Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 268
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 615(7953): 652-659, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36890232

RESUMEN

Increasing the proportion of locally produced plant protein in currently meat-rich diets could substantially reduce greenhouse gas emissions and loss of biodiversity1. However, plant protein production is hampered by the lack of a cool-season legume equivalent to soybean in agronomic value2. Faba bean (Vicia faba L.) has a high yield potential and is well suited for cultivation in temperate regions, but genomic resources are scarce. Here, we report a high-quality chromosome-scale assembly of the faba bean genome and show that it has expanded to a massive 13 Gb in size through an imbalance between the rates of amplification and elimination of retrotransposons and satellite repeats. Genes and recombination events are evenly dispersed across chromosomes and the gene space is remarkably compact considering the genome size, although with substantial copy number variation driven by tandem duplication. Demonstrating practical application of the genome sequence, we develop a targeted genotyping assay and use high-resolution genome-wide association analysis to dissect the genetic basis of seed size and hilum colour. The resources presented constitute a genomics-based breeding platform for faba bean, enabling breeders and geneticists to accelerate the improvement of sustainable protein production across the Mediterranean, subtropical and northern temperate agroecological zones.


Asunto(s)
Productos Agrícolas , Diploidia , Variación Genética , Genoma de Planta , Genómica , Fitomejoramiento , Proteínas de Plantas , Vicia faba , Cromosomas de las Plantas/genética , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Variaciones en el Número de Copia de ADN/genética , ADN Satélite/genética , Amplificación de Genes/genética , Genes de Plantas/genética , Variación Genética/genética , Genoma de Planta/genética , Estudio de Asociación del Genoma Completo , Geografía , Fitomejoramiento/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Recombinación Genética , Retroelementos/genética , Semillas/anatomía & histología , Semillas/genética , Vicia faba/anatomía & histología , Vicia faba/genética , Vicia faba/metabolismo
2.
Plant Cell ; 36(2): 447-470, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37820736

RESUMEN

Plant nucleotide-binding leucine-rich repeat (NLRs) immune receptors directly or indirectly recognize pathogen-secreted effector molecules to initiate plant defense. Recognition of multiple pathogens by a single NLR is rare and usually occurs via monitoring for changes to host proteins; few characterized NLRs have been shown to recognize multiple effectors. The barley (Hordeum vulgare) NLR gene Mildew locus a (Mla) has undergone functional diversification, and the proteins encoded by different Mla alleles recognize host-adapted isolates of barley powdery mildew (Blumeria graminis f. sp. hordei [Bgh]). Here, we show that Mla3 also confers resistance to the rice blast fungus Magnaporthe oryzae in a dosage-dependent manner. Using a forward genetic screen, we discovered that the recognized effector from M. oryzae is Pathogenicity toward Weeping Lovegrass 2 (Pwl2), a host range determinant factor that prevents M. oryzae from infecting weeping lovegrass (Eragrostis curvula). Mla3 has therefore convergently evolved the capacity to recognize effectors from diverse pathogens.


Asunto(s)
Ascomicetos , Eragrostis , Hordeum , Magnaporthe , Virulencia/genética , Hordeum/genética , Eragrostis/metabolismo , Plantas/metabolismo , Especificidad del Huésped , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Plant J ; 118(4): 1102-1118, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38323852

RESUMEN

Restoring cytonuclear stoichiometry is necessary after whole-genome duplication (WGD) and interspecific/intergeneric hybridization in plants. We investigated this phenomenon in auto- and allopolyploids of the Festuca-Lolium complex providing insights into the mechanisms governing cytonuclear interactions in early polyploid and hybrid generations. Our study examined the main processes potentially involved in restoring the cytonuclear balance after WGD comparing diploids and new and well-established autopolyploids. We uncovered that both the number of chloroplasts and the number of chloroplast genome copies were significantly higher in the newly established autopolyploids and grew further in more established autopolyploids. The increase in the copy number of the chloroplast genome exceeded the rise in the number of chloroplasts and fully compensated for the doubling of the nuclear genome. In addition, changes in nuclear and organelle gene expression were insignificant. Allopolyploid Festuca × Lolium hybrids displayed potential structural conflicts in parental protein variants within the cytonuclear complexes. While biased maternal allele expression has been observed in numerous hybrids, our results suggest that its role in cytonuclear stabilization in the Festuca × Lolium hybrids is limited. This study provides insights into the restoration of the cytonuclear stoichiometry, yet it emphasizes the need for future research to explore post-transcriptional regulation and its impact on cytonuclear gene expression stoichiometry. Our findings may enhance the understanding of polyploid plant evolution, with broader implications for the study of cytonuclear interactions in diverse biological contexts.


Asunto(s)
Núcleo Celular , Festuca , Lolium , Poliploidía , Festuca/genética , Lolium/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Genoma de Planta/genética , Genoma del Cloroplasto , Cloroplastos/genética , Cloroplastos/metabolismo , Hibridación Genética , Regulación de la Expresión Génica de las Plantas
4.
Nucleic Acids Res ; 51(6): 2641-2654, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36864547

RESUMEN

Chromatids of mitotic chromosomes were suggested to coil into a helix in early cytological studies and this assumption was recently supported by chromosome conformation capture (3C) sequencing. Still, direct differential visualization of a condensed chromatin fibre confirming the helical model was lacking. Here, we combined Hi-C analysis of purified metaphase chromosomes, biopolymer modelling and spatial structured illumination microscopy of large fluorescently labeled chromosome segments to reveal the chromonema - a helically-wound, 400 nm thick chromatin thread forming barley mitotic chromatids. Chromatin from adjacent turns of the helix intermingles due to the stochastic positioning of chromatin loops inside the chromonema. Helical turn size varies along chromosome length, correlating with chromatin density. Constraints on the observable dimensions of sister chromatid exchanges further supports the helical chromonema model.


Asunto(s)
Cromátides , Hordeum , Metafase , Cromátides/química , Cromatina/genética , Cromosomas , Microscopía , Intercambio de Cromátides Hermanas , Cromosomas de las Plantas , Hordeum/citología
5.
Proc Natl Acad Sci U S A ; 119(48): e2209875119, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36417432

RESUMEN

Semidwarfing genes have greatly increased wheat yields globally, yet the widely used gibberellin (GA)-insensitive genes Rht-B1b and Rht-D1b have disadvantages for seedling emergence. Use of the GA-sensitive semidwarfing gene Rht13 avoids this pleiotropic effect. Here, we show that Rht13 encodes a nucleotide-binding site/leucine-rich repeat (NB-LRR) gene. A point mutation in the semidwarf Rht-B13b allele autoactivates the NB-LRR gene and causes a height reduction comparable with Rht-B1b and Rht-D1b in diverse genetic backgrounds. The autoactive Rht-B13b allele leads to transcriptional up-regulation of pathogenesis-related genes including class III peroxidases associated with cell wall remodeling. Rht13 represents a new class of reduced height (Rht) gene, unlike other Rht genes, which encode components of the GA signaling or metabolic pathways. This discovery opens avenues to use autoactive NB-LRR genes as semidwarfing genes in a range of crop species, and to apply Rht13 in wheat breeding programs using a perfect genetic marker.


Asunto(s)
Enanismo , Triticum , Triticum/genética , Triticum/metabolismo , Nucleótidos/metabolismo , Fitomejoramiento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sitios de Unión
6.
Theor Appl Genet ; 137(2): 48, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38345612

RESUMEN

KEY MESSAGE: Characterisation and genetic mapping of a key gene defining root morphology in bread wheat. Root morphology is central to plants for the efficient uptake up of soil water and mineral nutrients. Here we describe a conditional mutant of hexaploid wheat (Triticum aestivum L.) that when grown in soil with high Ca2+ develops a larger rhizosheath accompanied with shorter roots than the wild type. In wheat, rhizosheath size is a reliable surrogate for root hair length and this was verified in the mutant which possessed longer root hairs than the wild type when grown in high Ca2+ soil. We named the mutant Stumpy and showed it to be due to a single semi-dominant mutation. The short root phenotype at high Ca2+ was due to reduced cellular elongation which might also explain the long root hair phenotype. Analysis of root cell walls showed that the polysaccharide composition of Stumpy roots is remodelled when grown at non-permissive (high) Ca2+ concentrations. The mutation mapped to chromosome 7B and sequencing of the 7B chromosomes in both wild type and Stumpy identified a candidate gene underlying the Stumpy mutation. As part of the process to determine whether the candidate gene was causative, we identified wheat lines in a Cadenza TILLING population with large rhizosheaths but accompanied with normal root length. This finding illustrates the potential of manipulating the gene to disconnect root length from root hair length as a means of developing wheat lines with improved efficiency of nutrient and water uptake. The Stumpy mutant will be valuable for understanding the mechanisms that regulate root morphology in wheat.


Asunto(s)
Suelo , Triticum , Triticum/metabolismo , Mutación , Mapeo Cromosómico , Agua/metabolismo , Raíces de Plantas/genética
7.
Mol Breed ; 44(2): 7, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38263978

RESUMEN

Tiller number is a key component of wheat plant architecture having a direct impact on grain yield. Because of their viability, biotic resistance, and abiotic stress tolerance, wild relative species are a valuable gene source for increasing wheat genetic diversity, including yield potential. Agropyron glael, a perennial hybrid of Thinopyrum intermedium and Th. ponticum, was created in the 1930s. Recent genome analyses identified five evolutionarily distinct subgenomes (J, Jst, Jvs, Jr, and St), making A. glael an important gene source for transferring useful agronomical traits into wheat. During a bread wheat × A. glael crossing program, a genetically stable translocation line, WT153397, was developed. Sequential in situ hybridizations (McGISH) with J-, St-, and D-genomic DNA probes and pSc119.2, Afa family, pTa71, and (GAA)7 DNA repeats, as well as molecular markers specific for the wheat 6D chromosome, revealed the presence of a 6DS.6Jvs Robertsonian translocation in the genetic line. Field trials in low-input and high-input breeding nurseries over four growing seasons demonstrated the Agropyron chromosome arm's high compensating ability for the missing 6DL, as spike morphology and fertility of WT153397 did not differ significantly from those of wheat parents, Mv9kr1 and 'Mv Karizma.' Moreover, the introgressed 6Jvs chromosome arm significantly increased the number of productive tillers, resulting in a significantly higher grain yield potential compared to the parental wheat cultivars. The translocated chromosome could be highly purified by flow cytometric sorting due to the intense fluorescent labeling of (GAA)7 clusters on the Thinopyrum chromosome arm, providing an opportunity to use chromosome genomics to identify Agropyron gene variant(s) responsible for the tillering capacity. The translocation line WT153397 is an important genetic stock for functional genetic studies of tiller formation and useful breeding material for increasing wheat yield potential. The study also discusses the use of the translocation line in wheat breeding. Supplementary information: The online version contains supplementary material available at 10.1007/s11032-024-01439-y.

8.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34088847

RESUMEN

B chromosomes are enigmatic elements in thousands of plant and animal genomes that persist in populations despite being nonessential. They circumvent the laws of Mendelian inheritance but the molecular mechanisms underlying this behavior remain unknown. Here we present the sequence, annotation, and analysis of the maize B chromosome providing insight into its drive mechanism. The sequence assembly reveals detailed locations of the elements involved with the cis and trans functions of its drive mechanism, consisting of nondisjunction at the second pollen mitosis and preferential fertilization of the egg by the B-containing sperm. We identified 758 protein-coding genes in 125.9 Mb of B chromosome sequence, of which at least 88 are expressed. Our results demonstrate that transposable elements in the B chromosome are shared with the standard A chromosome set but multiple lines of evidence fail to detect a syntenic genic region in the A chromosomes, suggesting a distant origin. The current gene content is a result of continuous transfer from the A chromosomal complement over an extended evolutionary time with subsequent degradation but with selection for maintenance of this nonvital chromosome.


Asunto(s)
Cromosomas de las Plantas/genética , Evolución Molecular , Polen/genética , Proteínas Gestacionales/genética , Zea mays/genética , Meiosis/genética , Mitosis/genética
9.
Chromosoma ; 131(3): 163-173, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35896680

RESUMEN

Due to translocation heterozygosity for all chromosomes in the cell complement, the oyster plant (Tradescantia spathacea) forms a complete meiotic ring. It also shows Rabl-arrangement at interphase, featured by polar centromere clustering. We demonstrate that the pericentromeric regions of the oyster plant are homogenized in concert by three subtelomeric sequences: 45S rDNA, (TTTAGGG)n motif, and TSrepI repeat. The Rabl-based clustering of pericentromeric regions may have been an excellent device to combine the subtelomere-pericentromere sequence migration (via inversions) with the pericentromere-pericentromere DNA movement (via whole arm translocations) that altogether led to the concerted homogenization of all the pericentromeric domains by the subtelomeric sequences. We also show that the repetitive sequence landscape of interstitial chromosome regions contains many loci consisting of Arabidopsis-type telomeric sequence or of TSrepI repeat, and it is extensively heterozygous. However, the sequence arrangement on some chromosomal arms suggest segmental inversions that are fully or partially homozygous, a fact that could be explained if the inversions started to create linkages already in a bivalent-forming ancestor. Remarkably, the subterminal TSrepI loci reside exclusively on the longer arms that could be due to sharing sequences between similarly-sized chromosomal arms in the interphase nucleus. Altogether, our study spotlights the supergene system of the oyster plant as an excellent model to link complex chromosome rearrangements, evolution of repetitive sequences, and nuclear architecture.


Asunto(s)
Ostreidae , Tradescantia , Animales , ADN Ribosómico/genética , Heterocromatina , Hibridación Fluorescente in Situ , Ostreidae/genética , Secuencias Repetitivas de Ácidos Nucleicos , Tradescantia/genética , Translocación Genética
10.
New Phytol ; 238(2): 624-636, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36658468

RESUMEN

Some interspecific plant hybrids show unequal transmission of chromosomes from parental genomes to the successive generations. It has been suggested that this is due to a differential behavior of parental chromosomes during meiosis. However, underlying mechanism is unknown. We analyzed chromosome composition of the F2 generation of Festuca × Lolium hybrids and reciprocal backcrosses to elucidate effects of male and female meiosis on the shift in parental genome composition. We studied male meiosis, including the attachment of chromosomes to the karyokinetic spindle and gene expression profiling of the kinetochore genes. We found that Lolium and Festuca homoeologues were transmitted differently to the F2 generation. Female meiosis led to the replacement of Festuca chromosomes by their Lolium counterparts. In male meiosis, Festuca univalents were attached less frequently to microtubules than Lolium univalents, lagged in divisions and formed micronuclei, which were subsequently eliminated. Genome sequence analysis revealed a number of non-synonymous mutations between copies of the kinetochore genes from Festuca and Lolium genomes. Furthermore, we found that outer kinetochore proteins NDC80 and NNF1 were exclusively expressed from the Lolium allele. We hypothesize that silencing of Festuca alleles results in improper attachment of Festuca chromosomes to karyokinetic spindle and subsequently their gradual elimination.


Asunto(s)
Festuca , Lolium , Lolium/genética , Festuca/genética , Hibridación Genética , Genoma de Planta , Cromosomas de las Plantas/genética , Meiosis/genética
11.
Plant J ; 107(4): 1166-1182, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34152039

RESUMEN

Allopolyploidization entailing the merger of two distinct genomes in a single hybrid organism, is an important process in plant evolution and a valuable tool in breeding programs. Newly established hybrids often experience massive genomic perturbations, including karyotype reshuffling and gene expression modifications. These phenomena may be asymmetric with respect to the two progenitors, with one of the parental genomes being "dominant." Such "genome dominance" can manifest in several ways, including biased homoeolog gene expression and expression level dominance. Here we employed a k-mer-based approach to study gene expression in reciprocal Festuca pratensis Huds. × Lolium multiflorum Lam. allopolyploid grasses. Our study revealed significantly more genes where expression mimicked that of the Lolium parent compared with the Festuca parent. This genome dominance was heritable to successive generation and its direction was only slightly modified by environmental conditions and plant age. Our results suggest that Lolium genome dominance was at least partially caused by its more efficient trans-acting gene expression regulatory factors. Unraveling the mechanisms responsible for propagation of parent-specific traits in hybrid crops contributes to our understanding of allopolyploid genome evolution and opens a way to targeted breeding strategies.


Asunto(s)
Festuca/genética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Lolium/genética , Poliploidía , Productos Agrícolas , Bases de Datos Genéticas , Festuca/crecimiento & desarrollo , Perfilación de la Expresión Génica , Lolium/crecimiento & desarrollo , Secuencias Reguladoras de Ácidos Nucleicos , Análisis de Secuencia de ARN
12.
BMC Genomics ; 23(1): 228, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35321662

RESUMEN

BACKGROUND: The tall wheatgrass species Thinopyrum elongatum carries a strong fusarium head blight (FHB) resistance locus located on the long arm of chromosome 7 (7EL) as well as resistance to leaf and stem rusts, all diseases with a significant impact on wheat production. Towards understanding the contribution of Th. elongatum 7EL to improvement of disease resistance in wheat, the genomic sequence of the 7EL fragment present in the wheat Chinese Spring (CS) telosomic addition line CS-7EL was determined and the contribution and impact of 7EL on the rachis transcriptome during FHB infection was compared between CS and CS-7EL. RESULTS: We assembled the Th. elongatum 7EL chromosome arm using a reference-guided approach. Combining this assembly with the available reference sequence for CS hexaploid wheat provided a reliable reference for interrogating the transcriptomic differences in response to infection conferred by the 7EL fragment. Comparison of the transcriptomes of rachis tissues from CS and CS-7EL showed expression of Th. elongatum transcripts as well as modulation of wheat transcript expression profiles in the CS-7EL line. Expression profiles at 4 days after infection with Fusarium graminearum, the causal agent of FHB, showed an increased in expression of genes associated with an effective defense response, in particular glucan endo-1,3-beta-glucosidases and chitinases, in the FHB-resistant line CS-7EL while there was a larger increase in differential expression for genes associated with the level of fungal infection in the FHB-susceptible line CS. One hundred and seven 7EL transcripts were expressed in the smallest 7EL region defined to carry FHB resistance. CONCLUSION: 7EL contributed to CS-7EL transcriptome by direct expression and through alteration of wheat transcript profiles. FHB resistance in CS-7EL was associated with transcriptome changes suggesting a more effective defense response. A list of candidate genes for the FHB resistance locus on 7EL has been established.


Asunto(s)
Cromosomas de las Plantas , Resistencia a la Enfermedad , Fusarium , Enfermedades de las Plantas , Poaceae , Cromosomas de las Plantas/genética , Resistencia a la Enfermedad/genética , Genómica , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Poaceae/genética , Poaceae/microbiología , Transcriptoma
13.
Plant Biotechnol J ; 20(7): 1373-1386, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35338551

RESUMEN

The first gapless, telomere-to-telomere (T2T) sequence assemblies of plant chromosomes were reported recently. However, sequence assemblies of most plant genomes remain fragmented. Only recent breakthroughs in accurate long-read sequencing have made it possible to achieve highly contiguous sequence assemblies with a few tens of contigs per chromosome, that is a number small enough to allow for a systematic inquiry into the causes of the remaining sequence gaps and the approaches and resources needed to close them. Here, we analyse sequence gaps in the current reference genome sequence of barley cv. Morex (MorexV3). Optical map and sequence raw data, complemented by ChIP-seq data for centromeric histone variant CENH3, were used to estimate the abundance of centromeric, ribosomal DNA, and subtelomeric repeats in the barley genome. These estimates were compared with copy numbers in the MorexV3 pseudomolecule sequence. We found that almost all centromeric sequences and 45S ribosomal DNA repeat arrays were absent from the MorexV3 pseudomolecules and that the majority of sequence gaps can be attributed to assembly breakdown in long stretches of satellite repeats. However, missing sequences cannot fully account for the difference between assembly size and flow cytometric genome size estimates. We discuss the prospects of gap closure with ultra-long sequence reads.


Asunto(s)
Hordeum , Cromosomas de las Plantas/genética , ADN Ribosómico/genética , Genoma de Planta/genética , Hordeum/genética , Análisis de Secuencia de ADN , Telómero/genética
14.
Cytometry A ; 101(9): 710-724, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34405937

RESUMEN

The estimation of nuclear DNA content has been by far the most popular application of flow cytometry in plants. Because flow cytometry measures relative fluorescence intensities of nuclei stained by a DNA fluorochrome, ploidy determination, and estimation of the nuclear DNA content in absolute units both require comparison to a reference standard of known DNA content. This implies that the quality of the results obtained depends on the standard selection and use. Internal standardization, when the nuclei of an unknown sample and the reference standard are isolated, stained, and measured simultaneously, is mandatory for precise measurements. As DNA peaks representing G1 /G0 nuclei of the sample and standard appear on the same histogram of fluorescence intensity, the quotient of their position on the fluorescence intensity axis provides the quotient of DNA amounts. For the estimation of DNA amounts in absolute units, a number of well-established standards are now available to cover the range of known plant genome sizes. Since there are different standards in use, the standard and the genome size assigned to it has always to be reported. When none of the established standards fits, the introduction of a new standard species is needed. For this purpose, the regression line approach or simultaneous analysis of the candidate standard with several established standards should be prioritized. Moreover, the newly selected standard organism has to fulfill a number of requirements: it should be easy to identify and maintain, taxonomically unambiguous, globally available, with known genome size stability, lacking problematic metabolites, suitable for isolation of sufficient amounts of nuclei, and enabling measurements with low coefficients of variation of DNA peaks, hence suitable for the preparation of high quality samples.


Asunto(s)
Genoma de Planta , Ploidias , ADN de Plantas/genética , Citometría de Flujo/métodos , Estándares de Referencia
15.
Theor Appl Genet ; 135(10): 3629-3642, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36038638

RESUMEN

KEY MESSAGE: The novel wheat powdery mildew and stripe rust resistance genes Pm5V/Yr5V are introgressed from Dasypyrum villosum and fine mapped to a narrowed region in 5VS, and their effects on yield-related traits were characterized. The powdery mildew and stripe rust seriously threaten wheat production worldwide. Dasypyrum villosum (2n = 2x = 14, VV), a relative of wheat, is a valuable resource of resistance genes for wheat improvement. Here, we describe a platform for rapid introgression of the resistance genes from D. villosum into the wheat D genome. A complete set of new wheat-D. villosum V (D) disomic substitution lines and 11 D/V Robertsonian translocation lines are developed and characterized by molecular cytogenetic method. A new T5DL·5V#5S line NAU1908 shows resistance to both powdery mildew and stripe rust, and the resistances associated with 5VS are confirmed to be conferred by seedling resistance gene Pm5V and adult-plant resistance gene Yr5V, respectively. We flow-sort chromosome arm 5VS and sequence it using the Illumina NovaSeq 6000 system that allows us to generate 5VS-specific markers for genetic mapping of Pm5V/Yr5V. Fine mapping shows that Pm5V and Yr5V are closely linked and the location is narrowed to an approximately 0.9 Mb region referencing the sequence of Chinese Spring 5DS. In this region, a NLR gene in scaffold 24,874 of 5VS orthologous to TraesCS5D02G044300 is the most likely candidate gene for Pm5V. Soft- and hard-grained T5DL·5V#5S introgressions confer resistance to both powdery mildew and stripe rust in diverse wheat genetic backgrounds without yield penalty. Meanwhile, significant decrease in plant height and increase in yield were observed in NIL-5DL·5V#5S compared with that in NIL-5DL·5DS. These results indicate that Pm5V/Yr5V lines might have the potential value to facilitate wheat breeding for disease resistance.


Asunto(s)
Basidiomycota , Triticum , Resistencia a la Enfermedad/genética , Fitomejoramiento , Enfermedades de las Plantas/genética , Poaceae/genética , Triticum/genética
16.
Int J Mol Sci ; 23(6)2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35328613

RESUMEN

Crested wheatgrass (Agropyron cristatum), a wild relative of wheat, is an attractive source of genes and alleles for their improvement. Its wider use is hampered by limited knowledge of its complex genome. In this work, individual chromosomes were purified by flow sorting, and DNA shotgun sequencing was performed. The annotation of chromosome-specific sequences characterized the DNA-repeat content and led to the identification of genic sequences. Among them, genic sequences homologous to genes conferring plant disease resistance and involved in plant tolerance to biotic and abiotic stress were identified. Genes belonging to the important groups for breeders involved in different functional categories were found. The analysis of the DNA-repeat content identified a new LTR element, Agrocen, which is enriched in centromeric regions. The colocalization of the element with the centromeric histone H3 variant CENH3 suggested its functional role in the grass centromere. Finally, 159 polymorphic simple-sequence-repeat (SSR) markers were identified, with 72 of them being chromosome- or chromosome-arm-specific, 16 mapping to more than one chromosome, and 71 mapping to all the Agropyron chromosomes. The markers were used to characterize orthologous relationships between A. cristatum and common wheat that will facilitate the introgression breeding of wheat using A. cristatum.


Asunto(s)
Agropyron , Agropyron/genética , Cromosomas de las Plantas/genética , Resistencia a la Enfermedad/genética , Fitomejoramiento , Triticum/genética
17.
Int J Mol Sci ; 23(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36232406

RESUMEN

Rye (Secale cereale) is a climate-resilient cereal grown extensively as grain or forage crop in Northern and Eastern Europe. In addition to being an important crop, it has been used to improve wheat through introgression of genomic regions for improved yield and disease resistance. Understanding the genomic diversity of rye will assist both the improvement of this crop and facilitate the introgression of more valuable traits into wheat. Here, we isolated and sequenced the short arm of rye chromosome 7 (7RS) from Triticale 380SD using flow cytometry and compared it to the public Lo7 rye whole genome reference assembly. We identify 2747 Lo7 genes present on the isolated chromosome arm and two clusters containing seven and sixty-five genes that are present on Triticale 380SD 7RS, but absent from Lo7 7RS. We identified 29 genes that are not assigned to chromosomal locations in the Lo7 assembly but are present on Triticale 380SD 7RS, suggesting a chromosome arm location for these genes. Our study supports the Lo7 reference assembly and provides a repertoire of genes on Triticale 7RS.


Asunto(s)
Secale , Triticale , Cromosomas de las Plantas/genética , Resistencia a la Enfermedad/genética , Grano Comestible/genética , Secale/genética , Triticale/genética , Triticum/genética
18.
Int J Mol Sci ; 23(7)2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35409181

RESUMEN

Grain dietary fiber content is an important health-promoting trait of bread wheat. A dominant dietary fiber component of wheat is the cell wall polysaccharide arabinoxylan and the goatgrass Aegilops biuncialis has high ß-glucan content, which makes it an attractive gene source to develop wheat lines with modified fiber composition. In order to support introgression breeding, this work examined genetic variability in grain ß-glucan, pentosan, and protein content in a collection of Ae. biuncialis. A large variation in grain protein and edible fiber content was revealed, reflecting the origin of Ae. biuncialis accessions from different eco-geographical habitats. Association analysis using DArTseq-derived SNPs identified 34 QTLs associated with ß-glucan, pentosan, water-extractable pentosan, and protein content. Mapping the markers to draft chromosome assemblies of diploid progenitors of Ae. biuncialis underlined the role of genes on chromosomes 1Mb, 4Mb, and 5Mb in the formation of grain ß-glucan content, while other QTLs on chromosome groups 3, 6, and 1 identified genes responsible for total- and water-extractable pentosan content. Functional annotation of the associated marker sequences identified fourteen genes, nine of which were identified in other monocots. The QTLs and genes identified in the present work are attractive targets for chromosome-mediated gene transfer to improve the health-promoting properties of wheat-derived foods.


Asunto(s)
Aegilops , beta-Glucanos , Aegilops/genética , Fibras de la Dieta , Genes de Plantas , Fitomejoramiento , Sitios de Carácter Cuantitativo , Triticum/genética , Agua
19.
Plant Biotechnol J ; 19(8): 1567-1578, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33606347

RESUMEN

Genomics studies in wild species of wheat have been limited due to the lack of references; however, new technologies and bioinformatics tools have much potential to promote genomic research. The wheat-Haynaldia villosa translocation line T6VS·6AL has been widely used as a backbone parent of wheat breeding in China. Therefore, revealing the genome structure of translocation chromosome 6VS·6AL will clarify how this chromosome formed and will help to determine how it affects agronomic traits. In this study, chromosome flow sorting, NGS sequencing and Chicago long-range linkage assembly were innovatively used to produce the assembled sequences of 6VS·6AL, and gene prediction and genome structure characterization at the molecular level were effectively performed. The analysis discovered that the short arm of 6VS·6AL was actually composed of a large distal segment of 6VS, a small proximal segment of 6AS and the centromere of 6A, while the collinear region in 6VS corresponding to 230-260 Mb of 6AS-Ta was deleted when the recombination between 6VS and 6AS occurred. In addition to the molecular mechanism of the increased grain weight and enhanced spike length produced by the translocation chromosome, it may be correlated with missing GW2-V and an evolved NRT-V cluster. Moreover, a fine physical bin map of 6VS was constructed by the high-throughput developed 6VS-specific InDel markers and a series of newly identified small fragment translocation lines involving 6VS. This study will provide essential information for mining of new alien genes carried by the 6VS·6AL translocation chromosome.


Asunto(s)
Fitomejoramiento , Triticum , Cromosomas de las Plantas/genética , Poaceae/genética , Translocación Genética , Triticum/genética
20.
Cytometry A ; 99(4): 328-342, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33615737

RESUMEN

Flow cytometric analysis and sorting of plant mitotic chromosomes has been mastered by only a few laboratories worldwide. Yet, it has been contributing significantly to progress in plant genetics, including the production of genome assemblies and the cloning of important genes. The dissection of complex genomes by flow sorting into the individual chromosomes that represent small parts of the genome reduces DNA sample complexity and streamlines projects relying on molecular and genomic techniques. Whereas flow cytometric analysis, that is, chromosome classification according to fluorescence and light scatter properties, is an integral part of any chromosome sorting project, it has rarely been used on its own due to lower resolution and sensitivity as compared to other cytogenetic methods. To perform chromosome analysis and sorting, commercially available electrostatic droplet sorters are suitable. However, in order to resolve and purify chromosomes of interest the instrument must offer high resolution of optical signals as well as stability during long runs. The challenge is thus not the instrumentation, but the adequate sample preparation. The sample must be a suspension of intact mitotic metaphase chromosomes and the protocol, which includes the induction of cell cycle synchrony, accumulation of dividing cells at metaphase, and release of undamaged chromosomes, is time consuming and laborious and needs to be performed very carefully. Moreover, in addition to fluorescent staining chromosomal DNA, the protocol may include specific labelling of DNA repeats to facilitate discrimination of particular chromosomes. This review introduces the applications of chromosome sorting in plants, and discusses in detail sample preparation, chromosome analysis and sorting to achieve the highest purity in flow-sorted fractions, and their suitability for downstream applications.


Asunto(s)
Cromosomas de las Plantas , Plantas , Ciclo Celular , Cromosomas de las Plantas/genética , Citometría de Flujo , Metafase , Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA