Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36613610

RESUMEN

The growth of microbial multidrug resistance is a problem in modern clinical medicine. Chemical modification of active pharmaceutical ingredients is an attractive strategy to improve their biopharmaceutical properties by increasing bioavailability and reducing drug toxicity. Conjugation of antimicrobial drugs with natural polysaccharides provides high efficiency of these systems due to targeted delivery, controlled drug release and reduced toxicity. This paper reports a two-step synthesis of colistin conjugates (CT) with succinyl chitosan (SucCS); first, we modified chitosan with succinyl anhydride to introduce a carboxyl function into the polymer molecule, which was then used for chemical grafting with amino groups of the peptide antibiotic CT using carbodiimide chemistry. The resulting polymeric delivery systems had a degree of substitution (DS) by CT of 3-8%, with conjugation efficiencies ranging from 54 to 100% and CT contents ranging from 130-318 µg/mg. The size of the obtained particles was 100-200 nm, and the ζ-potential varied from -22 to -28 mV. In vitro release studies at pH 7.4 demonstrated ultra-slow hydrolysis of amide bonds, with a CT release of 0.1-0.5% after 12 h; at pH 5.2, the hydrolysis rate slightly increased; however, it remained extremely low (1.5% of CT was released after 12 h). The antimicrobial activity of the conjugates depended on the DS. At DS 8%, the minimum inhibitory concentration (MIC) of the conjugate was equal to the MIC of native CT (1 µg/mL); at DS of 3 and 5%, the MIC increased 8-fold. In addition, the developed systems reduced CT nephrotoxicity by 20-60%; they also demonstrated the ability to reduce bacterial lipopolysaccharide-induced inflammation in vitro. Thus, these promising CT-SucCS conjugates are prospective for developing safe and effective nanoantibiotics.


Asunto(s)
Quitosano , Colistina , Colistina/farmacología , Quitosano/química , Estudios Prospectivos , Sistemas de Liberación de Medicamentos , Antibacterianos/farmacología , Antibacterianos/química
2.
Int J Biol Macromol ; 215: 243-252, 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-35724903

RESUMEN

The development of nanotechnology-based antibiotic delivery systems (nanoantibiotics) is an important challenge in the effort to combat microbial multidrug resistance. These systems have improved biopharmaceutical characteristics by increasing local bioavailability and reducing systemic toxicity and the number and frequency of drug side effects. Conjugation of low -molecular -weight antibacterial agents with natural polysaccharides is an effective strategy for developing optimal targeted delivery systems with programmed release and reduced cytotoxicity. This study describes the synthesis of conjugates of colistin (CT) and hyaluronic acid (HA) using carbodiimide chemistry to conjugate the amino groups of CT with the carboxyl groups of HA. The obtained polysaccharide carriers had a degree of substitution (DS) with CT molecules of 3-10 %, and the CT content was 129-377 µg/mg. The size of the fabricated particles was 300-600 nm; in addition, there were conjugates in the form of single macromolecules (30-50 nm). The ζ-potential of developed systems was about -20 mV. In vitro release studies at pH 7.4 and pH 5.2 showed slow hydrolysis of amide bonds, with a CT release of 1-5 % after 24 h. The conjugates retained antimicrobial activity depending on the DS: at DS 8 %, the minimum inhibitory concentration (MIC) of the conjugate corresponded to the MIC of free CT. The resulting systems also reduced CT nephrotoxicity by 20-50 %. These new conjugates of CT with HA are promising for the development of nanodrugs for safe and effective antimicrobial therapy.


Asunto(s)
Colistina , Ácido Hialurónico , Antibacterianos/química , Antibacterianos/farmacología , Colistina/química , Sistemas de Liberación de Medicamentos/métodos , Ácido Hialurónico/química , Pruebas de Sensibilidad Microbiana , Peso Molecular
3.
Int J Biol Macromol ; 187: 157-165, 2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34298050

RESUMEN

Nanotechnology-based modification of known antimicrobial agents is a rational and straightforward way to improve their safety and effectiveness. The aim of this study was to develop colistin (CT)-loaded polymeric carriers based on hyaluronic acid (HA) for potential application as antimicrobial agents against multi-resistant gram-negative microorganisms (including ESKAPE pathogens). CT-containing particles were obtained via a polyelectrolyte interaction between protonated CT amino groups and HA carboxyl groups (the CT-HA complex formation constant [logKCT-HA] was about 5.0). The resulting polyelectrolyte complexes had a size of 210-250 nm and a negative charge (ζ-potential -19 mV), with encapsulation and loading efficiencies of 100% and 20%, respectively. The developed CT delivery systems were characterized by modified release (45% and 85% of CT released in 15 and 60 min, respectively) compared to pure CT (100% CT released in 15 min). In vitro tests showed that the encapsulation of CT in polymer particles did not reduce its pharmacological activity; the minimum inhibitory concentrations of both encapsulated CT and pure CT were 1 µg/mL (against Pseudomonas aeruginosa).


Asunto(s)
Antiinfecciosos , Colistina , Ácido Hialurónico , Polielectrolitos , Pseudomonas aeruginosa/crecimiento & desarrollo , Antiinfecciosos/química , Antiinfecciosos/farmacología , Colistina/química , Colistina/farmacología , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Polielectrolitos/química , Polielectrolitos/farmacología
4.
Int J Biol Macromol ; 146: 1161-1168, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31739048

RESUMEN

Polysaccharide-based polyelectrolyte complexes (PECs) are of great interest for the development of drug delivery systems, as they are easily prepared and exhibit a wide range of colloidal properties. The water-soluble diethylaminoethyl chitosan (DEAE-CS) was synthesized with various degrees of substitution (DS), ranging from 26 to 113%. Analysis of the substitution pattern of DEAE-CS by different NMR techniques revealed N- and O-substitution, as well as quaternization of the tertiary amino group of the DEAE substituent; the fraction of quaternary amino groups increased with the DS. Unlike the tertiary amino groups, the quaternary amino groups did not support increases in the ζ-potential of DEAE-CS with the DS and the complexation with hyaluronic acid (HA). The influence of the PEC composition, DS of DEAE-CS, and mixing order on the size and polydispersity of PEC nanoparticles was investigated by dynamic and static light scattering. Internal disordered heterogeneous PEC nanoparticles were formed by the aggregates of several primary PECs. Disordered and structurally heterogeneous spherical complexes were formed (Rg/Rh = 1.0 ± 0.3). The obtained PECs were metastable and their properties were influenced by mixing order. The high molecular weight component (HA), being a minor component, was more exposed on the surface than was the low molecular weight DEAE-CS.


Asunto(s)
Quitosano/química , Ácido Hialurónico/química , Polielectrolitos/química , Quitosano/síntesis química , Espectroscopía de Protones por Resonancia Magnética , Electricidad Estática
5.
Oncotarget ; 7(16): 22050-63, 2016 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-26959111

RESUMEN

The chaperone system based on Hsp70 and proteins of the DnaJ family is known to protect tumor cells from a variety of cytotoxic factors, including anti-tumor therapy. To analyze whether this also functions in a highly malignant brain tumor, we knocked down the expression of Hsp70 (HSPA1A) and its two most abundant co-chaperones, Hdj1 (DNAJB1) and Hdj2 (DNAJA1) in a C6 rat glioblastoma cell line. As expected, tumor depletion of Hsp70 caused a substantial reduction in its growth rate and increased the survival of tumor-bearing animals, whereas the reduction of Hdj1 expression had no effect. Unexpectedly, a reduction in the expression of Hdj2 led to the enhanced aggressiveness of the C6 tumor, demonstrated by its rapid growth, metastasis formation and a 1.5-fold reduction in the lifespan of tumor-bearing animals. The in vitro reduction of Hdj2 expression reduced spheroid density and simultaneously enhanced the migration and invasion of C6 cells. At the molecular level, a knock-down of Hdj2 led to the relocation of N-cadherin and the enhanced activity of metalloproteinases 1, 2, 8 and 9, which are markers of highly malignant cancer cells. The changes in the actin cytoskeleton in Hdj2-depleted cells indicate that the protein is also important for prevention of the amoeboid-like transition of tumor cells. The results of this study uncover a completely new role for the Hdj2 co-chaperone in tumorigenicity and suggest that the protein is a potential drug target.


Asunto(s)
Neoplasias Encefálicas/patología , Glioblastoma/patología , Proteínas del Choque Térmico HSP40/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Técnicas de Silenciamiento del Gen , Proteínas HSP70 de Choque Térmico/metabolismo , Masculino , Invasividad Neoplásica/patología , Ratas , Ratas Wistar
6.
Biochemistry ; 41(30): 9376-88, 2002 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-12135359

RESUMEN

We have determined the high-resolution solution structure of the oxidized form of a chimeric human and Escherichia coli thioredoxin (TRX(HE)) by NMR. The overall structure is well-defined with a rms difference for the backbone atoms of 0.27 +/- 0.06 A. The topology of the protein is identical to those of the human and E. coli parent proteins, consisting of a central five-stranded beta-sheet surrounded by four alpha-helices. Analysis of the interfaces between the two domains derived from the human and E. coli sequences reveals that the general hydrophobic packing is unaltered and only subtle changes in the details of side chain interactions are observed. The packing of helix alpha(4) with helix alpha(2) across the hybrid interface is less optimal than in the parent molecules, and electrostatic interactions between polar side chains are missing. In particular, lysine-glutamate salt bridges between residues on helices alpha(2) and alpha(4), which were observed in both human and E. coli proteins, are not present in the chimeric protein. The origin of the known reduced thermodynamic stability of TRX(HE) was probed by mutagenesis on the basis of these structural findings. Two mutants of TRX(HE), S44D and S44E, were created, and their thermal and chemical stabilities were examined. Improved stability toward chaotropic agents was observed for both mutants, but no increase in the denaturation temperature was seen compared to that of TRX(HE). In addition to the structural analysis, the backbone dynamics of TRX(HE) were investigated by (15)N NMR relaxation measurements. Analysis using the model free approach reveals that the protein is fairly rigid with an average S(2) of 0.88. Increased mobility is primarily present in two external loop regions comprising residues 72-74 and 92-94 that contain glycine and proline residues.


Asunto(s)
Escherichia coli/química , Proteínas Recombinantes de Fusión/química , Tiorredoxinas/química , Secuencia de Aminoácidos , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido , Tiorredoxinas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA