Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36361762

RESUMEN

Polyamines are essential biogenic poly-cations with important roles in many cellular processes and diseases such as cancer. A rate-limiting step early in the biosynthesis of polyamines is the conversion of ornithine to putrescine by the homodimeric enzyme ornithine decarboxylase (ODC). In a conserved mechanism of posttranslational regulation, ODC antizyme (OAZ) binds to ODC monomers promoting their ubiquitin-independent degradation by the proteasome. Decoding of OAZ mRNA is unusual in that it involves polyamine-regulated bypassing of an internal translation termination (STOP) codon by a ribosomal frameshift (RFS) event. Using Saccharomyces cerevisiae, we earlier showed that high polyamine concentrations lead to increased efficiency of OAZ1 mRNA translation by binding to nascent Oaz1 polypeptide. The binding of polyamines prevents stalling of the ribosomes on OAZ1 mRNA caused by nascent Oaz1 polypeptide thereby promoting synthesis of full-length Oaz1. Polyamine depletion, however, also inhibits RFS during the decoding of constructs bearing the OAZ1 shift site lacking sequences encoding the Oaz1 parts implicated in polyamine binding. Polyamine depletion is known to impair hypusine modification of translation factor eIF5A. Using a novel set of conditional mutants impaired in the function of eIF5A/Hyp2 or its hypusination, we show here that hypusinated eIF5A is required for efficient translation across the OAZ1 RFS site. These findings identify eIF5A as a part of Oaz1 regulation, and thereby of polyamine synthesis. Additional experiments with DFMO, however, show that depletion of polyamines inhibits translation across the OAZ1 RFS site not only by reducing Hyp2 hypusination, but in addition, and even earlier, by affecting RFS more directly.


Asunto(s)
Sistema de Lectura Ribosómico , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ornitina Descarboxilasa/genética , Ornitina Descarboxilasa/metabolismo , Poliaminas/metabolismo
2.
Appl Environ Microbiol ; 87(23): e0170621, 2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34524899

RESUMEN

Cultured Myxococcota are predominantly aerobic soil inhabitants, characterized by their highly coordinated predation and cellular differentiation capacities. Little is currently known regarding yet-uncultured Myxococcota from anaerobic, nonsoil habitats. We analyzed genomes representing one novel order (o__JAFGXQ01) and one novel family (f__JAFGIB01) in the Myxococcota from an anoxic freshwater spring (Zodletone Spring) in Oklahoma, USA. Compared to their soil counterparts, anaerobic Myxococcota possess smaller genomes and a smaller number of genes encoding biosynthetic gene clusters (BGCs), peptidases, one- and two-component signal transduction systems, and transcriptional regulators. Detailed analysis of 13 distinct pathways/processes crucial to predation and cellular differentiation revealed severely curtailed machineries, with the notable absence of homologs for key transcription factors (e.g., FruA and MrpC), outer membrane exchange receptor (TraA), and the majority of sporulation-specific and A-motility-specific genes. Further, machine learning approaches based on a set of 634 genes informative of social lifestyle predicted a nonsocial behavior for Zodletone Myxococcota. Metabolically, Zodletone Myxococcota genomes lacked aerobic respiratory capacities but carried genes suggestive of fermentation, dissimilatory nitrite reduction, and dissimilatory sulfate-reduction (in f_JAFGIB01) for energy acquisition. We propose that predation and cellular differentiation represent a niche adaptation strategy that evolved circa 500 million years ago (Mya) in response to the rise of soil as a distinct habitat on Earth. IMPORTANCE The phylum Myxococcota is a phylogenetically coherent bacterial lineage that exhibits unique social traits. Cultured Myxococcota are predominantly aerobic soil-dwelling microorganisms that are capable of predation and fruiting body formation. However, multiple yet-uncultured lineages within the Myxococcota have been encountered in a wide range of nonsoil, predominantly anaerobic habitats, and the metabolic capabilities, physiological preferences, and capacity of social behavior of such lineages remain unclear. Here, we analyzed genomes recovered from a metagenomic analysis of an anoxic freshwater spring in Oklahoma, USA, that represent novel, yet-uncultured, orders and families in the Myxococcota. The genomes appear to lack the characteristic hallmarks for social behavior encountered in Myxococcota genomes and displayed a significantly smaller genome size and a smaller number of genes encoding biosynthetic gene clusters, peptidases, signal transduction systems, and transcriptional regulators. Such perceived lack of social capacity was confirmed through detailed comparative genomic analysis of 13 pathways associated with Myxococcota social behavior, as well as the implementation of machine learning approaches to predict social behavior based on genome composition. Metabolically, these novel Myxococcota are predicted to be strict anaerobes, utilizing fermentation, nitrate reduction, and dissimilarity sulfate reduction for energy acquisition. Our results highlight the broad patterns of metabolic diversity within the yet-uncultured Myxococcota and suggest that the evolution of predation and fruiting body formation in the Myxococcota has occurred in response to soil formation as a distinct habitat on Earth.


Asunto(s)
Bacterias/citología , Genoma Bacteriano , Manantiales Naturales/microbiología , Bacterias/genética , Nitritos , Oklahoma , Péptido Hidrolasas , Transducción de Señal , Suelo , Sulfatos , Microbiología del Agua
3.
Nature ; 477(7365): 490-4, 2011 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-21900894

RESUMEN

Polyamines are essential organic polycations with multiple cellular functions relevant for cell division, cancer and ageing. Regulation of polyamine synthesis is mainly achieved by controlling the activity of ornithine decarboxylase (ODC) through an unusual mechanism involving ODC antizyme, the binding of which disrupts homodimeric ODC and targets it for ubiquitin-independent degradation by the 26S proteasome. Whereas mammals express several antizyme genes, we have identified a single orthologue, termed OAZ1, in Saccharomyces cerevisiae. Similar to its mammalian counterparts, OAZ1 synthesis is induced with rising intracellular polyamine concentrations, which also inhibit ubiquitin-dependent degradation of the OAZ1 protein. Together, these mechanisms contribute to a homeostatic feedback regulation of polyamines. Antizyme synthesis involves a conserved +1 ribosomal frameshifting (RFS) event at an internal STOP codon during decoding of its messenger RNA. Here we used S. cerevisiae OAZ1 to dissect the enigmatic mechanism underlying polyamine regulation of RFS. In contrast with previous assumptions, we report here that the nascent antizyme polypeptide is the relevant polyamine sensor that operates in cis to negatively regulate upstream RFS on the polysomes, where its own mRNA is being translated. At low polyamine levels, the emerging antizyme polypeptide inhibits completion of its synthesis causing a ribosome pile-up on antizyme mRNA, whereas polyamine binding to nascent antizyme promotes completion of its synthesis. Thus, our study reveals a novel autoregulatory mechanism, in which binding of a small metabolite to a nascent sensor protein stimulates the latter's synthesis co-translationally.


Asunto(s)
Poliaminas/metabolismo , Proteínas/genética , Proteínas/metabolismo , ARN Mensajero/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Secuencia de Aminoácidos , Secuencia de Bases , Sistema de Lectura Ribosómico , Datos de Secuencia Molecular , Ornitina Descarboxilasa/metabolismo , Poliaminas/análisis , Proteínas/química , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/química , Alineación de Secuencia , Ubiquitina/metabolismo
4.
Mol Cell ; 33(4): 415-6, 2009 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-19250902

RESUMEN

In a recent issue of Molecular Cell, Le Tallec et al. (2009) characterize the yeast Hsm3 protein, an apparent ortholog of human S5b, as a dedicated chaperone that promotes assembly of the base subcomplex of the 19S proteasome activator.


Asunto(s)
Chaperonas Moleculares/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Modelos Biológicos
5.
Trends Biochem Sci ; 37(1): 23-31, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22018829

RESUMEN

In addition to being structurally related, the protein modifiers ubiquitin and SUMO (small ubiquitin-related modifier), share a multitude of functional interrelations. These include the targeting of the same attachment sites in certain substrates, and SUMO-dependent ubiquitylation in others. Notably, several cellular processes, including the targeting of repair machinery to DNA damage sites, require the sequential sumoylation and ubiquitylation of distinct substrates. Some proteins promote both modifications. By contrast, the activity of some enzymes that control either sumoylation or ubiquitylation is regulated by the respective other modification. In this review, we summarize recent findings regarding intersections between SUMO and ubiquitin that influence genome stability and cell growth and which are relevant in pathogen resistance and cancer treatment.


Asunto(s)
Proteína SUMO-1/metabolismo , Ubiquitinas/metabolismo , Animales , Daño del ADN , Enzimas/metabolismo , Humanos
6.
J Biol Chem ; 290(19): 12268-81, 2015 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-25833950

RESUMEN

Sumoylation is a post-translational modification essential in most eukaryotes that regulates stability, localization, activity, or interaction of a multitude of proteins. It is a reversible process wherein counteracting ligases and proteases, respectively, mediate the conjugation and deconjugation of SUMO molecules to/from target proteins. Apart from attachment of single SUMO moieties to targets, formation of poly-SUMO chains occurs by the attachment of additional SUMO molecules to lysine residues in the N-terminal extensions of SUMO. In Saccharomyces cerevisiae there are apparently only two SUMO(Smt3)-specific proteases: Ulp1 and Ulp2. Ulp2 has been shown to be important for the control of poly-SUMO conjugates in cells and to dismantle SUMO chains in vitro, but the mechanism by which it acts remains to be elucidated. Applying an in vitro approach, we found that Ulp2 acts sequentially rather than stochastically, processing substrate-linked poly-SUMO chains from their distal ends down to two linked SUMO moieties. Furthermore, three linked SUMO units turned out to be the minimum length of a substrate-linked chain required for efficient binding to and processing by Ulp2. Our data suggest that Ulp2 disassembles SUMO chains by removing one SUMO moiety at a time from their ends (exo mechanism). Apparently, Ulp2 recognizes surfaces at or near the N terminus of the distal SUMO moiety, as attachments to this end significantly reduce cleavage efficiency. Our studies suggest that Ulp2 controls the dynamic range of SUMO chain lengths by trimming them from the distal ends.


Asunto(s)
Endopeptidasas/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Clonación Molecular , Escherichia coli/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Sistemas de Lectura Abierta , Plásmidos/metabolismo , Unión Proteica , Pliegue de Proteína , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/metabolismo
8.
Proc Natl Acad Sci U S A ; 110(15): 5975-80, 2013 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-23530227

RESUMEN

Protein quality control systems protect cells against the accumulation of toxic misfolded proteins by promoting their selective degradation. Malfunctions of quality control systems are linked to aging and neurodegenerative disease. Folding of polypeptides is facilitated by the association of 70 kDa Heat shock protein (Hsp70) molecular chaperones. If folding cannot be achieved, Hsp70 interacts with ubiquitylation enzymes that promote the proteasomal degradation of the misfolded protein. However, the factors that direct Hsp70 substrates toward the degradation machinery have remained unknown. Here, we identify Fes1, an Hsp70 nucleotide exchange factor of hitherto unclear physiological function, as a cytosolic triaging factor that promotes proteasomal degradation of misfolded proteins. Fes1 selectively interacts with misfolded proteins bound by Hsp70 and triggers their release from the chaperone. In the absence of Fes1, misfolded proteins fail to undergo polyubiquitylation, aggregate, and induce a strong heat shock response. Our findings reveal that Hsp70 direct proteins toward either folding or degradation by using distinct nucleotide exchange factors.


Asunto(s)
Proteínas del Choque Térmico HSP110/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Pliegue de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Citosol/metabolismo , Espectrometría de Masas , Plásmidos/metabolismo , Regiones Promotoras Genéticas , Complejo de la Endopetidasa Proteasomal/metabolismo , Desnaturalización Proteica , Control de Calidad , Saccharomyces cerevisiae/metabolismo , Técnicas del Sistema de Dos Híbridos , Ubiquitina-Proteína Ligasas/metabolismo , Ultracentrifugación
9.
Biochim Biophys Acta ; 1843(1): 75-85, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24018209

RESUMEN

Covalent posttranslational modification with SUMO (small ubiquitin-related modifier) modulates functions of a wide range of proteins in eukaryotic cells. Sumoylation affects the activity, interaction properties, subcellular localization and the stability of its substrate proteins. The recent discovery of a novel class of ubiquitin ligases (E3), termed ULS (E3-S) or STUbL, that recognize sumoylated proteins, links SUMO modification to the ubiquitin/proteasome system. Here we review recent insights into the properties and function of these ligases and their roles in regulating sumoylated proteins. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.


Asunto(s)
Proteína SUMO-1/metabolismo , Sumoilación , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Daño del ADN/fisiología , Reparación del ADN/fisiología , Inestabilidad Genómica/fisiología , Humanos , Proteolisis , Saccharomyces cerevisiae/enzimología , Schizosaccharomyces/enzimología , Levaduras/enzimología
10.
Biochem J ; 457(1): 207-14, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24151981

RESUMEN

RNF4 (RING finger protein 4) is a STUbL [SUMO (small ubiquitin-related modifier)-targeted ubiquitin ligase] controlling PML (promyelocytic leukaemia) nuclear bodies, DNA double strand break repair and other nuclear functions. In the present paper, we describe that the sequence and spacing of the SIMs (SUMO-interaction motifs) in RNF4 regulate the avidity-driven recognition of substrate proteins carrying SUMO chains of variable length.


Asunto(s)
Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteína SUMO-1/metabolismo , Sumoilación/fisiología , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Células HeLa , Humanos , Datos de Secuencia Molecular , Unión Proteica/fisiología , Dominios y Motivos de Interacción de Proteínas/fisiología , Saccharomyces cerevisiae , Especificidad por Sustrato
11.
J Biol Chem ; 288(47): 33682-33696, 2013 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-24121501

RESUMEN

Regulated protein degradation mediated by the ubiquitin-proteasome system (UPS) is critical to eukaryotic protein homeostasis. Often vital to degradation of protein substrates is their disassembly, unfolding, or extraction from membranes. These processes are catalyzed by the conserved AAA-ATPase Cdc48 (also known as p97). Here we characterize the Cuz1 protein (Cdc48-associated UBL/zinc finger protein-1), encoded by a previously uncharacterized arsenite-inducible gene in budding yeast. Cuz1, like its human ortholog ZFAND1, has both an AN1-type zinc finger (Zf_AN1) and a divergent ubiquitin-like domain (UBL). We show that Cuz1 modulates Cdc48 function in the UPS. The two proteins directly interact, and the Cuz1 UBL, but not Zf_AN1, is necessary for binding to the Cdc48 N-terminal domain. Cuz1 also associates, albeit more weakly, with the proteasome, and the UBL is dispensable for this interaction. Cuz1-proteasome interaction is strongly enhanced by exposure of cells to the environmental toxin arsenite, and in a proteasome mutant, loss of Cuz1 enhances arsenite sensitivity. Whereas loss of Cuz1 alone causes only minor UPS degradation defects, its combination with mutations in the Cdc48(Npl4-Ufd1) complex leads to much greater impairment. Cuz1 helps limit the accumulation of ubiquitin conjugates on both the proteasome and Cdc48, suggesting a possible role in the transfer of ubiquitylated substrates from Cdc48 to the proteasome or in their release from these complexes.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Dedos de Zinc , Adenosina Trifosfatasas/genética , Proteínas de Ciclo Celular/genética , Humanos , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/genética , Proteína que Contiene Valosina , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
12.
Life Sci Alliance ; 7(11)2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39260885

RESUMEN

The yeast pre1-1(ß4-S142F) mutant accumulates late 20S proteasome core particle precursor complexes (late-PCs). We report a 2.1 Å cryo-EM structure of this intermediate with full-length Ump1 trapped inside, and Pba1-Pba2 attached to the α-ring surfaces. The structure discloses intimate interactions of Ump1 with ß2- and ß5-propeptides, which together fill most of the antechambers between the α- and ß-rings. The ß5-propeptide is unprocessed and separates Ump1 from ß6 and ß7. The ß2-propeptide is disconnected from the subunit by autocatalytic processing and localizes between Ump1 and ß3. A comparison of different proteasome maturation states reveals that maturation goes along with global conformational changes in the rings, initiated by structuring of the proteolytic sites and their autocatalytic activation. In the pre1-1 strain, ß2 is activated first enabling processing of ß1-, ß6-, and ß7-propeptides. Subsequent maturation of ß5 and ß1 precedes degradation of Ump1, tightening of the complex, and finally release of Pba1-Pba2.


Asunto(s)
Microscopía por Crioelectrón , Complejo de la Endopetidasa Proteasomal , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Subunidades de Proteína/metabolismo , Subunidades de Proteína/química , Modelos Moleculares , Conformación Proteica , Péptidos/metabolismo , Péptidos/química , Unión Proteica , Chaperonas Moleculares
13.
Biomolecules ; 12(2)2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-35204754

RESUMEN

Biogenesis of the eukaryotic 20S proteasome core particle (PC) is a complex process assisted by specific chaperones absent from the active complex. The first identified chaperone, Ump1, was found in a precursor complex (PC) called 15S PC. Yeast cells lacking Ump1 display strong defects in the autocatalytic processing of ß subunits, and consequently have lower proteolytic activity. Here, we dissect an important interaction of Ump1 with the ß7 subunit that is critical for proteasome biogenesis. Functional domains of Ump1 and the interacting proteasome subunit ß7 were mapped, and the functional consequences of their deletion or mutation were analyzed. Cells in which the first sixteen Ump1 residues were deleted display growth phenotypes similar to ump1∆, but massively accumulate 15S PC and distinct proteasome intermediate complexes containing the truncated protein. The viability of these cells depends on the transcription factor Rpn4. Remarkably, ß7 subunit overexpression re-established viability in the absence of Rpn4. We show that an N-terminal domain of Ump1 and the propeptide of ß7 promote direct interaction of the two polypeptides in vitro. This interaction is of critical importance for the recruitment of ß7 precursor during proteasome assembly, a step that drives dimerization of 15S PCs and the formation of 20S CPs.


Asunto(s)
Chaperonas Moleculares/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Dimerización , Mutación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
14.
Biomolecules ; 13(1)2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36671396

RESUMEN

Whereas assembly of the 20S proteasome core particle (CP) in prokaryotes apparently occurs spontaneously, the efficiency of this process in eukaryotes relies on the dedicated assembly chaperones Ump1, Pba1-Pba2, and Pba3-Pba4. For mammals, it was reported that CP assembly initiates with formation of a complete α-ring that functions as a template for ß subunit incorporation. By contrast, we were not able to detect a ring composed only of a complete set of α subunits in S. cerevisiae. Instead, we found that the CP subunits α1, α2, and α4 each form independent small complexes. Purification of such complexes containing α4 revealed the presence of chaperones of the Hsp70/Ssa and Hsp110/Sse families. Consistently, certain small complexes containing α1, α2, and α4 were not formed in strains lacking these chaperones. Deletion of the SSE1 gene in combination with deletions of PRE9 (α3), PBA3, or UMP1 genes resulted in severe synthetic growth defects, high levels of ubiquitin-conjugates, and an accumulation of distinct small complexes with α subunits. Our study shows that Hsp70 and Hsp110 chaperones cooperate to promote the folding of individual α subunits and/or their assembly with other CP subunits, Ump1, and Pba1-Pba4 in subsequent steps.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo
15.
Proteomics ; 11(22): 4397-410, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21901833

RESUMEN

Distinct types of vesicles are formed in eukaryotic cells that conduct a variable set of functions depending on their origin. One subtype designated circulating microvesicles (MVs) provides a novel form of intercellular communication and recent work suggested the release and uptake of morphogens in vesicles by Drosophila cells. In this study, we have examined cells of the hemocyte-like cell lines Kc167 and S2 and identified secreted vesicles in the culture supernatant. The vesicles were isolated and found to have characteristics comparable to exosomes and plasma membrane MVs released by mammalian cells. In wingless-transfected cells, the full-length protein was detected in the vesicle isolates. Proteomics analyses of the vesicles identified 269 proteins that include various orthologs of marker proteins and proteins with putative functions in vesicle formation and release. Analogous to their mammalian counterparts, the subcellular origin of the vesicular constituents of both cell lines is dominated by membrane-associated and cytosolic proteins with functions that are consistent with their localization in MVs. The analyses revealed a significant overlap of the Kc167 and S2 vesicle proteomes and confirmed a close correlation with non-mammalian and mammalian exosomes.


Asunto(s)
Drosophila/química , Exosomas/química , Proteínas de Insectos/análisis , Proteoma/análisis , Animales , Western Blotting , Línea Celular , Centrifugación por Gradiente de Densidad , Exosomas/metabolismo , Proteínas de Insectos/química , Proteoma/química , Proteómica , Ubiquitina
16.
Planta ; 233(1): 63-73, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20922545

RESUMEN

SUMO conjugation affects a broad range of processes in Arabidopsis thaliana, including flower initiation, pathogen defense, and responses to cold, drought and salt stress. We investigated two sequence-related SUMO-specific proteases that are both widely expressed and show that they differ significantly in their properties. The closest homolog of SUMO protease ESD4, ESD4-LIKE SUMO PROTEASE 1 (ELS1, alternatively called AtULP1a) has SUMO-specific proteolytic activity, but is functionally distinct from ESD4, as shown by intracellular localization, mutant phenotype and heterologous expression in yeast mutants. Furthermore, we show that the growth defects caused by loss of ESD4 function are not due to increased synthesis of the stress signal salicylic acid, as was previously shown for a SUMO ligase, indicating that impairment of the SUMO system affects plant growth in different ways. Our results demonstrate that two A. thaliana SUMO proteases showing close sequence similarity have distinct in vivo functions.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Cisteína Endopeptidasas/metabolismo , Endopeptidasas/metabolismo , Homología de Secuencia de Aminoácido , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Secuencia de Aminoácidos , Arabidopsis/citología , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/química , Cisteína Endopeptidasas/química , Endopeptidasas/química , Flores/efectos de los fármacos , Flores/fisiología , Prueba de Complementación Genética , Proteínas Fluorescentes Verdes/metabolismo , Datos de Secuencia Molecular , Mutación/genética , Transporte de Proteínas/efectos de los fármacos , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Ácido Salicílico/farmacología , Alineación de Secuencia , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/química , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/enzimología , Sumoilación/efectos de los fármacos
17.
Subcell Biochem ; 54: 195-214, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21222284

RESUMEN

The small ubiquitin-related modifier (SUMO) is a versatile cellular tool to modulate a protein's function. SUMO modification is a reversible process analogous to ubiquitylation. The consecutive actions of E1, E2 and E3 enzymes catalyze the attachment of SUMO to target proteins, while deconjugation is promoted by SUMO specific proteases. Contrary to the long-standing assumption that SUMO has no role in proteolytic targeting and rather acts as an antagonist of ubiquitin in some cases, it has recently been discovered that sumoylation itself can function as a secondary signal mediating ubiquitin-dependent degradation by the proteasome. The discovery of a novel family of RING finger ubiquitin ligases bearing SUMO interaction motifs implicated the ubiquitin system in the control of SUMO modified proteins. SUMO modification as a signal for degradation is conserved in eukaryotes and ubiquitin ligases that specifically recognize SUMO-modified proteins have been discovered in species ranging from yeasts to humans. This chapter summarizes what is known about these ligases and their role in controlling sumoylated proteins.


Asunto(s)
Sumoilación , Ubiquitina , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
18.
FEBS Lett ; 595(15): 2015-2033, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34109626

RESUMEN

Decoding of OAZ1 (Ornithine decarboxylase AntiZyme 1) mRNA, which harbours two open reading frames (ORF1 and ORF2) interrupted by a naturally occurring Premature Termination Codon (PTC), produces an 8 kDa truncated polypeptide termed Orf1p, unless the PTC is bypassed by +1 ribosomal frameshifting. In this study, we identified Orf1p as an endogenous ubiquitin-dependent substrate of the 26S proteasome both in yeast and mammalian cells. Surprisingly, we found that the ribosome-associated quality control factor Rqc1 and the ubiquitin ligase Ltn1 are critical for Orf1p degradation. In addition, the cytosolic protein quality control chaperone system Hsp70/Hsp90 and their corresponding co-chaperones Sse1, Fes1, Sti1 and Cpr7 are also required for Orf1p proteolysis. Our study finds that Orf1p, which is naturally synthesized as a result of a premature translation termination event, requires the coordinated role of both ribosome-associated and cytosolic protein quality control factors for its degradation.


Asunto(s)
Terminación de la Cadena Péptídica Traduccional , Proteínas/genética , Ribosomas/metabolismo , Animales , Codón de Terminación , Ratones , Sistemas de Lectura Abierta , Control de Calidad , Saccharomyces cerevisiae/genética
19.
Biochem Soc Trans ; 38(Pt 1): 29-33, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20074030

RESUMEN

The 26S proteasome is a non-lysosomal protease in the cytosol and nucleus of eukaryotic cells. Its main function is to mediate ubiquitin-dependent proteolysis. The 26S proteasome is a multimeric complex composed by the 20S proteasome CP (core particle) and the 19S RPs (regulatory particles). Although the atomic structure of the 26S proteasome has not yet been determined, high-resolution structures are available for its CP. Studies on the complicated assembly pathway of the proteasome have revealed that it involves an unprecedented number of dedicated chaperones. Assembly of the CP alone involves three conserved proteasome-assembly chaperones [PAC1-PAC2, PAC3-PAC4 and UMP1 (ubiquitin-mediated proteolysis 1)]. Whereas the two heterodimeric PACs have been implicated in the formation of rings of the seven distinct alpha subunits, UMP1 is important for the formation and dimerization of proteasome precursor complexes containing beta subunits. Dimerization coincides with the incorporation of the last beta subunit (beta7). Additional modules important for the assembly of precursor complexes and their dimerization reside in the beta subunits themselves, either as transient or as permanent extensions. Particularly important domains are the propeptide of beta5 and the C-terminal extensions of beta2 and beta7. Upon maturation of the active sites by autocatalytic processing, UMP1 is degraded by the native proteasome.


Asunto(s)
Chaperonas Moleculares/metabolismo , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Dominio Catalítico , Humanos , Modelos Moleculares , Complejos Multiproteicos , Complejo de la Endopetidasa Proteasomal/genética , Conformación Proteica , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Ubiquitina/metabolismo
20.
Structure ; 16(9): 1296-304, 2008 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-18786393

RESUMEN

The 26S proteasome mediates ubiquitin-dependent proteolysis in eukaryotic cells. A number of studies including very recent ones have revealed that assembly of its 20S catalytic core particle is an ordered process that involves several conserved proteasome assembly chaperones (PACs). Two heterodimeric chaperones, PAC1-PAC2 and PAC3-PAC4, promote the assembly of rings composed of seven alpha subunits. Subsequently, beta subunits join to form half-proteasome precursor complexes containing all but one of the 14 subunits. These complexes lack the beta7 subunit but contain UMP1, another assembly chaperone, and in yeast, at least to some degree, the activator protein Blm10. Dimerization of two such complexes is triggered by incorporation of beta7, whose C-terminal extension reaches out into the other half to stabilize the newly formed 20S particle. The process is completed by the maturation of active sites and subsequent degradation of UMP1 and PAC1-PAC2.


Asunto(s)
Chaperonas Moleculares/fisiología , Complejo de la Endopetidasa Proteasomal/metabolismo , Animales , Dominio Catalítico , Dimerización , Evolución Molecular , Humanos , Modelos Biológicos , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Complejo de la Endopetidasa Proteasomal/química , Unión Proteica , Subunidades de Proteína/metabolismo , Subunidades de Proteína/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA