Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Cell ; 151(6): 1161-2, 2012 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-23217702

RESUMEN

An accurate prediction of how extrinsic stimuli influence changes in gene expression has been challenging. In this issue, Nagano and colleagues successfully model genome-wide mRNA expression changes under variable environmental conditions in rice, raising hopes that scientists will soon be able to predict genome-wide transcriptional responses in a variety of organisms in uncontrolled real-world settings.

2.
Plant J ; 118(5): 1241-1257, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38289828

RESUMEN

RNA-Sequencing is widely used to investigate changes in gene expression at the transcription level in plants. Most plant RNA-Seq analysis pipelines base the normalization approaches on the assumption that total transcript levels do not vary between samples. However, this assumption has not been demonstrated. In fact, many common experimental treatments and genetic alterations affect transcription efficiency or RNA stability, resulting in unequal transcript abundance. The addition of synthetic RNA controls is a simple correction that controls for variation in total mRNA levels. However, adding spike-ins appropriately is challenging with complex plant tissue, and carefully considering how they are added is essential to their successful use. We demonstrate that adding external RNA spike-ins as a normalization control produces differences in RNA-Seq analysis compared to traditional normalization methods, even between two times of day in untreated plants. We illustrate the use of RNA spike-ins with 3' RNA-Seq and present a normalization pipeline that accounts for differences in total transcriptional levels. We evaluate the effect of normalization methods on identifying differentially expressed genes in the context of identifying the effect of the time of day on gene expression and response to chilling stress in sorghum.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , ARN de Planta , ARN de Planta/genética , Análisis de Secuencia de ARN/métodos , Perfilación de la Expresión Génica/métodos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Arabidopsis/genética
3.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34155145

RESUMEN

In rice, a small increase in nighttime temperature reduces grain yield and quality. How warm nighttime temperatures (WNT) produce these detrimental effects is not well understood, especially in field conditions where the typical day-to-night temperature fluctuation exceeds the mild increase in nighttime temperature. We observed genome-wide disruption of gene expression timing during the reproductive phase in field-grown rice panicles acclimated to 2 to 3 °C WNT. Transcripts previously identified as rhythmically expressed with a 24-h period and circadian-regulated transcripts were more sensitive to WNT than were nonrhythmic transcripts. The system-wide perturbations in transcript levels suggest that WNT disrupt the tight temporal coordination between internal molecular events and the environment, resulting in reduced productivity. We identified transcriptional regulators whose predicted targets are enriched for sensitivity to WNT. The affected transcripts and candidate regulators identified through our network analysis explain molecular mechanisms driving sensitivity to WNT and identify candidates that can be targeted to enhance tolerance to WNT.


Asunto(s)
Ritmo Circadiano/genética , Oryza/crecimiento & desarrollo , Oryza/genética , Temperatura , Transcriptoma/genética , Agricultura , Biomasa , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Genes de Plantas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Factores de Tiempo , Factores de Transcripción/metabolismo , Transcripción Genética
4.
Appl Opt ; 62(8): 2078-2091, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-37133096

RESUMEN

Many correlations exist between spectral reflectance or transmission with various phenotypic responses from plants. Of interest to us are metabolic characteristics, namely, how the various polarimetric components of plants may correlate to underlying environmental, metabolic, and genotypic differences among different varieties within a given species, as conducted during large field experimental trials. In this paper, we overview a portable Mueller matrix imaging spectropolarimeter, optimized for field use, by combining a temporal and spatial modulation scheme. Key aspects of the design include minimizing the measurement time while maximizing the signal-to-noise ratio by mitigating systematic error. This was achieved while maintaining an imaging capability across multiple measurement wavelengths, spanning the blue to near-infrared spectral region (405-730 nm). To this end, we present our optimization procedure, simulations, and calibration methods. Validation results, which were taken in redundant and non-redundant measurement configurations, indicated that the polarimeter provides average absolute errors of (5.3±2.2)×10-3 and (7.1±3.1)×10-3, respectively. Finally, we provide preliminary field data (depolarization, retardance, and diattenuation) to establish baselines of barren and non-barren Zea maize hybrids (G90 variety), as captured from various leaf and canopy positions during our summer 2022 field experiments. Results indicate that subtle variations in retardance and diattenuation versus leaf canopy position may be present before they are clearly visible in the spectral transmission.


Asunto(s)
Imagen Multimodal , Hojas de la Planta , Análisis Espectral , Zea mays
5.
Biochem Soc Trans ; 50(3): 1151-1165, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35758233

RESUMEN

Increasing temperatures impact plant biochemistry, but the effects can be highly variable. Both external and internal factors modulate how plants respond to rising temperatures. One such factor is the time of day or season the temperature increase occurs. This timing significantly affects plant responses to higher temperatures altering the signaling networks and affecting tolerance levels. Increasing overlaps between circadian signaling and high temperature responses have been identified that could explain this sensitivity to the timing of heat stress. ELF3, a circadian clock component, functions as a thermosensor. ELF3 regulates thermoresponsive hypocotyl elongation in part through its cellular localization. The temperature sensitivity of ELF3 depends on the length of a polyglutamine region, explaining how plant temperature responses vary between species. However, the intersection between the circadian system and increased temperature stress responses is pervasive and extends beyond this overlap in thermosensing. Here, we review the network responses to increased temperatures, heat stress, and the impacts on the mechanisms of gene expression from transcription to translation, highlighting the intersections between the elevated temperature and heat stress response pathways and circadian signaling, focusing on the role of ELF3 as a thermosensor.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Relojes Circadianos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Relojes Circadianos/genética , Ritmo Circadiano , Regulación de la Expresión Génica de las Plantas , Hipocótilo/metabolismo , Temperatura , Factores de Transcripción/metabolismo
6.
Appl Opt ; 61(33): 9832-9842, 2022 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-36606813

RESUMEN

Bidirectionality effects can be a significant confounding factor when measuring hyperspectral reflectance data. The bidirectional reflectance distribution function (BRDF) can effectively characterize the reflectivity of surfaces to correct remote sensing measurements. However, measuring BRDFs can be time-consuming, especially when collecting Mueller matrix BRDF (mmBRDF) measurements of a surface via conventional goniometric techniques. In this paper, we present a system for collecting mmBRDF measurements using static optical fiber detectors that sample the hemisphere surrounding an object. The entrance to each fiber contains a polarization state analyzer configuration, allowing for the simultaneous acquisition of the Stokes vector intensity components at many altitudinal and azimuthal viewing positions. We describe the setup, calibration, and data processing used for this system and present its performance as applied to mmBRDF measurements of a ground glass diffuser.

7.
RNA ; 25(6): 669-684, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30872414

RESUMEN

RNA-seq analysis has enabled the evaluation of transcriptional changes in many species including nonmodel organisms. However, in most species only a single reference genome is available and RNA-seq reads from highly divergent varieties are typically aligned to this reference. Here, we quantify the impacts of the choice of mapping genome in rice where three high-quality reference genomes are available. We aligned RNA-seq data from a popular productive rice variety to three different reference genomes and found that the identification of differentially expressed genes differed depending on which reference genome was used for mapping. Furthermore, the ability to detect differentially used transcript isoforms was profoundly affected by the choice of reference genome: Only 30% of the differentially used splicing features were detected when reads were mapped to the more commonly used, but more distantly related reference genome. This demonstrated that gene expression and splicing analysis varies considerably depending on the mapping reference genome, and that analysis of individuals that are distantly related to an available reference genome may be improved by acquisition of new genomic reference material. We observed that these differences in transcriptome analysis are, in part, due to the presence of single nucleotide polymorphisms between the sequenced individual and each respective reference genome, as well as annotation differences between the reference genomes that exist even between syntenic orthologs. We conclude that even between two closely related genomes of similar quality, using the reference genome that is most closely related to the species being sampled significantly improves transcriptome analysis.


Asunto(s)
Perfilación de la Expresión Génica/normas , Genes Esenciales , Genoma de Planta , Oryza/genética , ARN Mensajero/genética , Transcriptoma , Empalme Alternativo , Secuencia de Bases , Mapeo Cromosómico/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Oryza/clasificación , Oryza/metabolismo , Polimorfismo de Nucleótido Simple , ARN Mensajero/metabolismo , Estándares de Referencia , Alineación de Secuencia
8.
Plant Mol Biol ; 101(1-2): 1-19, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31062216

RESUMEN

KEY MESSAGE: The circadian clock controls many molecular activities, impacting experimental interpretation. We quantify the genome-wide effects of time-of-day on the heat-shock response and the effects of "diurnal bias" in stress experiments. Heat stress has significant adverse effects on plant productivity worldwide. Most experiments examining heat stress are performed during daytime hours, generating a 'diurnal bias' in the pathways and regulatory mechanisms identified. Such bias may confound downstream interpretations and limit our understanding of the full response to heat stress. Here we show that the transcriptional and physiological responses to a sudden heat shock in Arabidopsis are profoundly sensitive to the time of day. We observe that plant tolerance and acclimation to heat shock vary throughout the day and are maximal at dusk. Consistently, over 75% of heat-responsive transcripts show a time of day-dependent response, including many previously characterized heat-response genes. This temporal sensitivity implies a complex interaction between time and temperature where daily variations in basal transcription influence thermotolerance. When we examined these transcriptional responses, we uncovered novel night-response genes and cis-regulatory elements, underpinning new aspects of heat stress responses not previously appreciated. Exploiting this temporal variation can be applied to most environmental responses to understand the underlying network wiring. Therefore, we propose that using time as a perturbagen is an approach that will enhance our understanding of plant regulatory networks and responses to environmental stresses.


Asunto(s)
Arabidopsis/fisiología , Relojes Circadianos/genética , Redes Reguladoras de Genes , Genoma de Planta/genética , Proteínas de Choque Térmico/genética , Respuesta al Choque Térmico/genética , Aclimatación , Arabidopsis/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Calor , Plantones/genética , Plantones/fisiología , Estrés Fisiológico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
J Exp Bot ; 70(12): 3357-3371, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-30949711

RESUMEN

Sorghum is often exposed to suboptimal low temperature stress under field conditions, particularly at the seedling establishment stage. Enhancing chilling tolerance will facilitate earlier planting and so minimize the negative impacts of other stresses experienced at later growth stages. Genome-wide association mapping was performed on a sorghum association panel grown under control (30/20 °C; day/night) and chilling (20/10 °C) conditions. Genomic regions on chromosome 7, controlling the emergence index and seedling (root and shoot) vigor, were associated with increased chilling tolerance but they did not co-localize with undesirable tannin content quantitative trait loci (QTLs). Shoot and root samples from highly contrasting haplotype pairs expressing differential responses to chilling stress were used to identify candidate genes. Three candidate genes (an alpha/beta hydrolase domain protein, a DnaJ/Hsp40 motif-containing protein, and a YTH domain-containing RNA-binding protein) were expressed at significantly higher levels under chilling stress in the tolerant haplotype compared with the sensitive haplotype and BTx623. Moreover, two CBF/DREB1A transcription factors on chromosome 2 showed a divergent response to chilling in the contrasting haplotypes. These studies identify haplotype differences on chromosome 7 that modulate chilling tolerance by either regulating CBF or feeding back into this signaling pathway. We have identified new candidate genes that will be useful markers in ongoing efforts to develop tannin-free chilling-tolerant sorghum hybrids.


Asunto(s)
Frío , Genes de Plantas , Sorghum/genética , Estrés Fisiológico/genética , Mapeo Cromosómico , Producción de Cultivos , Marcadores Genéticos
10.
Annu Rev Genet ; 44: 419-44, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20809800

RESUMEN

An internal time-keeping mechanism has been observed in almost every organism studied from archaea to humans. This circadian clock provides a competitive advantage in fitness and survival ( 18, 30, 95, 129, 137 ). Researchers have uncovered the molecular composition of this internal clock by combining enzymology, molecular biology, genetics, and modeling approaches. However, understanding the mechanistic link between the clock and output responses has been elusive. In three model organisms, Arabidopsis thaliana, Drosophila melanogaster, and Mus musculus, whole-genome expression arrays have enabled researchers to investigate how maintaining a time-keeping mechanism connects to an adaptive advantage. Here, we review the impacts transcriptomics have had on our understanding of the clock and how this molecular clock connects with system-level circadian responses. We explore the discoveries made possible by high-throughput RNA assays, the network approaches used to investigate these large transcript datasets, and potential future directions.


Asunto(s)
Ritmo Circadiano , Regulación de la Expresión Génica , Animales , Arabidopsis/genética , Arabidopsis/fisiología , Relojes Circadianos , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Humanos , Ratones
11.
Proc Natl Acad Sci U S A ; 112(34): E4802-10, 2015 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-26261339

RESUMEN

The circadian clock in Arabidopsis exerts a critical role in timing multiple biological processes and stress responses through the regulation of up to 80% of the transcriptome. As a key component of the clock, the Myb-like transcription factor CIRCADIAN CLOCK ASSOCIATED1 (CCA1) is able to initiate and set the phase of clock-controlled rhythms and has been shown to regulate gene expression by binding directly to the evening element (EE) motif found in target gene promoters. However, the precise molecular mechanisms underlying clock regulation of the rhythmic transcriptome, specifically how clock components connect to clock output pathways, is poorly understood. In this study, using ChIP followed by deep sequencing of CCA1 in constant light (LL) and diel (LD) conditions, more than 1,000 genomic regions occupied by CCA1 were identified. CCA1 targets are enriched for a myriad of biological processes and stress responses, providing direct links to clock-controlled pathways and suggesting that CCA1 plays an important role in regulating a large subset of the rhythmic transcriptome. Although many of these target genes are evening expressed and contain the EE motif, a significant subset is morning phased and enriched for previously unrecognized motifs associated with CCA1 function. Furthermore, this work revealed several CCA1 targets that do not cycle in either LL or LD conditions. Together, our results emphasize an expanded role for the clock in regulating a diverse category of genes and key pathways in Arabidopsis and provide a comprehensive resource for future functional studies.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Genoma de Planta , Factores de Transcripción/genética , Transcriptoma
12.
Plant J ; 82(2): 193-207, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25736223

RESUMEN

Exposure of Arabidopsis thaliana plants to low non-freezing temperatures results in an increase in freezing tolerance that involves action of the C-repeat binding factor (CBF) regulatory pathway. CBF1, CBF2 and CBF3, which are rapidly induced in response to low temperature, encode closely related AP2/ERF DNA-binding proteins that recognize the C-repeat (CRT)/dehydration-responsive element (DRE) DNA regulatory element present in the promoters of CBF-regulated genes. The CBF transcription factors alter the expression of more than 100 genes, known as the CBF regulon, which contribute to an increase in freezing tolerance. In this study, we investigated the extent to which cold induction of the CBF regulon is regulated by transcription factors other than CBF1, CBF2 and CBF3, and whether freezing tolerance is dependent on a functional CBF-CRT/DRE regulatory module. To address these issues we generated transgenic lines that constitutively overexpressed a truncated version of CBF2 that had dominant negative effects on the function of the CBF-CRT/DRE regulatory module, and 11 transcription factors encoded by genes that were rapidly cold-induced in parallel with the 'first-wave' CBF genes, and determined the effects that overexpressing these proteins had on global gene expression and freezing tolerance. Our results indicate that cold regulation of the CBF regulon involves extensive co-regulation by other first-wave transcription factors; that the low-temperature regulatory network beyond the CBF pathway is complex and highly interconnected; and that the increase in freezing tolerance that occurs with cold acclimation is only partially dependent on the CBF-CRT/DRE regulatory module.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Frío , Regulación de la Expresión Génica de las Plantas , Regulón/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo
13.
Proc Natl Acad Sci U S A ; 109(42): 17129-34, 2012 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-23027948

RESUMEN

Organisms have evolved endogenous biological clocks as internal timekeepers to coordinate metabolic processes with the external environment. Here, we seek to understand the mechanism of synchrony between the oscillator and products of metabolism known as Reactive Oxygen Species (ROS) in Arabidopsis thaliana. ROS-responsive genes exhibit a time-of-day-specific phase of expression under diurnal and circadian conditions, implying a role of the circadian clock in transcriptional regulation of these genes. Hydrogen peroxide production and scavenging also display time-of-day phases. Mutations in the core-clock regulator, CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), affect the transcriptional regulation of ROS-responsive genes, ROS homeostasis, and tolerance to oxidative stress. Mis-expression of EARLY FLOWERING 3, LUX ARRHYTHMO, and TIMING OF CAB EXPRESSION 1 affect ROS production and transcription, indicating a global effect of the clock on the ROS network. We propose CCA1 as a master regulator of ROS homeostasis through association with the Evening Element in promoters of ROS genes in vivo to coordinate time-dependent responses to oxidative stress. We also find that ROS functions as an input signal that affects the transcriptional output of the clock, revealing an important link between ROS signaling and circadian output. Temporal coordination of ROS signaling by CCA1 and the reciprocal control of circadian output by ROS reveal a mechanistic link that allows plants to master oxidative stress responses.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Homeostasis/fisiología , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Inmunoprecipitación de Cromatina , Biología Computacional , Regulación de la Expresión Génica de las Plantas/genética , Homeostasis/genética , Mediciones Luminiscentes , Mutación/genética , Reacción en Cadena de la Polimerasa , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
Proc Natl Acad Sci U S A ; 109(8): 3167-72, 2012 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-22315425

RESUMEN

The first described feedback loop of the Arabidopsis circadian clock is based on reciprocal regulation between Timing of CAB Expression 1 (TOC1) and Circadian Clock-associated 1 (CCA1)/late elongated hypocotyl (LHY). CCA1 and LHY are Myb transcription factors that bind directly to the TOC1 promoter to negatively regulate its expression. Conversely, the activity of TOC1 has remained less well characterized. Genetic data support that TOC1 is necessary for the reactivation of CCA1/LHY, but there is little description of its biochemical function. Here we show that TOC1 occupies specific genomic regions in the CCA1 and LHY promoters. Purified TOC1 binds directly to DNA through its CCT domain, which is similar to known DNA-binding domains. Chemical induction and transient overexpression of TOC1 in Arabidopsis seedlings cause repression of CCA1/LHY expression, demonstrating that TOC1 can repress direct targets, and mutation or deletion of the CCT domain prevents this repression showing that DNA-binding is necessary for TOC1 action. Furthermore, we use the Gal4/UAS system in Arabidopsis to show that TOC1 acts as a general transcriptional repressor, and that repression activity is in the pseudoreceiver domain of the protein. To identify the genes regulated by TOC1 on a genomic scale, we couple TOC1 chemical induction with microarray analysis and identify previously unexplored potential TOC1 targets and output pathways. Taken together, these results define a biochemical action for the core clock protein TOC1 and refine our perspective on how plant clocks function.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Relojes Circadianos , ADN de Plantas/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Secuencia de Bases , Relojes Circadianos/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Datos de Secuencia Molecular , Regiones Promotoras Genéticas/genética , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Represoras/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética , Transcripción Genética
15.
Plant Phenomics ; 6: 0157, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38524737

RESUMEN

Automation of plant phenotyping using data from high-dimensional imaging sensors is on the forefront of agricultural research for its potential to improve seasonal yield by monitoring crop health and accelerating breeding programs. A common challenge when capturing images in the field relates to the spectral reflection of sunlight (glare) from crop leaves that, at certain solar incidences and sensor viewing angles, presents unwanted signals. The research presented here involves the convergence of 2 parallel projects to develop a facile algorithm that can use polarization data to decouple light reflected from the surface of the leaves and light scattered from the leaf's tissue. The first project is a mast-mounted hyperspectral imaging polarimeter (HIP) that can image a maize field across multiple diurnal cycles throughout a growing season. The second project is a multistatic fiber-based Mueller matrix bidirectional reflectance distribution function (mmBRDF) instrument which measures the polarized light-scattering behavior of individual maize leaves. The mmBRDF data was fitted to an existing model, which outputs parameters that were used to run simulations. The simulated data were then used to train a shallow neural network which works by comparing unpolarized 2-band vegetation index (VI) with linearly polarized data from the low-reflectivity bands of the VI. Using GNDVI and red-edge reflection ratio we saw an improvement of an order of magnitude or more in the mean error (ϵ) and a reduction spanning 1.5 to 2.7 in their standard deviation (ϵσ) after applying the correction network on the HIP sensor data.

17.
Annu Rev Plant Biol ; 74: 511-538, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-36854482

RESUMEN

Recurring patterns are an integral part of life on Earth. Through evolution or breeding, plants have acquired systems that coordinate with the cyclic patterns driven by Earth's movement through space. The biosystem responses to these physical rhythms result in biological cycles of daily and seasonal activity that feed back into the physical cycles. Signaling networks to coordinate growth and molecular activities with these persistent cycles have been integrated into plant biochemistry. The plant circadian clock is the coordinator of this complex, multiscale, temporal schedule. However, we have detailed knowledge of the circadian clock components and functions in only a few species under controlled conditions. We are just beginning to understand how the clock functions in real-world conditions. This review examines what we know about the circadian clock in diverse plant species, the challenges with extrapolating data from controlled environments, and the need to anticipate how plants will respond to climate change.


Asunto(s)
Relojes Circadianos , Fitomejoramiento , Ritmo Circadiano/fisiología , Transducción de Señal
18.
Front Plant Sci ; 14: 1308713, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38259952

RESUMEN

Introduction: Understanding how plants adapt to the space environment is essential, as plants will be a valuable component of long duration space missions. Several spaceflight experiments have focused on transcriptional profiling as a means of understanding plant adaptation to microgravity. However, there is limited overlap between results from different experiments. Differences in experimental conditions and hardware make it difficult to find a consistent response across experiments and to distinguish the primary effects of microgravity from other spaceflight effects. Methods: Plant Signaling (PS) and Plant RNA Regulation (PRR) were two separate spaceflight experiments conducted on the International Space Station utilizing the European Modular Cultivation System (EMCS). The EMCS provided a lighted environment for plant growth with centrifugal capabilities providing an onboard 1 g control. Results and discussion: An RNA-Seq analysis of shoot samples from PS and PRR revealed a significant overlap of genes differentially expressed in microgravity between the two experiments. Relative to onboard 1 g controls, genes involved in transcriptional regulation, shoot development, and response to auxin and light were upregulated in microgravity in both experiments. Conversely, genes involved in defense response, abiotic stress, Ca++ signaling, and cell wall modification were commonly downregulated in both datasets. The downregulation of stress responses in microgravity in these two experiments is interesting as these pathways have been previously observed as upregulated in spaceflight compared to ground controls. Similarly, we have observed many stress response genes to be upregulated in the 1 g onboard control compared to ground reference controls; however these genes were specifically downregulated in microgravity. In addition, we analyzed the sRNA landscape of the 1 g and microgravity (µ g) shoot samples from PRR. We identified three miRNAs (miR319c, miR398b, and miR8683) which were upregulated in microgravity, while several of their corresponding target genes were found to be downregulated in microgravity. Interestingly, the downregulated target genes are enriched in those encoding chloroplast-localized enzymes and proteins. These results uncover microgravity unique transcriptional changes and highlight the validity and importance of an onboard 1 g control.

19.
Trends Plant Sci ; 28(4): 447-459, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36599768

RESUMEN

Low-temperature stress alters root system architecture. In particular, changes in the levels and response to auxin and cytokinin determine the fate of root architecture and function under stress because of their vital roles in regulating root cell division, differentiation, and elongation. An intricate nexus of genes encoding components of auxin and cytokinin biosynthesis, signaling, and transport components operate to counteract stress and facilitate optimum development. We review the role of auxin transport and signaling and its regulation by cytokinin during root development and stem cell maintenance under low-temperature stress. We highlight intricate mechanisms operating in root stem cells to minimize DNA damage by altering phytohormone levels, and discuss a working model for cytokinin in low-temperatures stress response.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Citocininas/fisiología , Ácidos Indolacéticos , Temperatura , Meristema/genética , Raíces de Plantas/fisiología , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética
20.
AoB Plants ; 15(3): plad013, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37228420

RESUMEN

A new paradigm suggests weeds primarily reduce crop yield by altering crop developmental and physiological processes long before the weeds reduce resources through competition. Multiple studies have implicated stress response pathways are activated when crops such as maize are grown in close proximity with weeds during the first 4-8 weeks of growth-the point at which weeds have their greatest impact on subsequent crop yields. To date, these studies have mostly focused on the response of above-ground plant parts and have not examined the early signal transduction processes associated with maize root response to weeds. To investigate the impact of signals from a below-ground competitor on the maize root transcriptome when most vulnerable to weed pressure, a system was designed to expose maize to only below-ground signals. Gene set enrichment analyses identified over-represented ontologies associated with oxidative stress signalling throughout the time of weed exposure, with additional ontologies associated with nitrogen use and transport and abscisic acid (ABA) signalling, and defence responses being enriched at later time points. Enrichment of promoter motifs indicated over-representation of sequences known to bind FAR-RED IMPAIRED RESPONSE 1 (FAR1), several AP2/ERF transcription factors and others. Likewise, co-expression networks were identified using Weighted-Gene Correlation Network Analysis (WGCNA) and Spatiotemporal Clustering and Inference of Omics Networks (SC-ION) algorithms. WGCNA highlighted the potential roles of several transcription factors including a MYB 3r-4, TB1, WRKY65, CONSTANS-like5, ABF3, HOMEOBOX 12, among others. These studies also highlighted the role of several specific proteins involved in ABA signalling as being important for the initiation of the early response of maize to weeds. SC-ION highlighted potential roles for NAC28, LOB37, NAC58 and GATA2 transcription factors, among many others.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA