Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 174(2): 448-464.e24, 2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-30007417

RESUMEN

Land plants evolved from charophytic algae, among which Charophyceae possess the most complex body plans. We present the genome of Chara braunii; comparison of the genome to those of land plants identified evolutionary novelties for plant terrestrialization and land plant heritage genes. C. braunii employs unique xylan synthases for cell wall biosynthesis, a phragmoplast (cell separation) mechanism similar to that of land plants, and many phytohormones. C. braunii plastids are controlled via land-plant-like retrograde signaling, and transcriptional regulation is more elaborate than in other algae. The morphological complexity of this organism may result from expanded gene families, with three cases of particular note: genes effecting tolerance to reactive oxygen species (ROS), LysM receptor-like kinases, and transcription factors (TFs). Transcriptomic analysis of sexual reproductive structures reveals intricate control by TFs, activity of the ROS gene network, and the ancestral use of plant-like storage and stress protection proteins in the zygote.


Asunto(s)
Chara/genética , Genoma de Planta , Evolución Biológica , Pared Celular/metabolismo , Chara/crecimiento & desarrollo , Embryophyta/genética , Redes Reguladoras de Genes , Pentosiltransferasa/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma
2.
Cell ; 171(2): 287-304.e15, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28985561

RESUMEN

The evolution of land flora transformed the terrestrial environment. Land plants evolved from an ancestral charophycean alga from which they inherited developmental, biochemical, and cell biological attributes. Additional biochemical and physiological adaptations to land, and a life cycle with an alternation between multicellular haploid and diploid generations that facilitated efficient dispersal of desiccation tolerant spores, evolved in the ancestral land plant. We analyzed the genome of the liverwort Marchantia polymorpha, a member of a basal land plant lineage. Relative to charophycean algae, land plant genomes are characterized by genes encoding novel biochemical pathways, new phytohormone signaling pathways (notably auxin), expanded repertoires of signaling pathways, and increased diversity in some transcription factor families. Compared with other sequenced land plants, M. polymorpha exhibits low genetic redundancy in most regulatory pathways, with this portion of its genome resembling that predicted for the ancestral land plant. PAPERCLIP.


Asunto(s)
Evolución Biológica , Embryophyta/genética , Genoma de Planta , Marchantia/genética , Adaptación Biológica , Embryophyta/fisiología , Regulación de la Expresión Génica de las Plantas , Marchantia/fisiología , Anotación de Secuencia Molecular , Transducción de Señal , Transcripción Genética
3.
Development ; 151(20)2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38572965

RESUMEN

Microtubule organising centres (MTOCs) are sites of localised microtubule nucleation in eukaryotic cells. Regulation of microtubule dynamics often involves KATANIN (KTN): a microtubule severing enzyme that cuts microtubules to generate new negative ends, leading to catastrophic depolymerisation. In Arabidopsis thaliana, KTN is required for the organisation of microtubules in the cell cortex, preprophase band, mitotic spindle and phragmoplast. However, as angiosperms lack MTOCs, the role of KTN in MTOC formation has yet to be studied in plants. Two unique MTOCs - the polar organisers - form on opposing sides of the preprophase nucleus in liverworts. Here, we show that KTN-mediated microtubule depolymerisation regulates the number and organisation of polar organisers formed in Marchantia polymorpha. Mpktn mutants that lacked KTN function had supernumerary disorganised polar organisers compared with wild type. This was in addition to defects in the microtubule organisation in the cell cortex, preprophase band, mitotic spindle and phragmoplast. These data are consistent with the hypothesis that KTN-mediated microtubule dynamics are required for the de novo formation of MTOCs, a previously unreported function in plants.


Asunto(s)
Katanina , Marchantia , Centro Organizador de los Microtúbulos , Microtúbulos , Katanina/metabolismo , Katanina/genética , Microtúbulos/metabolismo , Marchantia/metabolismo , Marchantia/genética , Centro Organizador de los Microtúbulos/metabolismo , Mutación/genética , Huso Acromático/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Arabidopsis/metabolismo , Arabidopsis/genética
4.
PLoS Genet ; 19(1): e1010423, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36608112

RESUMEN

Herbicide resistance in weeds is a growing threat to global crop production. Non-target site resistance is problematic because a single resistance allele can confer tolerance to many herbicides (cross resistance), and it is often a polygenic trait so it can be difficult to identify the molecular mechanisms involved. Most characterized molecular mechanisms of non-target site resistance are caused by gain-of-function mutations in genes from a few key gene families-the mechanisms of resistance caused by loss-of-function mutations remain unclear. In this study, we first show that the mechanism of non-target site resistance to the herbicide thaxtomin A conferred by loss-of-function of the gene PAM16 is conserved in Marchantia polymorpha, validating its use as a model species with which to study non-target site resistance. To identify mechanisms of non-target site resistance caused by loss-of-function mutations, we generated 107 UV-B mutagenized M. polymorpha spores and screened for resistance to the herbicide thaxtomin A. We isolated 13 thaxtomin A-resistant mutants and found that 3 mutants carried candidate resistance-conferring SNPs in the MpRTN4IP1L gene. Mprtn4ip1l mutants are defective in coenzyme Q biosynthesis and accumulate higher levels of reactive oxygen species (ROS) than wild-type plants. Mutants are weakly resistant to thaxtomin A and cross resistant to isoxaben, suggesting that loss of MpRTN4IP1L function confers non-target site resistance. Mutants are also defective in thaxtomin A metabolism. We conclude that loss of MpRTN4IP1L function is a novel mechanism of non-target site herbicide resistance and propose that other mutations that increase ROS levels or decrease thaxtomin A metabolism could contribute to thaxtomin A resistance in the field.


Asunto(s)
Herbicidas , Herbicidas/farmacología , Ubiquinona , Especies Reactivas de Oxígeno , Malezas/genética
5.
Plant Cell ; 34(1): 72-102, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34529074

RESUMEN

As scientists, we are at least as excited about the open questions-the things we do not know-as the discoveries. Here, we asked 15 experts to describe the most compelling open questions in plant cell biology. These are their questions: How are organelle identity, domains, and boundaries maintained under the continuous flux of vesicle trafficking and membrane remodeling? Is the plant cortical microtubule cytoskeleton a mechanosensory apparatus? How are the cellular pathways of cell wall synthesis, assembly, modification, and integrity sensing linked in plants? Why do plasmodesmata open and close? Is there retrograde signaling from vacuoles to the nucleus? How do root cells accommodate fungal endosymbionts? What is the role of cell edges in plant morphogenesis? How is the cell division site determined? What are the emergent effects of polyploidy on the biology of the cell, and how are any such "rules" conditioned by cell type? Can mechanical forces trigger new cell fates in plants? How does a single differentiated somatic cell reprogram and gain pluripotency? How does polarity develop de-novo in isolated plant cells? What is the spectrum of cellular functions for membraneless organelles and intrinsically disordered proteins? How do plants deal with internal noise? How does order emerge in cells and propagate to organs and organisms from complex dynamical processes? We hope you find the discussions of these questions thought provoking and inspiring.


Asunto(s)
Células Vegetales/fisiología , Fenómenos Fisiológicos de las Plantas , Biología Celular , Desarrollo de la Planta
6.
Plant Cell ; 34(10): 3512-3542, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-35976122

RESUMEN

The liverwort Marchantia polymorpha has been utilized as a model for biological studies since the 18th century. In the past few decades, there has been a Renaissance in its utilization in genomic and genetic approaches to investigating physiological, developmental, and evolutionary aspects of land plant biology. The reasons for its adoption are similar to those of other genetic models, e.g. simple cultivation, ready access via its worldwide distribution, ease of crossing, facile genetics, and more recently, efficient transformation, genome editing, and genomic resources. The haploid gametophyte dominant life cycle of M. polymorpha is conducive to forward genetic approaches. The lack of ancient whole-genome duplications within liverworts facilitates reverse genetic approaches, and possibly related to this genomic stability, liverworts possess sex chromosomes that evolved in the ancestral liverwort. As a representative of one of the three bryophyte lineages, its phylogenetic position allows comparative approaches to provide insights into ancestral land plants. Given the karyotype and genome stability within liverworts, the resources developed for M. polymorpha have facilitated the development of related species as models for biological processes lacking in M. polymorpha.


Asunto(s)
Embryophyta , Marchantia , Evolución Biológica , Células Germinativas de las Plantas , Marchantia/genética , Filogenia
7.
Plant J ; 115(5): 1169-1184, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37403571

RESUMEN

Individual cells give rise to diverse cell lineages during the development of multicellular organisms. Understanding the contribution of these lineages to mature organisms is a central question of developmental biology. Several techniques to document cell lineages have been used, from marking single cells with mutations that express a visible marker to generating molecular bar codes by CRISPR-induced mutations and subsequent single-cell analysis. Here, we exploit the mutagenic activity of CRISPR to allow lineage tracing within living plants with a single reporter. Cas9-induced mutations are directed to correct a frameshift mutation that restores expression of a nuclear fluorescent protein, labelling the initial cell and all progenitor cells with a strong signal without modifying other phenotypes of the plants. Spatial and temporal control of Cas9 activity can be achieved using tissue-specific and/or inducible promoters. We provide proof of principle for the function of lineage tracing in two model plants. The conserved features of the components and the versatile cloning system, allowing for easy exchange of promoters, are expected to make the system widely applicable.


Asunto(s)
Sistemas CRISPR-Cas , Mutación del Sistema de Lectura , Sistemas CRISPR-Cas/genética , Mutación , Fenotipo , Linaje de la Célula/genética
8.
Nature ; 561(7722): 235-238, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30135586

RESUMEN

Roots are one of the three fundamental organ systems of vascular plants1, and have roles in anchorage, symbiosis, and nutrient and water uptake2-4. However, the fragmentary nature of the fossil record obscures the origins of roots and makes it difficult to identify when the sole defining characteristic of extant roots-the presence of self-renewing structures called root meristems that are covered by a root cap at their apex1-9-evolved. Here we report the discovery of what are-to our knowledge-the oldest meristems of rooting axes, found in the earliest-preserved terrestrial ecosystem10 (the 407-million-year-old Rhynie chert). These meristems, which belonged to the lycopsid Asteroxylon mackiei11-14, lacked root caps and instead developed a continuous epidermis over the surface of the meristem. The rooting axes and meristems of A. mackiei are unique among vascular plants. These data support the hypothesis that roots, as defined in extant vascular plants by the presence of a root cap7, were a late innovation in the vascular lineage. Roots therefore acquired traits in a stepwise fashion. The relatively late origin in lycophytes of roots with caps is consistent with the hypothesis that roots evolved multiple times2 rather than having a single origin1, and the extensive similarities between lycophyte and euphyllophyte roots15-18 therefore represent examples of convergent evolution. The key phylogenetic position of A. mackiei-with its transitional rooting organ-between early diverging land plants that lacked roots and derived plants that developed roots demonstrates how roots were 'assembled' during the course of plant evolution.


Asunto(s)
Filogenia , Raíces de Plantas/clasificación , Raíces de Plantas/citología , División Celular , Meristema/citología , Epidermis de la Planta/citología
9.
PLoS Genet ; 17(6): e1009533, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34086675

RESUMEN

Tip-growth is a mode of polarized cell expansion where incorporation of new membrane and wall is stably restricted to a single, small domain of the cell surface resulting in the formation of a tubular projection that extends away from the body of the cell. The organization of the microtubule cytoskeleton is conserved among tip-growing cells of land plants: bundles of microtubules run longitudinally along the non-growing shank and a network of fine microtubules grow into the apical dome where growth occurs. Together, these microtubule networks control the stable positioning of the growth site at the cell surface. This conserved dynamic organization is required for the spatial stability of tip-growth, as demonstrated by the formation of sinuous tip-growing cells upon treatment with microtubule-stabilizing or microtubule-destabilizing drugs. Microtubule associated proteins (MAPs) that either stabilize or destabilize microtubule networks are required for the maintenance of stable tip-growth in root hairs of flowering plants. NIMA RELATED KINASE (NEK) is a MAP that destabilizes microtubule growing ends in the apical dome of tip-growing rhizoid cells in the liverwort Marchantia polymorpha. We hypothesized that both microtubule stabilizing and destabilizing MAPs are required for the maintenance of the stable tip-growth in liverworts. To identify genes encoding microtubule-stabilizing and microtubule-destabilizing activities we generated 120,000 UV-B mutagenized and 336,000 T-DNA transformed Marchantia polymorpha plants and screened for defective rhizoid phenotypes. We identified 119 mutants and retained 30 mutants in which the sinuous rhizoid phenotype was inherited. The 30 mutants were classified into at least 4 linkage groups. Characterisation of two of the linkage groups showed that MAP genes-WAVE DAMPENED2-LIKE (WDL) and NIMA-RELATED KINASE (NEK)-are required to stabilize the site of tip growth in elongating rhizoids. Furthermore, we show that MpWDL is required for the formation of a bundled array of parallel and longitudinally orientated microtubules in the non-growing shank of rhizoids where MpWDL-YFP localizes to microtubule bundles. We propose a model where the opposite functions of MpWDL and MpNEK on microtubule bundling are spatially separated and promote tip-growth spatial stability.


Asunto(s)
Marchantia/crecimiento & desarrollo , Proteínas Asociadas a Microtúbulos/fisiología , Microtúbulos/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Alelos , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Marchantia/genética , Mutación
10.
New Phytol ; 240(5): 2085-2101, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37823324

RESUMEN

Recent studies have shown that correlations between chromatin modifications and transcription vary among eukaryotes. This is the case for marked differences between the chromatin of the moss Physcomitrium patens and the liverwort Marchantia polymorpha. Mosses and liverworts diverged from hornworts, altogether forming the lineage of bryophytes that shared a common ancestor with land plants. We aimed to describe chromatin in hornworts to establish synapomorphies across bryophytes and approach a definition of the ancestral chromatin organization of land plants. We used genomic methods to define the 3D organization of chromatin and map the chromatin landscape of the model hornwort Anthoceros agrestis. We report that nearly half of the hornwort transposons were associated with facultative heterochromatin and euchromatin and formed the center of topologically associated domains delimited by protein coding genes. Transposons were scattered across autosomes, which contrasted with the dense compartments of constitutive heterochromatin surrounding the centromeres in flowering plants. Most of the features observed in hornworts are also present in liverworts or in mosses but are distinct from flowering plants. Hence, the ancestral genome of bryophytes was likely a patchwork of units of euchromatin interspersed within facultative and constitutive heterochromatin. We propose this genome organization was ancestral to land plants.


Asunto(s)
Anthocerotophyta , Briófitas , Bryopsida , Filogenia , Cromatina , Heterocromatina/genética , Eucromatina/genética , Briófitas/genética , Anthocerotophyta/genética , Bryopsida/genética
11.
Cell ; 133(5): 771-3, 2008 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-18510922

RESUMEN

TALE homeodomain proteins regulate development in many eukaryotes. Now, Lee et al. (2008) report that two TALE homeodomain proteins control zygote development of the unicellular green alga Chlamydomonas. This implicates TALE gene loss and diversification in the evolution of new diploid body plans that appeared when land plants evolved from algal ancestors over 450 million years ago.


Asunto(s)
Evolución Biológica , Chlamydomonas reinhardtii/genética , Plantas/genética , Proteínas Algáceas/genética , Animales , Chlamydomonas reinhardtii/fisiología , Evolución Molecular , Proteínas de Homeodominio/genética , Desarrollo de la Planta , Proteínas de Plantas/genética
12.
Pestic Biochem Physiol ; 191: 105370, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36963939

RESUMEN

A sensing mechanism in mammals perceives xenobiotics and induces the transcription of genes encoding proteins that detoxify these molecules. However, it is unclear if plants sense xenobiotics, and activate an analogous signalling system leading to their detoxification. Using the liverwort Marchantia polymorpha, we tested the hypothesis that there is a sensing system in plants that perceives herbicides resulting in the increased transcription of genes encoding proteins that detoxify these herbicides. Consistent with the hypothesis, we show that chlorsulfuron-treatment induces changes in the M. polymorpha transcriptome. However, these transcriptome changes do not occur in chlorsulfuron (CS)-treated target site resistant mutants, where the gene encoding the target carries a mutation that confers resistance to chlorsulfuron. Instead, we show that inactivation of the chlorsulfuron target, acetolactate synthase (ALS) (also known as acetohydroxyacid synthase (AHAS)), is required for the transcriptome response. These data demonstrate that the transcriptome changes in chlorsulfuron-treated plants are caused by disrupted amino acid synthesis and metabolism resulting from acetolactate synthase inhibition, and indicate that the transcriptome changes are not caused by a herbicide sensing mechanism.


Asunto(s)
Acetolactato Sintasa , Herbicidas , Marchantia , Herbicidas/toxicidad , Acetolactato Sintasa/metabolismo , Marchantia/genética , Marchantia/metabolismo , Transcriptoma , Resistencia a los Herbicidas/genética
13.
PLoS Biol ; 17(12): e3000560, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31815938

RESUMEN

Land plant shoot structures evolved a diversity of lateral organs as morphological adaptations to the terrestrial environment, with lateral organs arising independently in different lineages. Vascular plants and bryophytes (basally diverging land plants) develop lateral organs from meristems of sporophytes and gametophytes, respectively. Understanding the mechanisms of lateral organ development among divergent plant lineages is crucial for understanding the evolutionary process of morphological diversification of land plants. However, our current knowledge of lateral organ differentiation mechanisms comes almost entirely from studies of seed plants, and thus, it remains unclear how these lateral structures evolved and whether common regulatory mechanisms control the development of analogous lateral organs. Here, we performed a mutant screen in the liverwort Marchantia polymorpha, a bryophyte, which produces gametophyte axes with nonphotosynthetic scalelike lateral organs. We found that an Arabidopsis LIGHT-DEPENDENT SHORT HYPOCOTYLS 1 and Oryza G1 (ALOG) family protein, named M. polymorpha LATERAL ORGAN SUPRESSOR 1 (MpLOS1), regulates meristem maintenance and lateral organ development in Marchantia. A mutation in MpLOS1, preferentially expressed in lateral organs, induces lateral organs with misspecified identity and increased cell number and, furthermore, causes defects in apical meristem maintenance. Remarkably, MpLOS1 expression rescued the elongated spikelet phenotype of a MpLOS1 homolog in rice. This suggests that ALOG genes regulate the development of lateral organs in both gametophyte and sporophyte shoots by repressing cell divisions. We propose that the recruitment of ALOG-mediated growth repression was in part responsible for the convergent evolution of independently evolved lateral organs among highly divergent plant lineages, contributing to the morphological diversification of land plants.


Asunto(s)
Meristema/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Arabidopsis/genética , Evolución Biológica , Evolución Molecular , Regulación de la Expresión Génica de las Plantas/genética , Meristema/genética , Meristema/crecimiento & desarrollo , Oryza/genética , Fenotipo , Filogenia , Proteínas de Plantas/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Plantas/genética , Plantas Modificadas Genéticamente/metabolismo
14.
Development ; 144(8): 1472-1476, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28174248

RESUMEN

The colonisation of the land by plants was accompanied by the evolution of complex tissues and multicellular structures comprising different cell types as morphological adaptations to the terrestrial environment. Here, we show that the single WIP protein in the early-diverging land plant Marchantia polymorpha L. is required for the development of the multicellular gas exchange structure: the air pore complex. This 16-cell barrel-shaped structure surrounds an opening between epidermal cells that facilitates the exchange of gases between the chamber containing the photosynthetic cells inside the plant and the air outside. MpWIP is expressed in cells of the developing air pore complex and the morphogenesis of the complex is defective in plants with reduced MpWIP function. The role of WIP proteins in the control of different multicellular structures in M. polymorpha and the flowering plant Arabidopsis thaliana suggests that these proteins controlled the development of multicellular structures in the common ancestor of land plants. We hypothesise that WIP genes were subsequently co-opted in the control of morphogenesis of novel multicellular structures that evolved during the diversification of land plants.


Asunto(s)
Marchantia/embriología , Marchantia/metabolismo , Epidermis de la Planta/embriología , Proteínas de Plantas/metabolismo , Marchantia/anatomía & histología , Marchantia/ultraestructura , Mutación/genética , Epidermis de la Planta/citología , Epidermis de la Planta/ultraestructura , Proteínas de Plantas/genética , Regiones Promotoras Genéticas/genética , Proteínas Represoras/metabolismo , Transcripción Genética
15.
New Phytol ; 223(2): 993-1008, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30946484

RESUMEN

ROOT HAIR DEFECTIVE SIX-LIKE (RSL) genes control the development of structures from single cells at the surface of embryophytes (land plants) such as rhizoids and root hairs. RSL proteins constitute a subclass (VIIIc) of the basic helix-loop-helix (bHLH) class VIII transcription factor family. The Charophyceae form the only class of streptophyte algae with tissue-like structures and rhizoids. To determine if the function of RSL genes in the control of cell differentiation in embryophytes was inherited from a streptophyte algal ancestor, we identified the single class VIII bHLH gene from the charophyceaen alga Chara braunii (CbbHLHVIII). CbbHLHVIII is sister to the RSL proteins; they constitute a monophyletic group. Expression of CbbHLHVIII does not compensate for loss of RSL functions in Marchantia polymorpha or Arabidopsis thaliana. In C. braunii CbbHLHVIII is expressed at sites of morphogenesis but not in rhizoids. This finding indicates that C. braunii class VIII protein is functionally different from land plant RSL proteins. This result suggests that the function of RSL proteins in cell differentiation at the plant surface evolved by neofunctionalisation in the land plants lineage after its divergence from its last common ancestor with C. braunii, at or before the colonisation of the land by embryophytes.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Embryophyta/metabolismo , Proteínas de Plantas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Secuencia Conservada , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Mutación/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcriptoma/genética
16.
PLoS Genet ; 12(12): e1006480, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27911899

RESUMEN

[This corrects the article DOI: 10.1371/journal.pgen.1006211.].

17.
PLoS Genet ; 12(8): e1006211, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27494519

RESUMEN

Genes encoding ROOT HAIR DEFECTIVE SIX-LIKE (RSL) class I basic helix loop helix proteins are expressed in future root hair cells of the Arabidopsis thaliana root meristem where they positively regulate root hair cell development. Here we show that there are three RSL class I protein coding genes in the Brachypodium distachyon genome, BdRSL1, BdRSL2 and BdRSL3, and each is expressed in developing root hair cells after the asymmetric cell division that forms root hair cells and hairless epidermal cells. Expression of BdRSL class I genes is sufficient for root hair cell development: ectopic overexpression of any of the three RSL class I genes induces the development of root hairs in every cell of the root epidermis. Expression of BdRSL class I genes in root hairless Arabidopsis thaliana root hair defective 6 (Atrhd6) Atrsl1 double mutants, devoid of RSL class I function, restores root hair development indicating that the function of these proteins has been conserved. However, neither AtRSL nor BdRSL class I genes is sufficient for root hair development in A. thaliana. These data demonstrate that the spatial pattern of class I RSL activity can account for the pattern of root hair cell differentiation in B. distachyon. However, the spatial pattern of class I RSL activity cannot account for the spatial pattern of root hair cells in A. thaliana. Taken together these data indicate that that the functions of RSL class I proteins have been conserved among most angiosperms-monocots and eudicots-despite the dramatically different patterns of root hair cell development.


Asunto(s)
Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Raíces de Plantas/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/biosíntesis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/biosíntesis , Brachypodium/genética , Brachypodium/crecimiento & desarrollo , Diferenciación Celular/genética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Mutación , Raíces de Plantas/crecimiento & desarrollo
18.
Proc Natl Acad Sci U S A ; 113(24): 6695-700, 2016 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-27226309

RESUMEN

Lycophyte trees, up to 50 m in height, were the tallest in the Carboniferous coal swamp forests. The similarity in their shoot and root morphology led to the hypothesis that their rooting (stigmarian) systems were modified leafy shoot systems, distinct from the roots of all other plants. Each consists of a branching main axis covered on all sides by lateral structures in a phyllotactic arrangement; unbranched microphylls developed from shoot axes, and largely unbranched stigmarian rootlets developed from rhizomorphs axes. Here, we reexamined the morphology of extinct stigmarian systems preserved as compression fossils and in coal balls from the Carboniferous period. Contrary to the long-standing view of stigmarian systems, where shoot-like rhizomorph axes developed largely unbranched, root-hairless rootlets, here we report that stigmarian rootlets were highly branched, developed at a density of ∼25,600 terminal rootlets per meter of rhizomorph, and were covered in root hairs. Furthermore, we show that this architecture is conserved among their only extant relatives, herbaceous plants in the Isoetes genus. Therefore, despite the difference in stature and the time that has elapsed, we conclude that both extant and extinct rhizomorphic lycopsids have the same rootlet system architecture.


Asunto(s)
Brotes de la Planta/fisiología , Rizoma/fisiología , Árboles/fisiología , Brotes de la Planta/anatomía & histología , Rizoma/anatomía & histología , Árboles/anatomía & histología
20.
New Phytol ; 240(6): 2171-2172, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37969046
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA