Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Biol Chem ; 288(13): 8862-74, 2013 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-23400780

RESUMEN

Na(+)/K(+)-ATPases are transmembrane ion pumps that maintain ion gradients across the basolateral plasma membrane in all animal cells to facilitate essential biological functions. Mutations in the Na(+)/K(+)-ATPase α3 subunit gene (ATP1A3) cause rapid-onset dystonia-parkinsonism, a rare movement disorder characterized by sudden onset of dystonic spasms and slow movements. In the brain, ATP1A3 is principally expressed in neurons. In zebrafish, the transcripts of the two ATP1A3 orthologs, Atp1a3a and Atp1a3b, show distinct expression in the brain. Surprisingly, targeted knockdown of either Atp1a3a or Atp1a3b leads to brain ventricle dilation, a likely consequence of ion imbalances across the plasma membrane that cause accumulation of cerebrospinal fluid in the ventricle. The brain ventricle dilation is accompanied by a depolarization of spinal Rohon-Beard neurons in Atp1a3a knockdown embryos, suggesting impaired neuronal excitability. This is further supported by Atp1a3a or Atp1a3b knockdown results where altered responses to tactile stimuli as well as abnormal motility were observed. Finally, proteomic analysis identified several protein candidates highlighting proteome changes associated with the knockdown of Atp1a3a or Atp1a3b. Our data thus strongly support the role of α3Na(+)/K(+)-ATPase in zebrafish motility and brain development, associating for the first time the α3Na(+)/K(+)-ATPase deficiency with brain ventricle dilation.


Asunto(s)
Encéfalo/embriología , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/fisiología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Encéfalo/fisiología , Sistema Nervioso Central/embriología , Sistema Nervioso Central/metabolismo , Ventrículos Cerebrales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Proteínas Fluorescentes Verdes/metabolismo , Hibridación in Situ , Potenciales de la Membrana , Neuronas/metabolismo , Técnicas de Placa-Clamp , Proteómica/métodos , Pez Cebra
2.
J Cell Sci ; 125(Pt 24): 6166-75, 2012 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23097043

RESUMEN

The Na(+)/K(+)-ATPase generates ion gradients across the plasma membrane, essential for multiple cellular functions. In mammals, four different Na(+)/K(+)-ATPase α-subunit isoforms are associated with characteristic cell-type expression profiles and kinetics. We found the zebrafish α2Na(+)/K(+)-ATPase associated with striated muscles and that knockdown causes a significant depolarization of the resting membrane potential in slow-twitch fibers of skeletal muscles. Abrupt mechanosensory responses were observed in α2Na(+)/K(+)-ATPase-deficient embryos, possibly linked to a postsynaptic defect. The α2Na(+)/K(+)-ATPase deficiency reduced the heart rate and caused a loss of left-right asymmetry in the heart tube. Similar phenotypes from knockdown of the Na(+)/Ca(2+) exchanger indicated a role for the interplay between these two proteins in the observed phenotypes. Furthermore, proteomics identified up- and downregulation of specific phenotype-related proteins, such as parvalbumin, CaM, GFAP and multiple kinases, thus highlighting a potential proteome change associated with the dynamics of α2Na(+)/K(+)-ATPase. Taken together, our findings show that zebrafish α2Na(+)/K(+)-ATPase is important for skeletal and heart muscle functions.


Asunto(s)
Músculo Esquelético/enzimología , Miocardio/enzimología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Membrana Celular/enzimología , Femenino , Técnicas de Silenciamiento del Gen , Masculino , Potenciales de la Membrana , ATPasa Intercambiadora de Sodio-Potasio/deficiencia , ATPasa Intercambiadora de Sodio-Potasio/genética , Pez Cebra
3.
Genome Med ; 12(1): 76, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32859249

RESUMEN

BACKGROUND: Congenital heart disease (CHD) occurs in almost 1% of newborn children and is considered a multifactorial disorder. CHD may segregate in families due to significant contribution of genetic factors in the disease etiology. The aim of the study was to identify pathophysiological mechanisms in families segregating CHD. METHODS: We used whole exome sequencing to identify rare genetic variants in ninety consenting participants from 32 Danish families with recurrent CHD. We applied a systems biology approach to identify developmental mechanisms influenced by accumulation of rare variants. We used an independent cohort of 714 CHD cases and 4922 controls for replication and performed functional investigations using zebrafish as in vivo model. RESULTS: We identified 1785 genes, in which rare alleles were shared between affected individuals within a family. These genes were enriched for known cardiac developmental genes, and 218 of these genes were mutated in more than one family. Our analysis revealed a functional cluster, enriched for proteins with a known participation in calcium signaling. Replication in an independent cohort confirmed increased mutation burden of calcium-signaling genes in CHD patients. Functional investigation of zebrafish orthologues of ITPR1, PLCB2, and ADCY2 verified a role in cardiac development and suggests a combinatorial effect of inactivation of these genes. CONCLUSIONS: The study identifies abnormal calcium signaling as a novel pathophysiological mechanism in human CHD and confirms the complex genetic architecture underlying CHD.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Predisposición Genética a la Enfermedad , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/metabolismo , Biología de Sistemas/métodos , Alelos , Animales , Biología Computacional/métodos , Bases de Datos Genéticas , Dinamarca , Femenino , Estudios de Asociación Genética/métodos , Variación Genética , Humanos , Masculino , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas , Sistema de Registros , Secuenciación del Exoma , Pez Cebra
4.
Nat Commun ; 11(1): 5816, 2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-33199730

RESUMEN

Primary microcephaly (MCPH) is characterized by reduced brain size and intellectual disability. The exact pathophysiological mechanism underlying MCPH remains to be elucidated, but dysfunction of neuronal progenitors in the developing neocortex plays a major role. We identified a homozygous missense mutation (p.W155C) in Ribosomal RNA Processing 7 Homolog A, RRP7A, segregating with MCPH in a consanguineous family with 10 affected individuals. RRP7A is highly expressed in neural stem cells in developing human forebrain, and targeted mutation of Rrp7a leads to defects in neurogenesis and proliferation in a mouse stem cell model. RRP7A localizes to centrosomes, cilia and nucleoli, and patient-derived fibroblasts display defects in ribosomal RNA processing, primary cilia resorption, and cell cycle progression. Analysis of zebrafish embryos supported that the patient mutation in RRP7A causes reduced brain size, impaired neurogenesis and cell proliferation, and defective ribosomal RNA processing. These findings provide novel insight into human brain development and MCPH.


Asunto(s)
Cilios/metabolismo , Microcefalia/genética , Neurogénesis , Biogénesis de Organelos , Proteínas de Unión al ARN/genética , Ribosomas/metabolismo , Adulto , Animales , Secuencia de Bases , Encéfalo/embriología , Encéfalo/patología , Ciclo Celular , Nucléolo Celular/metabolismo , Centrosoma/metabolismo , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Masculino , Ratones , Mutación/genética , Células-Madre Neurales/metabolismo , Proteínas Nucleares/metabolismo , Pakistán , Linaje , Unión Proteica , Procesamiento Postranscripcional del ARN , ARN Ribosómico/genética , Proteínas de Unión al ARN/metabolismo , Pez Cebra/embriología
5.
Cell Rep ; 22(10): 2584-2592, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29514088

RESUMEN

The centrosome is the main microtubule-organizing center in animal cells and comprises a mother and daughter centriole surrounded by pericentriolar material. During formation of primary cilia, the mother centriole transforms into a basal body that templates the ciliary axoneme. Ciliogenesis depends on mother centriole-specific distal appendages, whereas the role of subdistal appendages in ciliary function is unclear. Here, we identify CEP128 as a centriole subdistal appendage protein required for regulating ciliary signaling. Loss of CEP128 did not grossly affect centrosomal or ciliary structure but caused impaired transforming growth factor-ß/bone morphogenetic protein (TGF-ß/BMP) signaling in zebrafish and at the primary cilium in cultured mammalian cells. This phenotype is likely the result of defective vesicle trafficking at the cilium as ciliary localization of RAB11 was impaired upon loss of CEP128, and quantitative phosphoproteomics revealed that CEP128 loss affects TGF-ß1-induced phosphorylation of multiple proteins that regulate cilium-associated vesicle trafficking.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Centriolos/metabolismo , Cilios/metabolismo , Proteínas de Microtúbulos/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Centrosoma/metabolismo , Humanos , Transporte de Proteínas , Proteínas de Unión al GTP rab/metabolismo
6.
Methods Mol Biol ; 1507: 59-66, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27832532

RESUMEN

Assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) is a useful method to map genome-wide chromatin accessibility and nucleosome positioning. Genome-wide sequencing is performed utilizing adapter sequences inserted by a prokaryotic transposase, Tn5, into the accessible regions of chromatin. Here we describe the use of ATAC-seq in the zebrafish embryo and thereby the applicability of this approach in whole vertebrate embryos.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Pez Cebra/genética , Animales , Cromatina/aislamiento & purificación , Embrión no Mamífero , Genoma , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN , Transposasas/química
7.
Methods Mol Biol ; 1377: 353-63, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26695046

RESUMEN

In situ hybridization is a powerful technique used for locating specific nucleic acid targets within morphologically preserved tissues and cell preparations. A labeled RNA or DNA probe hybridizes to its complementary mRNA or DNA sequence within a sample. Here, we describe RNA in situ hybridization protocol for whole-mount zebrafish embryos.


Asunto(s)
Hibridación in Situ/métodos , Coloración y Etiquetado/métodos , Pez Cebra/embriología , Animales , Embrión no Mamífero/metabolismo , Femenino , Sondas ARN/genética
8.
Methods Mol Biol ; 1377: 365-9, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26695047

RESUMEN

Immunohistochemistry (IHC) is a powerful method to determine localization of tissue components by the interaction of target antigens with labeled antibodies. Here we describe an IHC protocol for localizing the myosin heavy chain of zebrafish embryos at 1-2 and 3-5 days post fertilization (dpf).


Asunto(s)
Embrión no Mamífero/metabolismo , Fertilización , Inmunohistoquímica/métodos , Pez Cebra/embriología , Animales , Embrión no Mamífero/fisiología , Técnicas de Silenciamiento del Gen , Isoenzimas/deficiencia , Isoenzimas/genética , Mutación , Cadenas Pesadas de Miosina/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/deficiencia , ATPasa Intercambiadora de Sodio-Potasio/genética , Coloración y Etiquetado , Factores de Tiempo
9.
Neurosci Biobehav Rev ; 37(10 Pt 2): 2774-87, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24091024

RESUMEN

Modeling neurological disorders using zebrafish increases rapidly as this model system allows easy access to all developmental stages and imaging of pathological processes. A surprising degree of functional conservation has been demonstrated between human genes implicated in neurodegenerative diseases and their zebrafish orthologues. Zebrafish offers rapid high throughput screening of therapeutic compounds and live imaging of pathogenic mechanisms in vivo. Several recent zebrafish studies functionally assessed the role of the sodium-potassium pump (Na(+)/K(+)-ATPase). The Na(+)/K(+)-ATPase maintains the electrochemical gradients across the plasma membrane, essential for e.g. signaling, secondary active transport, glutamate re-uptake and neuron excitability in animal cells. Na(+)/K(+)-ATPase mutations are associated with neurological disorders, where mutations in the Na(+)/K(+)-ATPase α2 and α3 isoforms cause Familial hemiplegic migraine type 2 (FHM2) and Rapid-onset dystonia-parkinsonism (RDP)/Alternating hemiplegic childhood (AHC), respectively. In zebrafish, knock-down of Na(+)/K(+)-ATPase isoforms included skeletal and heart muscle defects, impaired embryonic motility, depolarized Rohon-beard neurons and abrupt brain ventricle development. In this review, we discuss zebrafish as a model to assess Na(+)/K(+)-ATPase isoform functions. Furthermore, studies investigating proteomic changes in both α2- and α3-isoform deficient embryos and their potential connections to the Na(+)/K(+)-ATPase functions will be discussed.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedades del Sistema Nervioso/diagnóstico , Enfermedades del Sistema Nervioso/genética , ATPasa Intercambiadora de Sodio-Potasio/genética , Animales , Humanos , Migraña con Aura/diagnóstico , Migraña con Aura/genética , Mutación/genética , Enfermedad de Parkinson/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Pez Cebra
10.
Neurosci Biobehav Rev ; 36(2): 855-71, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22067897

RESUMEN

The two autosomal dominantly inherited neurological diseases: familial hemiplegic migraine type 2 (FHM2) and familial rapid-onset of dystonia-parkinsonism (Familial RDP) are caused by in vivo mutations of specific alpha subunits of the sodium-potassium pump (Na(+)/K(+)-ATPase). Intriguingly, patients with classical FHM2 and RDP symptoms additionally suffer from other manifestations, such as epilepsy/seizures and developmental disabilities. Recent studies of FHM2 and RDP mouse models provide valuable tools for dissecting the vital roles of the Na(+)/K(+)-ATPases, and we discuss their relevance to the complex patient symptoms and manifestations. Thus, it is interesting that mouse models targeting a specific α-isoform cause different, although still comparable, phenotypes consistent with classical symptoms and other manifestations observed in FHM2 and RDP patients. This review highlights that use of mouse models have broad potentials for future research concerning migraine and dystonia-related diseases, which will contribute towards understanding the, yet unknown, pathophysiologies.


Asunto(s)
Distonía/genética , Trastornos Migrañosos/genética , Trastornos Migrañosos/fisiopatología , Mutación/genética , ATPasa Intercambiadora de Sodio-Potasio/genética , Animales , Distonía/fisiopatología , Humanos , Ratones
11.
DNA Cell Biol ; 29(12): 713-27, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21091219

RESUMEN

In mouse, knock-out of the Zfr gene encoding the zinc finger RNA-binding protein (ZFR) is associated with early lethality during gastrulation, suggesting that a pool of maternally contributed Zfr mRNA might compensate to allow development. ZFR is an ancient and highly conserved chromosome-associated protein from nematodes to mammals. We characterized expression of the Zfr transcript during early development in Mus musculus, Danio rerio, and Caenorhabditis elegans by quantitative real-time polymerase chain reaction. Mouse Zfr mRNA was detected in all stages tested during mouse preimplantation, with higher levels at the 1-cell stage that includes the maternal contribution of Zfr mRNA. In D. rerio, Zfr mRNA expression was highest in unfertilized eggs and declines throughout development. In C. elegans, Zfr mRNA expression was barely detectable in the fertilized egg and the L1 stage, but increased in the adult organism. Microinjections of green fluorescent protein (GFP)-tagged versions of in vitro-transcribed mouse and C. elegans Zfr mRNAs into early mouse embryos allowed analysis of the intracellular localization of the protein. Mouse ZFR-GFP was localized in the nucleus in 2-cell stage embryos although absent from nucleoli. Deletion studies revealed that this nuclear localization required the C-terminal part of ZFR, as deletion of the C-terminal resulted in the localization to the nuclear membrane. Despite the lack of a conserved nuclear localization signal, the C. elegans ZFR-GFP fusion protein also displayed an intranuclear localization in the 2-cell mouse embryo.


Asunto(s)
Proteínas de Caenorhabditis elegans/biosíntesis , Caenorhabditis elegans/embriología , Regulación del Desarrollo de la Expresión Génica , Proteínas de Unión al ARN/biosíntesis , Proteínas de Pez Cebra/biosíntesis , Pez Cebra/embriología , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas de Unión al ARN/genética , Eliminación de Secuencia , Homología de Secuencia de Aminoácido , Transcripción Genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA