Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
PLoS Pathog ; 16(3): e1008296, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32134994

RESUMEN

A fundamental question in herpes simplex virus (HSV) pathogenesis is the consequence of viral reactivation to the neuron. Evidence supporting both post-reactivation survival and demise is published. The exceedingly rare nature of this event at the neuronal level in the sensory ganglion has limited direct examination of this important question. In this study, an in-depth in vivo analysis of the resolution of reactivation was undertaken. Latently infected C57BL/6 mice were induced to reactivate in vivo by hyperthermic stress. Infectious virus was detected in a high percentage (60-80%) of the trigeminal ganglia from these mice at 20 hours post-reactivation stimulus, but declined by 48 hours post-stimulus (0-13%). With increasing time post-reactivation stimulus, the percentage of reactivating neurons surrounded by a cellular cuff increased, which correlated with a decrease in detectable infectious virus and number of viral protein positive neurons. Importantly, in addition to intact viral protein positive neurons, fragmented viral protein positive neurons morphologically consistent with apoptotic bodies and containing cleaved caspase-3 were detected. The frequency of this phenotype increased through time post-reactivation. These fragmented neurons were surrounded by Iba1+ cells, consistent with phagocytic removal of dead neurons. Evidence of neuronal destruction post-reactivation prompted re-examination of the previously reported non-cytolytic role of T cells in controlling reactivation. Latently infected mice were treated with anti-CD4/CD8 antibodies prior to induced reactivation. Neither infectious virus titers nor neuronal fragmentation were altered. In contrast, when viral DNA replication was blocked during reactivation, fragmentation was not observed even though viral proteins were expressed. Our data demonstrate that at least a portion of reactivating neurons are destroyed. Although no evidence for direct T cell mediated antigen recognition in this process was apparent, inhibition of viral DNA replication blocked neuronal fragmentation. These unexpected findings raise new questions about the resolution of HSV reactivation in the host nervous system.


Asunto(s)
Herpes Simple/virología , Herpesvirus Humano 1/fisiología , Neuronas/virología , Activación Viral , Animales , Apoptosis , Caspasa 3/genética , Caspasa 3/metabolismo , Femenino , Herpes Simple/genética , Herpes Simple/metabolismo , Herpes Simple/fisiopatología , Herpesvirus Humano 1/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Replicación Viral
2.
Int J Obes (Lond) ; 45(11): 2377-2387, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34302121

RESUMEN

OBJECTIVE: The risks of excess sugar intake in addition to high-fat diet consumption on immunopathogenesis of obesity-associated metabolic diseases are poorly defined. Interleukin-4 (IL-4) and IL-13 signaling via IL-4Rα regulates adipose tissue lipolysis, insulin sensitivity, and liver fibrosis in obesity. However, the contribution of IL-4Rα to sugar rich diet-driven obesity and metabolic sequelae remains unknown. METHODS: WT, IL-4Rα-deficient (IL-4Rα-/-) and STAT6-deficient mice (STAT6-/-) male mice were fed low-fat chow, high fat (HF) or HF plus high carbohydrate (HC/fructose) diet (HF + HC). Analysis included quantification of: (i) body weight, adiposity, energy expenditure, fructose metabolism, fatty acid oxidation/synthesis, glucose dysmetabolism and hepatocellular damage; (ii) the contribution of the hematopoietic or non-hematopoietic IL-4Rα expression; and (iii) the relevance of IL-4Rα downstream canonical STAT6 signaling pathway in this setting. RESULTS: We show that IL-4Rα regulated HF + HC diet-driven weight gain, whole body adiposity, adipose tissue inflammatory gene expression, energy expenditure, locomotor activity, glucose metabolism, hepatic steatosis, hepatic inflammatory gene expression and hepatocellular damage. These effects were potentially, and in part, dependent on non-hematopoietic IL-4Rα expression but were independent of direct STAT6 activation. Mechanistically, hepatic ketohexokinase-A and C expression was dependent on IL-4Rα, as it was reduced in IL-4Rα-deficient mice. KHK activity was also affected by HF + HC dietary challenge. Further, reduced expression/activity of KHK in IL-4Rα mice had a significant effect on fatty acid oxidation and fatty acid synthesis pathways. CONCLUSION: Our findings highlight potential contribution of non-hematopoietic IL-4Rα activation of a non-canonical signaling pathway that regulates the HF + HC diet-driven induction of obesity and severity of obesity-associated sequelae.


Asunto(s)
Metabolismo Energético/fisiología , Interleucina-4/metabolismo , Obesidad/metabolismo , Animales , Modelos Animales de Enfermedad , Fructosa/efectos adversos , Resistencia a la Insulina/fisiología , Interleucina-4/análisis , Ratones , Obesidad/inmunología
3.
J Virol ; 93(8)2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30728262

RESUMEN

Herpes simplex virus (HSV) establishes latency in neurons of the peripheral and central nervous systems (CNS). Evidence is mounting that HSV latency and reactivation in the nervous system has the potential to promote neurodegenerative processes. Understanding how this occurs is an important human health goal. In the mouse model, in vivo viral reactivation in the peripheral nervous system, triggered by hyperthermic stress, has been well characterized with respect to frequency and cell type. However, characterization of in vivo reactivation in the CNS is extremely limited. Further, it remains unclear whether virus reactivated in the peripheral nervous system is transported to the CNS in an infectious form, how often this occurs, and what parameters underlie the efficiency and outcomes of this process. In this study, reactivation was quantified in the trigeminal ganglia (TG) and the brain stem from the same latently infected animal using direct assays of equivalent sensitivity. Reactivation was detected more frequently in the TG than in the brain stem and, in all but one case, the amount of virus recovered was greater in the TG than that detected in the brain stem. Viral protein positive neurons were observed in the TG, but a cellular source for reactivation in the brain stem was not identified, despite serially sectioning and examining the entire tissue (0/6 brain stems). These findings suggest that infectious virus detected in the brain stem is primarily the result of transport of reactivated virus from the TG into the brain stem.IMPORTANCE Latent herpes simplex virus (HSV) DNA has been detected in the central nervous systems (CNS) of humans postmortem, and infection with HSV has been correlated with the development of neurodegenerative diseases. However, whether HSV can directly reactivate in the CNS and/or infectious virus can be transported to the CNS following reactivation in peripheral ganglia has been unclear. In this study, infectious virus was recovered from both the trigeminal ganglia and the brain stem of latently infected mice following a reactivation stimulus, but a higher frequency of reactivation and increased titers of infectious virus were recovered from the trigeminal ganglia. Viral proteins were detected in neurons of the trigeminal ganglia, but a cellular source of infectious virus could not be identified in the brain stem. These results suggest that infectious virus is transported from the ganglia to the CNS following reactivation but do not exclude the potential for direct reactivation in the CNS.


Asunto(s)
Tronco Encefálico/metabolismo , Herpes Simple/metabolismo , Herpesvirus Humano 1/fisiología , Ganglio del Trigémino/metabolismo , Proteínas Virales/metabolismo , Activación Viral/fisiología , Latencia del Virus/fisiología , Animales , Transporte Biológico Activo , Tronco Encefálico/patología , Tronco Encefálico/virología , Femenino , Herpes Simple/patología , Masculino , Ratones , Conejos , Ganglio del Trigémino/patología , Ganglio del Trigémino/virología
4.
J Virol ; 91(16)2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28637763

RESUMEN

Herpes simplex virus (HSV) infection is widespread in the human population. Following orofacial infection, HSV establishes latency in innervating sensory neurons, primarily located in the trigeminal ganglia. A central feature of HSV pathogenesis is the ability to periodically reactivate in those neurons and be transported back to the body surface. Both transmission and disease, such as keratitis, encephalitis, and neurodegeneration, have been linked to reactivation. Despite invaluable insights obtained from model systems, interactions between viral and host functions that regulate reactivation are still incompletely understood. Various assays are used for measuring reactivation in animal models, but there have been limited comparisons between methods and the accuracy of detecting the timing of reactivation and the corresponding amount of infectious virus produced in the ganglia per reactivation event. Here, we directly compare two approaches for measuring reactivation in latently infected explanted ganglia by sampling media from the explanted cultures or by homogenization of the ganglia and compare the results to viral protein expression in the whole ganglia. We show that infectious virus detection by direct homogenization of explanted ganglia correlates with viral protein expression, but detection of infectious virus in medium samples from explanted cultures does not occur until extensive spread of virus is observed in the ganglia. The medium-sampling method is therefore not reflective of the initial timing of reactivation, and the additional variables influencing spread of virus in the ganglia should be considered when interpreting results obtained using this method.IMPORTANCE The development of treatments to prevent and/or treat HSV infection rely upon understanding viral and host factors that influence reactivation. Progress is dependent on experimental methods that accurately measure the frequency and timing of reactivation in latently infected neurons. In this study, two methods for detecting reactivation using the explant model are compared. We show through direct tissue homogenization that reactivation occurs much earlier than can be detected by the indirect method of sampling media from explanted cultures. Thus, the sampling method does not detect the initial timing of reactivation, and results obtained using this method are subject to additional variables with the potential to obscure reactivation outcomes.


Asunto(s)
Ganglios/virología , Técnicas de Cultivo de Órganos/métodos , Simplexvirus/fisiología , Activación Viral , Animales , Ratones
5.
STAR Protoc ; 4(4): 102643, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37858473

RESUMEN

Inflammation-driven preterm birth (PTB) is modeled in mice using lipopolysaccharide (LPS) challenge. Here, we present a protocol for cytokine and uterine immune cell characterization in a mouse model of LPS-induced PTB. We describe steps for LPS challenge, in vivo cytokine capture assay, and isolation of uterine immune cells for flow cytometry. These techniques allow examination of systemic inflammation in vivo and immune cell characterization at the maternal-fetal interface, facilitating exploration of inflammatory dynamics in mouse models of PTB susceptibility. For complete details on the use and execution of this protocol, please refer to Doll et al.1.


Asunto(s)
Citocinas , Nacimiento Prematuro , Recién Nacido , Femenino , Humanos , Animales , Ratones , Citocinas/efectos adversos , Lipopolisacáridos/efectos adversos , Nacimiento Prematuro/inducido químicamente , Útero , Inflamación/inducido químicamente
6.
Cell Rep ; 42(4): 112352, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37027297

RESUMEN

Clinical evidence points to a function for B cell-activating factor (BAFF) in pregnancy. However, direct roles for BAFF-axis members in pregnancy have not been examined. Here, via utility of genetically modified mice, we report that BAFF promotes inflammatory responsiveness and increases susceptibility to inflammation-induced preterm birth (PTB). In contrast, we show that the closely related A proliferation-inducing ligand (APRIL) decreases inflammatory responsiveness and susceptibility to PTB. Known BAFF-axis receptors serve a redundant function in signaling BAFF/APRIL presence in pregnancy. Treatment with anti-BAFF/APRIL monoclonal antibodies or BAFF/APRIL recombinant proteins is sufficient to manipulate susceptibility to PTB. Notably, macrophages at the maternal-fetal interface produce BAFF, while BAFF and APRIL presence divergently shape macrophage gene expression and inflammatory function. Overall, our findings demonstrate that BAFF and APRIL play divergent inflammatory roles in pregnancy and provide therapeutic targets for mitigating risk of inflammation-induced PTB.


Asunto(s)
Nacimiento Prematuro , Animales , Femenino , Ratones , Embarazo , Factor Activador de Células B , Inflamación , Transducción de Señal , Miembro 13 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/genética
7.
Nutrients ; 15(23)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38068816

RESUMEN

Vertical transmission of obesity is a critical contributor to the unabated obesity pandemic and the associated surge in metabolic diseases. Existing experimental models insufficiently recapitulate "human-like" obesity phenotypes, limiting the discovery of how severe obesity in pregnancy instructs vertical transmission of obesity. Here, via utility of thermoneutral housing and obesogenic diet feeding coupled to syngeneic mating of WT obese female and lean male mice on a C57BL/6 background, we present a tractable, more "human-like" approach to specifically investigate how maternal obesity contributes to offspring health. Using this model, we found that maternal obesity decreased neonatal survival, increased offspring adiposity, and accelerated offspring predisposition to obesity and metabolic disease. We also show that severe maternal obesity was sufficient to skew offspring microbiome and create a proinflammatory gestational environment that correlated with inflammatory changes in the offspring in utero and adulthood. Analysis of a human birth cohort study of mothers with and without obesity and their infants was consistent with mouse study findings of maternal inflammation and offspring weight gain propensity. Together, our results show that dietary induction of obesity in female mice coupled to thermoneutral housing can be used for future mechanistic interrogations of obesity and metabolic disease in pregnancy and vertical transmission of pathogenic traits.


Asunto(s)
Enfermedades Metabólicas , Obesidad Materna , Efectos Tardíos de la Exposición Prenatal , Humanos , Femenino , Masculino , Ratones , Embarazo , Animales , Estudios de Cohortes , Vivienda , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/metabolismo , Enfermedades Metabólicas/etiología
8.
Nutr Diabetes ; 11(1): 15, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34099626

RESUMEN

BACKGROUND: Understanding gender-associated bias in aging and obesity-driven metabolic derangements has been hindered by the inability to model severe obesity in female mice. METHODS: Here, using chow- or high fat diet (HFD)-feeding regimens at standard (TS) and thermoneutral (TN) housing temperatures, the latter to model obesity in female mice, we examined the impact of gender and aging on obesity-associated metabolic derangements and immune responsiveness. Analysis included quantification of: (i) weight gain and adiposity; (ii) the development and severity of glucose dysmetabolism and non-alcoholic fatty liver disease (NAFLD); and (iii) induction of inflammatory pathways related to metabolic dysfunction. RESULTS: We show that under chow diet feeding regimen, aging was accompanied by increased body weight and white adipose tissue (WAT) expansion in a gender independent manner. HFD feeding regimen in aged, compared to young, male mice at TS, resulted in attenuated glucose dysmetabolism and hepatic steatosis. However, under TS housing conditions only aged, but not young, HFD fed female mice developed obesity. At TN however, both young and aged HFD fed female mice developed severe obesity. Independent of gender or housing conditions, aging attenuated the severity of metabolic derangements in HFD-fed obese mice. Tempered severity of metabolic derangements in aged mice was associated with increased splenic frequency of regulatory T (Treg) cells, Type I regulatory (Tr1)-like cells and circulating IL-10 levels and decreased vigor of HFD-driven induction of inflammatory pathways in adipose and liver tissues. CONCLUSION: Our findings suggest that aging-associated altered immunological profile and inflammatory vigor may play a dominant role in the attenuation of obesogenic diet-driven metabolic dysfunction.


Asunto(s)
Envejecimiento/metabolismo , Enfermedades Metabólicas/metabolismo , Obesidad/metabolismo , Tejido Adiposo Blanco/metabolismo , Adiposidad , Animales , Dieta Alta en Grasa/métodos , Femenino , Glucosa/metabolismo , Humanos , Inflamación/metabolismo , Interleucina-10/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Factores Sexuales , Linfocitos T Reguladores/metabolismo , Aumento de Peso
9.
Cell Metab ; 33(6): 1187-1204.e9, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34004162

RESUMEN

Emerging evidence suggests a key contribution to non-alcoholic fatty liver disease (NAFLD) pathogenesis by Th17 cells. The pathogenic characteristics and mechanisms of hepatic Th17 cells, however, remain unknown. Here, we uncover and characterize a distinct population of inflammatory hepatic CXCR3+Th17 (ihTh17) cells sufficient to exacerbate NAFLD pathogenesis. Hepatic ihTh17 cell accrual was dependent on the liver microenvironment and CXCR3 axis activation. Mechanistically, the pathogenic potential of ihTh17 cells correlated with increased chromatin accessibility, glycolytic output, and concomitant production of IL-17A, IFNγ, and TNFα. Modulation of glycolysis using 2-DG or cell-specific PKM2 deletion was sufficient to reverse ihTh17-centric inflammatory vigor and NAFLD severity. Importantly, ihTh17 cell characteristics, CXCR3 axis activation, and hepatic expression of glycolytic genes were conserved in human NAFLD. Together, our data show that the steatotic liver microenvironment regulates Th17 cell accrual, metabolism, and competence toward an ihTh17 fate. Modulation of these pathways holds potential for development of novel therapeutic strategies for NAFLD.


Asunto(s)
Proteínas Portadoras/inmunología , Proteínas de la Membrana/inmunología , Enfermedad del Hígado Graso no Alcohólico/inmunología , Piruvato Quinasa/inmunología , Receptores CXCR3/inmunología , Células Th17/inmunología , Hormonas Tiroideas/inmunología , Animales , Línea Celular , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Th17/citología , Proteínas de Unión a Hormona Tiroide
10.
Nat Commun ; 12(1): 2911, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34006859

RESUMEN

The impact of immune mediators on weight homeostasis remains underdefined. Interrogation of resistance to diet-induced obesity in mice lacking a negative regulator of Toll-like receptor signaling serendipitously uncovered a role for B cell activating factor (BAFF). Here we show that overexpression of BAFF in multiple mouse models associates with protection from weight gain, approximating a log-linear dose response relation to BAFF concentrations. Gene expression analysis of BAFF-stimulated subcutaneous white adipocytes unveils upregulation of lipid metabolism pathways, with BAFF inducing white adipose tissue (WAT) lipolysis. Brown adipose tissue (BAT) from BAFF-overexpressing mice exhibits increased Ucp1 expression and BAFF promotes brown adipocyte respiration and in vivo energy expenditure. A proliferation-inducing ligand (APRIL), a BAFF homolog, similarly modulates WAT and BAT lipid handling. Genetic deletion of both BAFF and APRIL augments diet-induced obesity. Lastly, BAFF/APRIL effects are conserved in human adipocytes and higher BAFF/APRIL levels correlate with greater BMI decrease after bariatric surgery. Together, the BAFF/APRIL axis is a multifaceted immune regulator of weight gain and adipose tissue function.


Asunto(s)
Factor Activador de Células B/genética , Obesidad/genética , Transducción de Señal/genética , Miembro 13 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/genética , Aumento de Peso/genética , Adipocitos/citología , Adipocitos/metabolismo , Tejido Adiposo Pardo/citología , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/citología , Tejido Adiposo Blanco/metabolismo , Animales , Factor Activador de Células B/metabolismo , Células Cultivadas , Dieta Alta en Grasa/efectos adversos , Perfilación de la Expresión Génica/métodos , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Obesidad/etiología , Obesidad/metabolismo , Miembro 13 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/metabolismo
11.
JCI Insight ; 5(22)2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-33208552

RESUMEN

Infection-driven inflammation in pregnancy is a major cause of spontaneous preterm birth (PTB). Both systemic infection and bacterial ascension through the vagina/cervix to the amniotic cavity are strongly associated with PTB. However, the contribution of maternal or fetal inflammatory responses in the context of systemic or localized models of infection-driven PTB is not well defined. Here, using intraperitoneal or intraamniotic LPS challenge, we examined the necessity and sufficiency of maternal and fetal Toll-like receptor (TLR) 4 signaling in induction of inflammatory vigor and PTB. Both systemic and local LPS challenge promoted induction of inflammatory pathways in uteroplacental tissues and induced PTB. Restriction of TLR4 expression to the maternal compartment was sufficient for induction of LPS-driven PTB in either systemic or intraamniotic challenge models. In contrast, restriction of TLR4 expression to the fetal compartment failed to induce LPS-driven PTB. Vav1-Cre-mediated genetic deletion of TLR4 suggested a critical role for maternal immune cells in inflammation-driven PTB. Further, passive transfer of WT in vitro-derived macrophages and dendritic cells to TLR4-null gravid females was sufficient to induce an inflammatory response and drive PTB. Cumulatively, these findings highlight the critical role for maternal regulation of inflammatory cues in induction of inflammation-driven parturition.


Asunto(s)
Feto/patología , Inflamación/complicaciones , Lipopolisacáridos/toxicidad , Nacimiento Prematuro/patología , Receptor Toll-Like 4/fisiología , Animales , Citocinas/metabolismo , Femenino , Feto/efectos de los fármacos , Feto/inmunología , Inflamación/inducido químicamente , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Embarazo , Nacimiento Prematuro/etiología , Nacimiento Prematuro/metabolismo
12.
Nat Commun ; 11(1): 2745, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32488081

RESUMEN

White adipose tissue inflammation, in part via myeloid cell contribution, is central to obesity pathogenesis. Mechanisms regulating adipocyte inflammatory potential and consequent impact of such inflammation in disease pathogenesis remain poorly defined. We show that activation of the type I interferon (IFN)/IFNα receptor (IFNAR) axis amplifies adipocyte inflammatory vigor and uncovers dormant gene expression patterns resembling inflammatory myeloid cells. IFNß-sensing promotes adipocyte glycolysis, while glycolysis inhibition impeded IFNß-driven intra-adipocyte inflammation. Obesity-driven induction of the type I IFN axis and activation of adipocyte IFNAR signaling contributes to obesity-associated pathogenesis in mice. Notably, IFNß effects are conserved in human adipocytes and detection of the type I IFN/IFNAR axis-associated signatures positively correlates with obesity-driven metabolic derangements in humans. Collectively, our findings reveal a capacity for the type I IFN/IFNAR axis to regulate unifying inflammatory features in both myeloid cells and adipocytes and hint at an underappreciated contribution of adipocyte inflammation in disease pathogenesis.


Asunto(s)
Adipocitos/metabolismo , Inflamación/metabolismo , Interferón Tipo I/metabolismo , Obesidad/metabolismo , Animales , Modelos Animales de Enfermedad , Expresión Génica , Humanos , Interferón beta/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Células Mieloides/metabolismo , Receptor de Interferón alfa y beta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA