pipeline was developed to allow for adding or modifying the components, the databases and the bioinformatics tools easily, giving high modularity for each analysis.


Asunto(s)
Archaea/genética , Bacterias/genética , Biodiversidad , Biología Computacional/métodos , Código de Barras del ADN Taxonómico , Hongos/genética , Genes de ARNr , Programas Informáticos , Análisis por Conglomerados , Simulación por Computador , Bases de Datos Genéticas , Microbiota/genética , ARN Ribosómico 16S/genética , ARN Ribosómico 23S/genética , Microbiología del Suelo
2.
BMC Biol ; 16(1): 137, 2018 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-30482201

RESUMEN

BACKGROUND: The evolution of photosynthesis has been a major driver in eukaryotic diversification. Eukaryotes have acquired plastids (chloroplasts) either directly via the engulfment and integration of a photosynthetic cyanobacterium (primary endosymbiosis) or indirectly by engulfing a photosynthetic eukaryote (secondary or tertiary endosymbiosis). The timing and frequency of secondary endosymbiosis during eukaryotic evolution is currently unclear but may be resolved in part by studying cryptomonads, a group of single-celled eukaryotes comprised of both photosynthetic and non-photosynthetic species. While cryptomonads such as Guillardia theta harbor a red algal-derived plastid of secondary endosymbiotic origin, members of the sister group Goniomonadea lack plastids. Here, we present the genome of Goniomonas avonlea-the first for any goniomonad-to address whether Goniomonadea are ancestrally non-photosynthetic or whether they lost a plastid secondarily. RESULTS: We sequenced the nuclear and mitochondrial genomes of Goniomonas avonlea and carried out a comparative analysis of Go. avonlea, Gu. theta, and other cryptomonads. The Go. avonlea genome assembly is ~ 92 Mbp in size, with 33,470 predicted protein-coding genes. Interestingly, some metabolic pathways (e.g., fatty acid biosynthesis) predicted to occur in the plastid and periplastidal compartment of Gu. theta appear to operate in the cytoplasm of Go. avonlea, suggesting that metabolic redundancies were generated during the course of secondary plastid integration. Other cytosolic pathways found in Go. avonlea are not found in Gu. theta, suggesting secondary loss in Gu. theta and other plastid-bearing cryptomonads. Phylogenetic analyses revealed no evidence for algal endosymbiont-derived genes in the Go. avonlea genome. Phylogenomic analyses point to a specific relationship between Cryptista (to which cryptomonads belong) and Archaeplastida. CONCLUSION: We found no convincing genomic or phylogenomic evidence that Go. avonlea evolved from a secondary red algal plastid-bearing ancestor, consistent with goniomonads being ancestrally non-photosynthetic eukaryotes. The Go. avonlea genome sheds light on the physiology of heterotrophic cryptomonads and serves as an important reference point for studying the metabolic "rewiring" that took place during secondary plastid integration in the ancestor of modern-day Cryptophyceae.


Asunto(s)
Criptófitas/genética , Evolución Molecular , Genoma , Plastidios/genética , Proteínas Algáceas/análisis , Núcleo Celular/genética , Criptófitas/citología , Filogenia , Triptófano-ARNt Ligasa/análisis
3.
BMC Bioinformatics ; 15: 293, 2014 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-25176396

RESUMEN

BACKGROUND: Venn diagrams are commonly used to display list comparison. In biology, they are widely used to show the differences between gene lists originating from different differential analyses, for instance. They thus allow the comparison between different experimental conditions or between different methods. However, when the number of input lists exceeds four, the diagram becomes difficult to read. Alternative layouts and dynamic display features can improve its use and its readability. RESULTS: jvenn is a new JavaScript library. It processes lists and produces Venn diagrams. It handles up to six input lists and presents results using classical or Edwards-Venn layouts. User interactions can be controlled and customized. Finally, jvenn can easily be embeded in a web page, allowing to have dynamic Venn diagrams. CONCLUSIONS: jvenn is an open source component for web environments helping scientists to analyze their data. The library package, which comes with full documentation and an example, is freely available at http://bioinfo.genotoul.fr/jvenn.


Asunto(s)
Gráficos por Computador , Programas Informáticos , Biología Computacional , Internet
4.
Sci Total Environ ; 883: 163455, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37062324

RESUMEN

Soil microbial biodiversity provides many useful services in cities. However, the ecology of microbial communities in urban soils remains poorly documented, and studies are required to better predict the impact of urban land use. We characterized microbial communities (archea/bacteria and fungi) in urban soils in Dijon (Burgundy, France). Three main land uses were considered - public leisure, traffic, and urban agriculture - sub-categorized in sub-land uses according to urban indexes and management practices. Microbial biomass and diversity were determined by quantifying and high-throughput sequencing of soil DNA. Variation partitioning analysis was used to rank soil physicochemical characteristics and land uses according to their relative contribution to the variation of soil microbial communities. Urban soils in Dijon harbored high levels of microbial biomass and diversity that varied according to land uses. Microbial biomass was 1.8 times higher in public leisure and traffic sites than in urban agriculture sites. Fungal richness increased by 25 % in urban agriculture soils, and bacterial richness was lower (by 20 %) in public leisure soils. Partitioning models explained 25.7 %, 46.2 % and 75.6 % of the variance of fungal richness, bacterial richness and microbial biomass, respectively. The organic carbon content and the C/N ratio were the best predictors of microbial biomass, whereas soil bacterial diversity was mainly explained by soil texture and land use. Neither metal trace elements nor polycyclic aromatic hydrocarbons contents explained variations of microbial communities, probably due to their very low concentration in the soils. The microbial composition results highlighted that leisure sites represented a stabilized habitat favoring specialized microbial groups and microbial plant symbionts, as opposed to urban agriculture sites that stimulated opportunistic populations able to face the impact of agricultural practices. Altogether, our results provide evidence that there is scope for urban planners to drive soil microbial diversity through sustainable urban land use and associated management practices.


Asunto(s)
Microbiota , Suelo , Suelo/química , Microbiología del Suelo , Agricultura/métodos , Bacterias/genética , Biodiversidad
5.
mSphere ; 8(5): e0036523, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37754664

RESUMEN

Soils are one of the major reservoirs of biological diversity on our planet because they host a huge richness of microorganisms. The fungal:bacterial (F:B) ratio targets two major functional groups of organisms in soils and can improve our understanding of their importance and efficiency for soil functioning. To better decipher the variability of this ratio and rank the environmental parameters involved, we used the French Soil Quality Monitoring Network (RMQS)-one of the most extensive and a priori-free soil sampling surveys, based on a systematic 16 km × 16 km grid and including more than 2,100 samples. F:B ratios, measured by quantitative PCR targeting the 18S and 16S rDNA genes, turned out to be heterogenously distributed and spatially structured in geographical patterns across France. These distribution patterns differed from bacterial or fungal densities taken separately, supporting the hypothesis that the F:B ratio is not the mere addition of each density but rather results from the complex interactions of the two functional groups. The F:B ratios were mainly influenced by soil characteristics and land management. Among soil characteristics, the pH and, to a lesser extent, the organic carbon content and the carbon:nitrogen (C:N) ratio were the main drivers. These results improved our understanding of soil microbial communities, and from an operational point of view, they suggested that the F:B ratio should be a useful new bioindicator of soil status. The resulting dataset can be considered as a first step toward building up a robust repository essential to any bioindicator and aimed at guiding and helping decision making. IMPORTANCE In the face of human disturbances, microbial activity can be impacted and, e.g., can result in the release of large amounts of soil carbon into the atmosphere, with global impacts on temperature. Therefore, the development and the regular use of soil bioindicators are essential to (i) improve our knowledge of soil microbial communities and (ii) guide and help decision makers define suitable soil management strategies. Bacterial and fungal communities are key players in soil organic matter turnover, but with distinct physiological and ecological characteristics. The fungal:bacterial ratio targets these two major functional groups by investigating their presence and their equilibrium. The aim of our study is to characterize this ratio at a territorial scale and rank the environmental parameters involved so as to further develop a robust repository essential to the interpretation of any bioindicator of soil quality.


Asunto(s)
Biomarcadores Ambientales , Suelo , Humanos , Suelo/química , Microbiología del Suelo , Bacterias/genética , Francia , Carbono
6.
Mol Ecol Resour ; 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37548515

RESUMEN

Environmental DNA (eDNA) metabarcoding has gained growing attention as a strategy for monitoring biodiversity in ecology. However, taxa identifications produced through metabarcoding require sophisticated processing of high-throughput sequencing data from taxonomically informative DNA barcodes. Various sets of universal and taxon-specific primers have been developed, extending the usability of metabarcoding across archaea, bacteria and eukaryotes. Accordingly, a multitude of metabarcoding data analysis tools and pipelines have also been developed. Often, several developed workflows are designed to process the same amplicon sequencing data, making it somewhat puzzling to choose one among the plethora of existing pipelines. However, each pipeline has its own specific philosophy, strengths and limitations, which should be considered depending on the aims of any specific study, as well as the bioinformatics expertise of the user. In this review, we outline the input data requirements, supported operating systems and particular attributes of thirty-two amplicon processing pipelines with the goal of helping users to select a pipeline for their metabarcoding projects.

7.
Front Microbiol ; 13: 943314, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36051761

RESUMEN

The soil microbial community plays important roles in nutrient cycling, plant pathogen suppression, decomposition of residues and degradation of pollutants; as such, it is often regarded as a good indicator of soil quality. Repeated applications of mixed organic and inorganic materials in agriculture improve the soil microbial quality and in turn crop productivity. The soil microbial quality following several years of repeated fertilizer inputs has received considerable attention, but the dynamic of this community over time has never been assessed. We used high-throughput sequencing targeting 16S ribosomal RNA genes to investigate the evolution of the bacterial and archaeal community throughout 6 years of repeated organic and inorganic fertilizer applications. Soils were sampled from a field experiment in La Mare (Reunion Island, France), where different mixed organic-inorganic fertilizer inputs characterized by more or less stable organic matter were applied regularly for 6 years. Soil samples were taken each year, more than 6 months after the latest fertilizer application. The soil molecular biomass significantly increased in some organically fertilized plots (by 35-45% on average), 3-5 years after the first fertilizers application. The significant variations in soil molecular microbial biomass were explained by the fertilization practices (cumulated organic carbon inputs) and sometimes by the soil parameters (sand and soil carbon contents). The structure of the bacterial and archaeal community was more influenced by time than by the fertilization type. However, repeated fertilizer applications over time tended to modify the abundance of the bacterial phyla Acidobacteria, Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria. To conclude, the present study highlights that the soil bacterial and archaeal community is lastingly modified after 6 years of repeated fertilizer inputs. These changes depend on the nature of the organic input and on the fertilization practice (frequency and applied quantity).

8.
Gigascience ; 11(1)2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-35022702

RESUMEN

Deciphering microbiota functions is crucial to predict ecosystem sustainability in response to global change. High-throughput sequencing at the individual or community level has revolutionized our understanding of microbial ecology, leading to the big data era and improving our ability to link microbial diversity with microbial functions. Recent advances in bioinformatics have been key for developing functional prediction tools based on DNA metabarcoding data and using taxonomic gene information. This cheaper approach in every aspect serves as an alternative to shotgun sequencing. Although these tools are increasingly used by ecologists, an objective evaluation of their modularity, portability, and robustness is lacking. Here, we reviewed 100 scientific papers on functional inference and ecological trait assignment to rank the advantages, specificities, and drawbacks of these tools, using a scientific benchmarking. To date, inference tools have been mainly devoted to bacterial functions, and ecological trait assignment tools, to fungal functions. A major limitation is the lack of reference genomes-compared with the human microbiota-especially for complex ecosystems such as soils. Finally, we explore applied research prospects. These tools are promising and already provide relevant information on ecosystem functioning, but standardized indicators and corresponding repositories are still lacking that would enable them to be used for operational diagnosis.


Asunto(s)
Ecosistema , Microbiota , Hongos/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Microbiota/genética , Suelo , Microbiología del Suelo
9.
Front Microbiol ; 13: 889788, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35847063

RESUMEN

Soils are fundamental resources for agricultural production and play an essential role in food security. They represent the keystone of the food value chain because they harbor a large fraction of biodiversity-the backbone of the regulation of ecosystem services and "soil health" maintenance. In the face of the numerous causes of soil degradation such as unsustainable soil management practices, pollution, waste disposal, or the increasing number of extreme weather events, it has become clear that (i) preserving the soil biodiversity is key to food security, and (ii) biodiversity-based solutions for environmental monitoring have to be developed. Within the soil biodiversity reservoir, microbial diversity including Archaea, Bacteria, Fungi and protists is essential for ecosystem functioning and resilience. Microbial communities are also sensitive to various environmental drivers and to management practices; as a result, they are ideal candidates for monitoring soil quality assessment. The emergence of meta-omics approaches based on recent advances in high-throughput sequencing and bioinformatics has remarkably improved our ability to characterize microbial diversity and its potential functions. This revolution has substantially filled the knowledge gap about soil microbial diversity regulation and ecology, but also provided new and robust indicators of agricultural soil quality. We reviewed how meta-omics approaches replaced traditional methods and allowed developing modern microbial indicators of the soil biological quality. Each meta-omics approach is described in its general principles, methodologies, specificities, strengths and drawbacks, and illustrated with concrete applications for soil monitoring. The development of metabarcoding approaches in the last 20 years has led to a collection of microbial indicators that are now operational and available for the farming sector. Our review shows that despite the recent huge advances, some meta-omics approaches (e.g., metatranscriptomics or meta-proteomics) still need developments to be operational for environmental bio-monitoring. As regards prospects, we outline the importance of building up repositories of soil quality indicators. These are essential for objective and robust diagnosis, to help actors and stakeholders improve soil management, with a view to or to contribute to combining the food and environmental quality of next-generation farming systems in the context of the agroecological transition.

10.
Front Genet ; 11: 581664, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193706

RESUMEN

The mechanical and chemical properties of natural plant fibers are determined by many different factors, both intrinsic and extrinsic to the plant, during growth but also after harvest. A better understanding of how all these factors exert their effect and how they interact is necessary to be able to optimize fiber quality for use in different industries. One important factor is the post-harvest process known as retting, representing the first step in the extraction of bast fibers from the stem of species such as flax and hemp. During this process microorganisms colonize the stem and produce hydrolytic enzymes that target cell wall polymers thereby facilitating the progressive destruction of the stem and fiber bundles. Recent advances in sequencing technology have allowed researchers to implement targeted metagenomics leading to a much better characterization of the microbial communities involved in retting, as well as an improved understanding of microbial dynamics. In this paper we review how our current knowledge of the microbiology of retting has been improved by targeted metagenomics and discuss how related '-omics' approaches might be used to fully characterize the functional capability of the retting microbiome.

11.
Sci Rep ; 10(1): 5915, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32246067

RESUMEN

Studying the ecology of photosynthetic microeukaryotes and prokaryotic cyanobacterial communities requires molecular tools to complement morphological observations. These tools rely on specific genetic markers and require the development of specialised databases to achieve taxonomic assignment. We set up a reference database, called µgreen-db, for the 23S rRNA gene. The sequences were retrieved from generalist (NCBI, SILVA) or Comparative RNA Web (CRW) databases, in addition to a more original approach involving recursive BLAST searches to obtain the best possible sequence recovery. At present, µgreen-db includes 2,326 23S rRNA sequences belonging to both eukaryotes and prokaryotes encompassing 442 unique genera and 736 species of photosynthetic microeukaryotes, cyanobacteria and non-vascular land plants based on the NCBI and AlgaeBase taxonomy. When PR2/SILVA taxonomy is used instead, µgreen-db contains 2,217 sequences (399 unique genera and 696 unique species). Using µgreen-db, we were able to assign 96% of the sequences of the V domain of the 23S rRNA gene obtained by metabarcoding after amplification from soil DNA at the genus level, highlighting good coverage of the database. µgreen-db is accessible at http://microgreen-23sdatabase.ea.inra.fr.


Asunto(s)
Cianobacterias/genética , ADN Ambiental/genética , Bases de Datos de Ácidos Nucleicos , Eucariontes/genética , ARN Ribosómico 23S/genética , Cianobacterias/clasificación , Código de Barras del ADN Taxonómico , ADN Ambiental/aislamiento & purificación , Eucariontes/clasificación , Fotosíntesis , Plastidios/genética , Suelo/química
12.
Front Microbiol ; 8: 2052, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29104570

RESUMEN

Flax dew-retting is a key step in the industrial extraction of fibers from flax stems and is dependent upon the production of a battery of hydrolytic enzymes produced by micro-organisms during this process. To explore the diversity and dynamics of bacterial and fungal communities involved in this process we applied a high-throughput sequencing (HTS) DNA metabarcoding approach (16S rRNA/ITS region, Illumina Miseq) on plant and soil samples obtained over a period of 7 weeks in July and August 2014. Twenty-three bacterial and six fungal phyla were identified in soil samples and 11 bacterial and four fungal phyla in plant samples. Dominant phyla were Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes (bacteria) and Ascomycota, Basidiomycota, and Zygomycota (fungi) all of which have been previously associated with flax dew-retting except for Bacteroidetes and Basidiomycota that were identified for the first time. Rare phyla also identified for the first time in this process included Acidobacteria, CKC4, Chlorobi, Fibrobacteres, Gemmatimonadetes, Nitrospirae and TM6 (bacteria), and Chytridiomycota (fungi). No differences in microbial communities and colonization dynamics were observed between early and standard flax harvests. In contrast, the common agricultural practice of swath turning affects both bacterial and fungal community membership and structure in straw samples and may contribute to a more uniform retting. Prediction of community function using PICRUSt indicated the presence of a large collection of potential bacterial enzymes capable of hydrolyzing backbones and side-chains of cell wall polysaccharides. Assignment of functional guild (functional group) using FUNGuild software highlighted a change from parasitic to saprophytic trophic modes in fungi during retting. This work provides the first exhaustive description of the microbial communities involved in flax dew-retting and will provide a valuable benchmark in future studies aiming to evaluate the effects of other parameters (e.g., year-to year and site variability etc.) on this complex process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA