Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Nano Lett ; 19(7): 4731-4737, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31246032

RESUMEN

Rational design of sulfur electrodes is exceptionally important in enabling a high-performance lithium/sulfur cell. Constructing a continuous pore structure of the sulfur electrode that enables facile lithium ion transport into the electrode and mitigates the reconstruction of sulfur is a key factor for enhancing the electrochemical performance. Here, we report a three-dimensionally (3D) aligned sulfur electrode cast onto conventional aluminum foil by directional freeze tape casting. The 3D aligned sulfur-graphene oxide (S-GO) electrode consisting of few micron thick S-GO layers with 10-20 µm interlayer spacings demonstrates significant improvement in the performance of the Li/S cell. Moreover, the freeze tape cast graphene oxide electrode exhibits homogeneous reconfiguration behavior in the polysulfide catholyte cell tests and demonstrated extended cycling capability with only 4% decay of the specific capacity over 200 cycles. This work emphasizes the critical importance of proper structural design for sulfur-carbonaceous composite electrodes.

2.
Acc Chem Res ; 51(1): 89-96, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29257667

RESUMEN

Layered lithium transition metal oxides, in particular, NMCs (LiNixCoyMnzO2) represent a family of prominent lithium ion battery cathode materials with the potential to increase energy densities and lifetime, reduce costs, and improve safety for electric vehicles and grid storage. Our work has focused on various strategies to improve performance and to understand the limitations to these strategies, which include altering compositions, utilizing cation substitutions, and charging to higher than usual potentials in cells. Understanding the effects of these strategies on surface and bulk behavior and correlating structure-performance relationships advance our understanding of NMC materials. This also provides information relevant to the efficacy of various approaches toward ensuring reliable operation of these materials in batteries intended for demanding traction and grid storage applications. In this Account, we start by comparing NMCs to the isostructural LiCoO2 cathode, which is widely used in consumer batteries. Effects of changing the metal content (Ni, Mn, Co) upon structure and performance of NMCs are briefly discussed. Our early work on the effects of partial substitution of Al, Fe, and Ti for Co on the electrochemical and bulk structural properties is then covered. The original aim of this work was to reduce the Co content (and thus the raw materials cost) and to determine the effect of the substitutions on the electrochemical and bulk structural properties. More recently, we have turned to the application of synchrotron and advanced microscopy techniques to understand both bulk and surface characteristics of the NMCs. Via nanoscale-to-macroscale spectroscopy and atomically resolved imaging techniques, we were able to determine that the surfaces of NMC undergo heterogeneous reconstruction from a layered structure to rock salt under a variety of conditions. Interestingly, formation of rock salt also occurs under abuse conditions. The surface structural and chemical changes affect the charge distribution, the charge compensation mechanisms, and ultimately, the battery performance. Surface reconstruction, cathode/electrolyte interface layer formation, and oxygen loss are intimately related, making it difficult to disentangle the effects of each of these phenomena. They are driven by the different redox activities of Ni and O on the surface and in the bulk; there is a greater tendency for charge compensation to occur on oxygen anions at particle surfaces rather than on Ni, whereas the Ni in the bulk is more redox active than on the surface. Finally, our latest research efforts are directed toward understanding the thermal properties of NMCs, which is highly relevant to their safety in operating cells.

3.
Chem Rev ; 117(21): 13123-13186, 2017 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-28960962

RESUMEN

Rechargeable battery technologies have ignited major breakthroughs in contemporary society, including but not limited to revolutions in transportation, electronics, and grid energy storage. The remarkable development of rechargeable batteries is largely attributed to in-depth efforts to improve battery electrode and electrolyte materials. There are, however, still intimidating challenges of lower cost, longer cycle and calendar life, higher energy density, and better safety for large scale energy storage and vehicular applications. Further progress with rechargeable batteries may require new chemistries (lithium ion batteries and beyond) and better understanding of materials electrochemistry in the various battery technologies. In the past decade, advancement of battery materials has been complemented by new analytical techniques that are capable of probing battery chemistries at various length and time scales. Synchrotron X-ray techniques stand out as one of the most effective methods that allow for nearly nondestructive probing of materials characteristics such as electronic and geometric structures with various depth sensitivities through spectroscopy, scattering, and imaging capabilities. This article begins with the discussion of various rechargeable batteries and associated important scientific questions in the field, followed by a review of synchrotron X-ray based analytical tools (scattering, spectroscopy, and imaging) and their successful applications (ex situ, in situ, and in operando) in gaining fundamental insights into these scientific questions. Furthermore, electron microscopy and spectroscopy complement the detection length scales of synchrotron X-ray tools and are also discussed toward the end. We highlight the importance of studying battery materials by combining analytical techniques with complementary length sensitivities, such as the combination of X-ray absorption spectroscopy and electron spectroscopy with spatial resolution, because a sole technique may lead to biased and inaccurate conclusions. We then discuss the current progress of experimental design for synchrotron experiments and methods to mitigate beam effects. Finally, a perspective is provided to elaborate how synchrotron techniques can impact the development of next-generation battery chemistries.

4.
Nano Lett ; 18(5): 3241-3249, 2018 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-29667835

RESUMEN

Chemical and mechanical properties interplay on the nanometric scale and collectively govern the functionalities of battery materials. Understanding the relationship between the two can inform the design of battery materials with optimal chemomechanical properties for long-life lithium batteries. Herein, we report a mechanism of nanoscale mechanical breakdown in layered oxide cathode materials, originating from oxygen release at high states of charge under thermal abuse conditions. We observe that the mechanical breakdown of charged Li1- xNi0.4Mn0.4Co0.2O2 materials proceeds via a two-step pathway involving intergranular and intragranular crack formation. Owing to the oxygen release, sporadic phase transformations from the layered structure to the spinel and/or rocksalt structures introduce local stress, which initiates microcracks along grain boundaries and ultimately leads to the detachment of primary particles, i.e., intergranular crack formation. Furthermore, intragranular cracks (pores and exfoliations) form, likely due to the accumulation of oxygen vacancies and continuous phase transformations at the surfaces of primary particles. Finally, finite element modeling confirms our experimental observation that the crack formation is attributable to the formation of oxygen vacancies, oxygen release, and phase transformations. This study is designed to directly observe the chemomechanical behavior of layered oxide cathode materials and provides a chemical basis for strengthening primary and secondary particles by stabilizing the oxygen anions in the lattice.

5.
Inorg Chem ; 56(18): 10950-10961, 2017 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-28850231

RESUMEN

A new metastable phase, featuring a lithium-stabilized mixed-valence cobalt(II,III) hydroxide phosphate framework, Co11.0(1)Li1.0(2)[(OH)5O][(PO3OH)(PO4)5], corresponding to the simplified composition Co1.84(2)Li0.16(3)(OH)PO4, is prepared by hydrothermal synthesis. Because the pH-dependent formation of other phases such as Co3(OH)2(PO3OH)2 and olivine-type LiCoPO4 competes in the process, a pH value of 5.0 is crucial for obtaining a single-phase material. The crystals with dimensions of 15 µm × 30 µm exhibit a unique elongated triangular pyramid morphology with a lamellar fine structure. Powder X-ray diffraction experiments reveal that the phase is isostructural with the natural phosphate minerals holtedahlite and satterlyite, and crystallizes in the trigonal space group P31m (a = 11.2533(4) Å, c = 4.9940(2) Å, V = 547.70(3) Å3, Z = 1). The three-dimensional network structure is characterized by partially Li-substituted, octahedral [M2O8(OH)] (M = Co, Li) dimer units which form double chains that run along the [001] direction and are connected by [PO4] and [PO3(OH)] tetrahedra. Because no Li-free P31m-type Co2(OH)PO4 phase could be prepared, it can be assumed that the Li ions are crucial for the stabilization of the framework. Co L-edge X-ray absorption spectroscopy demonstrates that the cobalt ions adopt the oxidation states +2 and +3 and hence provides further evidence for the incorporation of Li in the charge-balanced framework. The presence of three independent hydroxyl groups is further confirmed by infrared spectroscopy. Magnetization measurements imply a paramagnetic to antiferromagnetic transition at around T = 25 K as well as a second transition at around 9-12 K with a ferromagnetic component below this temperature. The metastable character of the phase is demonstrated by thermogravimetric analysis and differential scanning calorimetry, which above 558 °C reveal a two-step decomposition to CoO, Co3(PO4)2, and olivine-type LiCoPO4 with release of water and oxygen.

6.
Nano Lett ; 15(4): 2498-503, 2015 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-25723892

RESUMEN

Diverse transition metal hydroxide nanostructures were synthesized by laser-induced hydrolysis in a liquid precursor solution for alkaline oxygen evolution reaction (OER). Several active OER catalysts with fine control of composition, structure, and valence state were obtained including (Lix)[Ni0.66Mn0.34(OH)2](NO3)(CO3) · mH2O, Lix[Ni0.67Co0.33(OH)2](NO3)0.25(ORO)0.35 · mH2O, etc. An operate overpotential less than 0.34 V at current density of 10 mA cm(-2) was achieved. Such a controllable laser-chemical route for assessing complex nanostructures in liquids opens many opportunities to design novel functional materials for advanced applications.

7.
Nano Lett ; 15(9): 5755-63, 2015 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-26288360

RESUMEN

The development of sodium ion batteries (NIBs) can provide an alternative to lithium ion batteries (LIBs) for sustainable, low-cost energy storage. However, due to the larger size and higher m/e ratio of the sodium ion compared to lithium, sodiation reactions of candidate electrodes are expected to differ in significant ways from the corresponding lithium ones. In this work, we investigated the sodiation mechanism of a typical transition metal-oxide, NiO, through a set of correlated techniques, including electrochemical and synchrotron studies, real-time electron microscopy observation, and ab initio molecular dynamics (MD) simulations. We found that a crystalline Na2O reaction layer that was formed at the beginning of sodiation plays an important role in blocking the further transport of sodium ions. In addition, sodiation in NiO exhibits a "shrinking-core" mode that results from a layer-by-layer reaction, as identified by ab initio MD simulations. For lithiation, however, the formation of Li antisite defects significantly distorts the local NiO lattice that facilitates Li insertion, thus enhancing the overall reaction rate. These observations delineate the mechanistic difference between sodiation and lithiation in metal-oxide conversion materials. More importantly, our findings identify the importance of understanding the role of reaction layers on the functioning of electrodes and thus provide critical insights into further optimizing NIB materials through surface engineering.

8.
Nano Lett ; 15(2): 1437-44, 2015 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-25633328

RESUMEN

Nanoparticle electrodes in lithium-ion batteries have both near-surface and interior contributions to their redox capacity, each with distinct rate capabilities. Using combined electron microscopy, synchrotron X-ray methods and ab initio calculations, we have investigated the lithiation pathways that occur in NiO electrodes. We find that the near-surface electroactive (Ni(2+) → Ni(0)) sites saturated very quickly, and then encounter unexpected difficulty in propagating the phase transition into the electrode (referred to as a "shrinking-core" mode). However, the interior capacity for Ni(2+) → Ni(0) can be accessed efficiently following the nucleation of lithiation "fingers" that propagate into the sample bulk, but only after a certain incubation time. Our microstructural observations of the transition from a slow shrinking-core mode to a faster lithiation finger mode corroborate with synchrotron characterization of large-format batteries and can be rationalized by stress effects on transport at high-rate discharge. The finite incubation time of the lithiation fingers sets the intrinsic limitation for the rate capability (and thus the power) of NiO for electrochemical energy storage devices. The present work unravels the link between the nanoscale reaction pathways and the C-rate-dependent capacity loss and provides guidance for the further design of battery materials that favors high C-rate charging.

9.
Angew Chem Int Ed Engl ; 55(46): 14272-14276, 2016 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-27754583

RESUMEN

Controlled synthesis of transition-metal hydroxides and oxides with earth-abundant elements have attracted significant interest because of their wide applications, for example as battery electrode materials or electrocatalysts for fuel generation. Here, we report the tuning of the structure of transition-metal hydroxides and oxides by controlling chemical reactions using an unfocused laser to irradiate the precursor solution. A Nd:YAG laser with wavelengths of 532 nm or 1064 nm was used. The Ni2+ , Mn2+ , and Co2+ ion-containing aqueous solution undergoes photo-induced reactions and produces hollow metal-oxide nanospheres (Ni0.18 Mn0.45 Co0.37 Ox ) or core-shell metal hydroxide nanoflowers ([Ni0.15 Mn0.15 Co0.7 (OH)2 ](NO3 )0.2 ⋅H2 O), depending on the laser wavelengths. We propose two reaction pathways, either by photo-induced redox reaction or hydrolysis reaction, which are responsible for the formation of distinct nanostructures. The study of photon-induced materials growth shines light on the rational design of complex nanostructures with advanced functionalities.

10.
Inorg Chem ; 54(6): 2671-8, 2015 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-25723381

RESUMEN

Four LiMn0.8Fe0.1M0.1PO4/C (M = Fe, Co, Ni, Cu) cathode materials have been synthesized via a freeze-drying method. The samples have been characterized by powder X-ray diffraction, transmission electron microscopy, magnetic susceptibility, and electrochemical measurements. The composition and effective insertion of the transition-metal substituents in LiMnPO4 have been corroborated by elemental analysis, the evolution of the crystallographic parameters, and the magnetic properties. The morphological characterization of the composites has demonstrated that the phosphate nanoparticles are enclosed in a matrix of amorphous carbon. Among them, LiMn0.8Fe0.1Ni0.1PO4/C is the most promising cathode material, providing a good electrochemical performance in all aspects: high voltage and specific capacity values, excellent cyclability, and good rate capability. This result has been attributed to several factors, such as the suitable morphology of the sample, the good connection afforded by the in situ generated carbon, and the amelioration of the structural stress provided by the presence of Ni(2+) and Fe(2+) in the olivine structure.


Asunto(s)
Suministros de Energía Eléctrica , Litio/química , Nanoestructuras/química , Nanotecnología/métodos , Electroquímica , Electrodos , Liofilización
11.
Inorg Chem ; 54(21): 10440-9, 2015 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-26452048

RESUMEN

Cubic Li7La3Zr2O12 (LLZO) garnets are exceptionally well suited to be used as solid electrolytes or protecting layers in "Beyond Li-ion Battery" concepts. Unfortunately, cubic LLZO is not stable at room temperature (RT) and has to be stabilized by supervalent dopants. In this study we demonstrate a new possibility to stabilize the cubic phase at RT via substitution of Zr(4+) by Mo(6+). A Mo(6+) content of 0.25 per formula unit (pfu) stabilizes the cubic LLZO phase, and the solubility limit is about 0.3 Mo(6+) pfu. Based on the results of neutron powder diffraction and Raman spectroscopy, Mo(6+) is located at the octahedrally coordinated 16a site of the cubic garnet structure (space group Ia-3d). Since Mo(6+) has a smaller ionic radius compared to Zr(4+) the lattice parameter a0 decreases almost linearly as a function of the Mo(6+) content. The highest bulk Li-ion conductivity is found for the 0.25 pfu composition, with a typical RT value of 3.4 × 10(-4) S cm(-1). An additional significant resistive contribution originating from the sample interior (most probably from grain boundaries) could be identified in impedance spectra. The latter strongly depends on the prehistory and increases significantly after annealing at 700 °C in ambient air. Cyclic voltammetry experiments on cells containing Mo(6+) substituted LLZO indicate that the material is stable up to 6 V.

12.
Phys Chem Chem Phys ; 17(34): 21778-81, 2015 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-26247817

RESUMEN

The present study aims to provide insights into the behavior of LiNi0.4Mn0.4Co0.2O2 (NMC442) and LiNi0.4Mn0.4Co0.18Ti0.02O2 (NMC442-Ti02) cathode materials under galvanostatic cycling to high potentials, in the context of previous work which predicted that Ti-substituted variants should deliver higher capacities and exhibit better cycling stability than the unsubstituted compounds. It is found that NMC cathodes containing Ti show equivalent capacity fading but greater specific capacity than those without Ti in the same potential range. When repeatedly charged to the same degree of delithiation, NMC cathodes containing Ti showed better capacity retention. Soft X-ray absorption spectroscopy (XAS) spectra for Mn and Co indicated increased reduction in these elements for NMC cathodes without Ti, indicating that the substitution of Ti for Co acts to suppress the formation of a high impedance rock salt phase at the surface of NMC cathode particles. The results of this study validate the adoption of a facile change to existing NMC chemistries to improve cathode capacity retention under high voltage cycling conditions.

14.
Phys Chem Chem Phys ; 16(34): 18294-300, 2014 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-25057850

RESUMEN

Dense LLZO (Al-substituted Li7La3Zr2O12) pellets were processed in controlled atmospheres to investigate the relationships between the surface chemistry and interfacial behavior in lithium cells. Laser induced breakdown spectroscopy (LIBS), scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, synchrotron X-ray photoelectron spectroscopy (XPS) and soft X-ray absorption spectroscopy (XAS) studies revealed that Li2CO3 was formed on the surface when LLZO pellets were exposed to air. The distribution and thickness of the Li2CO3 layer were estimated by a combination of bulk and surface sensitive techniques with various probing depths. First-principles thermodynamic calculations confirmed that LLZO has an energetic preference to form Li2CO3 in air. Exposure to air and the subsequent formation of Li2CO3 at the LLZO surface is the source of the high interfacial impedances observed in cells with lithium electrodes. Surface polishing can effectively remove Li2CO3 and dramatically improve the interfacial properties. Polished samples in lithium cells had an area specific resistance (ASR) of only 109 Ω cm(2) for the LLZO/Li interface, the lowest reported value for Al-substituted LLZO. Galvanostatic cycling results obtained from lithium symmetrical cells also suggest that the quality of the LLZO/lithium interface has a significant impact on the device lifetime.

15.
Adv Mater ; 36(18): e2309019, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38262625

RESUMEN

The application of solid-state electrolytes in Li batteries is hampered by the occurrence of Li-dendrite-caused short circuits. To avoid cell failure, the electrolytes can only be stressed with rather low current densities, severely restricting their performance. As grain size and pore distributions significantly affect dendrite growth in ceramic electrolytes such as Li7La3Zr2O12 and its variants; here, a "detour and buffer" strategy to bring the superiority of both coarse and fine grains into play, is proposed. To validate the mechanism, a coarse/fine bimodal grain microstructure is obtained by seeding unpulverized large particles in the green body. The rearrangement of coarse grains and fine pores is fine-tuned by changing the ratio of pulverized and unpulverized powders. The optimized bimodal microstructure, obtained when the two powders are equally mixed, allows, without extra interface decoration, cycling for over 2000 h as the current density is increased from 1.0 mA·cm-2, and gradually, up to 2.0 mA·cm-2. The "detour and buffer" effects are confirmed from postmortem analysis. The complex grain boundaries formed by fine grains discourage the direct infiltration of Li. Simultaneously, the coarse grains further increase the tortuosity of the Li path. This study sheds light on the microstructure optimization for the polycrystalline solid-state electrolytes.

16.
Chem Mater ; 36(9): 4481-4494, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38764752

RESUMEN

Four different high-entropy spinel oxide ferrite (HESO) electrode materials containing 5-6 distinct metals were synthesized by a simple, rapid combustion synthesis process and evaluated as conversion anode materials in lithium half-cells. All showed markedly superior electrochemical performance compared to conventional spinel ferrites such as Fe3O4 and MgFe2O4, having capacities that could be maintained above 600 mAh g-1 for 150 cycles, in most cases. X-ray absorption spectroscopy (XAS) results on pristine, discharged, and charged electrodes show that Fe, Co, Ni, and Cu are reduced to the elemental state during the first discharge (lithiation), while Mn is only slightly reduced. Upon recharge (delithiation), Fe is reoxidized to an average oxidation state of about 2.6+, while Co, Ni, and Cu are not reoxidized. The ability of Fe to be oxidized past 2+ accounts for the high capacities observed in these materials, while the presence of metallic elements after the initial lithiation provides an electronically conductive network that aids in charge transfer.

17.
ACS Appl Mater Interfaces ; 12(10): 11643-11656, 2020 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-32057227

RESUMEN

Understanding how structural and chemical transformations take place in particles under thermal conditions can inform designing thermally robust electrode materials. Such a study necessitates the use of diagnostic techniques that are capable of probing the transformations at multiple length scales and at different states of charge (SOC). In this study, the thermal behavior of LiNi0.6Mn0.2Co0.2O2 (NMC-622) was examined as a function of SOC, using an array of bulk and surface-sensitive techniques. In general, thermal stability decreases as lithium content is lowered and conversion in the bulk to progressively reduced metal oxides (spinels, rock salt) occurs as the temperature is raised. Hard X-ray absorption spectroscopy (XAS) and X-ray Raman spectroscopy (XRS) experiments, which probe the bulk, reveal that Ni and Co are eventually reduced when partially delithiated samples (regardless of the SOC) are heated, although Mn is not. Surface-sensitive synchrotron techniques, such as soft XAS and transmission X-ray microscopy (TXM), however, reveal that for 50% delithiated samples, apparent oxidation of nickel occurs at particle surfaces under some circumstances. This is partially compensated by reduction of cobalt but may also be a consequence of redistribution of lithium ions upon heating. TXM results indicate the movement of reduced nickel ions into particle interiors or oxidized nickel ions to the surface or both. These experiments illustrate the complexity of the thermal behavior of NMC cathode materials. The study also informs the importance of investigating the surface and bulk difference as a function of SOC when studying the thermal behaviors of battery materials.

18.
ACS Appl Mater Interfaces ; 12(3): 3494-3501, 2020 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-31859476

RESUMEN

Nonflammable solid-state electrolytes can potentially address the reliability and energy density limitations of lithium-ion batteries. Garnet-structured oxides such as Li7La3Zr2O12 (LLZO) are some of the most promising candidates for solid-state devices. Here, three-dimensional (3D) solid-state LLZO frameworks with low tortuosity pore channels are proposed as scaffolds, into which active materials and other components can be infiltrated to make composite electrodes for solid-state batteries. To make the scaffolds, we employed aqueous freeze tape casting (FTC), a scalable and environmentally friendly method to produce porous LLZO structures. Using synchrotron radiation hard X-ray microcomputed tomography, we confirmed that LLZO films with porosities of up to 75% were successfully fabricated from slurries with a relatively wide concentration range. The acicular pore size and shape at different depths of scaffolds were quantified by fitting the pore shapes with ellipses, determining the long and short axes and their ratios, and investigating the equivalent diameter distribution. The results show that relatively homogeneous pore sizes and shapes were sustained over a long range along the thickness of the scaffold. Additionally, these pores had low tortuosity and the wall thickness distributions were found to be highly homogeneous. These are desirable characteristics for 3D solid electrolytes for composite electrodes, in terms of both the ease of active material infiltration and also minimization of Li diffusion distances in electrodes. The advantages of the FTC scaffolds are demonstrated by the improved conductivity of LLZO scaffolds infiltrated with poly(ethylene oxide)/lithium bis(trifluoromethanesulfonyl)imide (PEO/LITFSI) compared to those of PEO/LiTFSI films alone or composites containing LLZO particles.

19.
ACS Appl Mater Interfaces ; 12(18): 20605-20612, 2020 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-32286048

RESUMEN

The impact of liquid electrolyte soaking on the interfacial resistance between the garnet-structured Li7La3Zr2O12 (LLZO) solid electrolyte and metallic lithium has been studied. Lithium carbonate (Li2CO3) formed by inadvertent exposure of LLZO to ambient conditions is generally known to increase interfacial impedance and decrease lithium wettability. Soaking LLZO powders and pellets in the electrolyte containing lithium tetrafluoroborate (LiBF4) shows a significantly reduced interfacial resistance and improved contact between lithium and LLZO. Raman spectroscopy, X-ray diffraction, and soft X-ray absorption spectroscopy reveal how Li2CO3 is continuously removed with increasing soaking time. On-line mass spectrometry and free energy calculations show how LiBF4 reacts with surface carbonate to form carbon dioxide. Using a very simple and scalable process that does not involve heat-treatment and expensive coating techniques, we show that the Li-LLZO interfacial resistance can be reduced by an order of magnitude.

20.
J Phys Chem C Nanomater Interfaces ; 122(7): 3780-3785, 2018 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-29545907

RESUMEN

The interface stability versus Li represents a major challenge in the development of next-generation all-solid-state batteries (ASSB), which take advantage of the inherently safe ceramic electrolytes. Cubic Li7La3Zr2O12 garnets represent the most promising electrolytes for this technology. The high interfacial impedance versus Li is, however, still a bottleneck toward future devices. Herein, we studied the electrochemical performance of Fe3+-stabilized Li7La3Zr2O12 (LLZO:Fe) versus Li metal and found a very high total conductivity of 1.1 mS cm-1 at room temperature but a very high area specific resistance of ∼1 kΩ cm2. After removing the Li metal electrode we observe a black surface coloration at the interface, which clearly indicates interfacial degradation. Raman- and nanosecond laser-induced breakdown spectroscopy reveals, thereafter, the formation of a 130 µm thick tetragonal LLZO interlayer and a significant Li deficiency of about 1-2 formula units toward the interface. This shows that cubic LLZO:Fe is not stable versus Li metal by forming a thick tetragonal LLZO interlayer causing high interfacial impedance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA