Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
1.
Nature ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782036

RESUMEN

Concerted nucleophilic substitution, known as SN2 reaction, is a fundamental organic transformation used in synthesis to introduce new functional groups and construct carbon-carbon and carbon-heteroatom bonds1. SN2 reactions typically involve backside attack of a nucleophile to the σ* orbital of a C(sp3)-X bond (X= halogen or other leaving group), resulting in complete inversion of a stereocenter 2. In contrast, the corresponding stereoinvertive nucleophilic substitution on electronically unbiased sp2 vinyl electrophiles, namely concerted SNV(σ) reaction, is much rarer and so far, limited to carefully designed substrates mostly in ring-forming processes3,4. Here we show that concerted SNV reactions can be accelerated by a proposed strain-release mechanism in metallated complexes, leading to the development of a general and stereospecific alkenylidene homologation of diverse organoboronates. This method enables the iterative incorporation of multiple alkenylidene units, giving cross-conjugated polyenes that are challenging to prepare otherwise. Further application to the synthesis of bioactive compounds containing multi-substituted alkenes is also demonstrated. Computational studies suggest an unusual SN2-like concerted pathway promoted by diminishing steric strain in the square planar transition state, which explains the high efficiency and stereoinversive feature of this metallate SNV reaction.

2.
Nature ; 567(7748): 373-378, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30758326

RESUMEN

Carbon-hydrogen (C-H) and carbon-carbon (C-C) bonds are the main constituents of organic matter. Recent advances in C-H functionalization technology have vastly expanded our toolbox for organic synthesis1. By contrast, C-C activation methods that enable editing of the molecular skeleton remain limited2-7. Several methods have been proposed for catalytic C-C activation, particularly with ketone substrates, that are typically promoted by using either ring-strain release as a thermodynamic driving force4,6 or directing groups5,7 to control the reaction outcome. Although effective, these strategies require substrates that contain highly strained ketones or a preinstalled directing group, or are limited to more specialist substrate classes5. Here we report a general C-C activation mode driven by aromatization of a pre-aromatic intermediate formed in situ. This reaction is suitable for various ketone substrates, is catalysed by an iridium/phosphine combination and is promoted by a hydrazine reagent and 1,3-dienes. Specifically, the acyl group is removed from the ketone and transformed to a pyrazole, and the resulting alkyl fragment undergoes various transformations. These include the deacetylation of methyl ketones, carbenoid-free formal homologation of aliphatic linear ketones and deconstructive pyrazole synthesis from cyclic ketones. Given that ketones are prevalent in feedstock chemicals, natural products and pharmaceuticals, these transformations could offer strategic bond disconnections in the synthesis of complex bioactive molecules.


Asunto(s)
Carbono/química , Cetonas/química , Acilación , Hidrazinas/química , Iridio/química , Fosfinas/química , Pirazoles/síntesis química , Pirazoles/química
3.
J Am Chem Soc ; 146(14): 9512-9518, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38551167

RESUMEN

1,2-Azaborines, a unique class of BN-isosteres of benzene, have attracted great interest across several fields. While significant advancements have been made in the postfunctionalization of 1,2-azaborines, challenges still exist for the selective functionalization of the C4 position and access to 1,2-azaborines with five or six independently installed substituents. Here we report a rapid and modular method for C3 and C4 difunctionalization of 1,2-azaborines using the palladium/norbornene (Pd/NBE) cooperative catalysis. Enabled by the C2 amide-substituted NBE, diverse 3-iodo-1,2-azaborines can be used as substrates, showing broad functional group tolerance. Besides ortho arylation, preliminary success of ortho alkylation has also been realized. In addition, a range of alkenes and nucleophiles can be employed for ipso C3 functionalization. The reaction is scalable, and various postfunctionalizations, including forming hexa-substituted 1,2-azaborines, have been achieved.


Asunto(s)
Compuestos de Boro , Paladio , Catálisis , Norbornanos
4.
J Am Chem Soc ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949482

RESUMEN

Synthesis of interior-functionalized dendritic macromolecules is generally tedious and labor-intensive, which has been a key factor hampering their practical applications. Here, we have revisited this long-standing challenge and devised a modular and convergent platform to synthesize multifunctional dendrons with all-carbon backbones up to four generations via an in situ functionalization strategy. Enabled by the palladium/norbornene cooperative catalysis, different functional groups can be introduced to each generation of dendrons during the dendron growth, making it convenient for systematic comparison of their properties. The utility of this versatile platform is further showcased in the internal-functionalization-dependent properties of dendrons as organogels and aggregation-induced emission materials.

5.
Angew Chem Int Ed Engl ; 63(24): e202404042, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38578216

RESUMEN

Since the discovery of the palladium/norbornene (Pd/NBE)-catalyzed ortho amination in 2013, escaping the limitation of only yielding tertiary anilines has been a long-standing challenge. Here, we describe that, by carefully choosing the phosphine ligand and NBE mediator, the installation of a N-mono-alkylamino group becomes feasible. The reaction tolerates a wide range of aryl iodide substrates and various N-mono-tertiary alkylamine-derived electrophiles. Both ipso alkenylation and alkynylation can be realized. The synthetic utility of this method is exemplified by the formation of primary amino group via selective deprotection and streamlined access to N-heterocycles. Preliminary success of installing a bulky N-secondary alkylamino group and a mechanistic understanding of the decomposition pathways of mono N-alkylamine electrophiles have been obtained.

6.
J Am Chem Soc ; 145(34): 19120-19128, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37603817

RESUMEN

Synthesis of sequence-defined monodisperse π-conjugated polymers with versatile backbones remains a substantial challenge. Here we report the development of an integrated iterative binomial synthesis (IIBS) strategy to enable backbone engineering of conjugated polymers with precisely controlled lengths and sequences as well as high molecular weights. The IIBS strategy capitalizes on the use of phenol as a surrogate for aryl bromide and represents the merge between protecting-group-aided iterative synthesis (PAIS) and iterative binomial synthesis (IBS). Long and monodisperse conjugated polymers with diverse irregular backbones, which are inaccessible by conventional polymerizations, can be efficiently prepared by IIBS. In addition, topology-dependent and chain-length-dependent properties have been investigated.

7.
J Am Chem Soc ; 145(20): 11005-11011, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37184338

RESUMEN

While Catellani reactions have become increasingly important for arene functionalizations, they have been solely catalyzed by palladium. Here we report the first nickel-catalyzed Catellani-type annulation of aryl triflates and chlorides to form various benzocyclobutene-fused norbornanes in high efficiency. Mechanistic studies reveal a surprising outer-sphere concerted metalation/deprotonation pathway during the formation of the nickelacycle, as well as the essential roles of the base and the triflate anion. The reaction shows a broad functional group tolerance and enhanced regioselectivity compared to the corresponding palladium catalysis.

8.
J Am Chem Soc ; 145(38): 21096-21103, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37712624

RESUMEN

Alkyl halides are versatile precursors to access diverse functional groups (FGs). Due to their lability, the development of surrogates for alkyl halides is strategically important for complex molecule synthesis. Given the stability and ease of derivatization inherent in common alkyl ketones, here we report a deacylative halogenation approach to convert various methyl ketones to the corresponding alkyl chlorides, bromides, and iodides. The reaction is driven by forming an aromatic byproduct, i.e., 1,2,4-triazole, in which N'-methylpicolinohydrazonamide (MPHA) is employed to form a prearomatic intermediate and halogen atom-transfer (XAT) reagents are used to quench the alkyl radical intermediate. The reaction is efficient in yielding primary and secondary alkyl halides from a wide range of methyl ketones with broad FG tolerance. It also works for complex natural-product-derived and fluoro-containing substrates. In addition, one-pot conversions of methyl ketones to various other FGs and annulations with alkenes and alkynes through deacylative halogenation are realized. Moreover, an unusual iterative homologation of alkyl iodides is also demonstrated. Finally, mechanistic studies reveal an intriguing double XAT process for the deacylative iodination reaction, which could have implications beyond this work.

9.
J Am Chem Soc ; 145(8): 4828-4852, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36799470

RESUMEN

Here, we report our detailed efforts toward the synthesis of phainanoids, a novel class of dammarane-type triterpenoids with potent immunosuppressive activities and unique structural features. Systematic model studies have been carried out, and efficient approaches have been established to construct the benzofuranone-based 4,5-spirocycle, the D/E/F tricyclic core, the [4.3.1] propellane, and the 5,5-oxaspirolactone moieties. The asymmetric synthesis of (+)-phainanoid A has been achieved through kinetic resolution of the tricyclic core followed by diastereoselective installation of the A/B/C and G/H rings and fragment coupling with the enantioenriched I/J rings. In addition, novel estrone-derived phainanoid analogues have been prepared. The immunosuppressive and cell survival assays revealed that (+)-phainanoid A and some of its synthetic analogues can specifically inhibit stimulation-induced lymphocyte proliferation but not cell survival at their effective concentrations. Preliminary structure-activity relationship information has been obtained, which could inspire future design of immunosuppressive phainanoid analogues.


Asunto(s)
Productos Biológicos , Productos Biológicos/química , Estereoisomerismo , Relación Estructura-Actividad , Inmunosupresores/farmacología , Supervivencia Celular
10.
Acc Chem Res ; 55(16): 2341-2354, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35901263

RESUMEN

Bridged and fused rings are commonly found in biologically important molecules. Current tactics to construct these ring systems are primarily based on stepwise ring formation (i.e., making one ring first followed by making another) and cycloaddition reactions (e.g., Diels-Alder reaction). To seek a complementary and perhaps more unified ring-forming approach, a deconstructive strategy based on C-C bond activation of cyclic ketones has been conceived. The named "cut-and-sew" reaction uses cyclic ketones with a tethered unsaturated moiety as substrates, which involves oxidative addition of a transition metal into the ketone C-C bond followed by intramolecular insertion of the unsaturated unit. This strategy has proved successful to access diverse ring scaffolds that are nontrivial to construct otherwise.This Account offers a concise summary of our laboratory's systematic efforts in developing transition metal-catalyzed cut-and-sew reactions for the synthesis of bridged and fused rings over the past 10 years. In particular, we will focus on the reactions using readily available benzocyclobutenones and cyclobutanones. To date, the scope of the cut-and-sew reactions has been greatly expanded. First, diverse unsaturated moieties can serve as suitable coupling partners, such as alkenyl, alkynyl, allenyl, carbonyl, and iminyl groups. Second, a variety of reaction modes have been uncovered. In this account, (4 + 2), (4 + 2 - 1), and (4 + 1) cycloadditions that lead to a range of bridged or fused scaffolds will be summarized. Third, enantioselective transformations have been realized to efficiently construct chiral scaffolds, which are enabled by two strategies: enantio-determining migratory insertion and desymmetrization of cyclobutanones. Fourth, the synthetic applications have been demonstrated in streamlined total syntheses of a number of complex natural products. Compared to conventional synthetic logics, the cut-and-sew reaction allows the development of new bond-disconnecting strategies. Thus, the syntheses of (-)-cycloclavine, (-)-thebainone A, penicibilaenes, and the proposed cycloinumakiol are discussed in more detail.In addition to the narrative of the development of the cut-and-sew chemistry, this Account also aims to provide core guiding foundations and inspirations toward broader deconstructive synthetic applications through C-C bond cleavage. It is anticipated that more classes of cyclic compounds could serve as the substrates beyond benzocyclobutenones and cyclobutanones, and more diverse unsaturated moieties could be coupled. It can also be envisaged that more innovative utilization of this cut-and-sew strategy in complex organic syntheses will be revealed in the near future.


Asunto(s)
Elementos de Transición , Catálisis , Técnicas de Química Sintética , Reacción de Cicloadición , Cetonas
11.
Angew Chem Int Ed Engl ; 62(35): e202307118, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37417916

RESUMEN

The value of Matteson-type reactions has been increasingly recognized for developing automated organic synthesis. However, the typical Matteson reactions almost exclusively focus on homologation of carbon units. Here, we report the detailed development of sequential insertion of nitrogen and carbon atoms into boronate C-B bonds, which provides a modular and iterative approach to access functionalized tertiary amines. A new class of nitrenoid reagents is uncovered to allow direct formation of aminoboranes from aryl or alkyl boronates via N-insertion. The one-pot N-insertion followed by controlled mono- or double-carbenoid insertion has been realized with widely available aryl boronates. The resulting aminoalkyl boronate products can undergo further homologation and various other transformations. Preliminary success on homologation of N,N-dialkylaminoboranes and sequential N- and C-insertions with alkyl boronates have also been achieved. To broaden the synthetic utility, selective removal of a benzyl or aryl substituent permits access to secondary or primary amine products. The application of this method has been demonstrated in the modular synthesis of bioactive compounds and the programmable construction of diamines and aminoethers. A plausible reaction mechanism, supported by preliminary NMR (nuclear magnetic resonance) and computational studies, is also proposed.

12.
Angew Chem Int Ed Engl ; 62(15): e202213691, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-36800315

RESUMEN

Herein we report the development of deacylative thiolation of diverse methyl ketones. The reaction is redox-neutral, and heavy-metal-free, which provides a new way to introduce thioether groups site-specifically to unactivated aliphatic positions. It also features excellent functional group tolerance and broad substrate scope, thus allowing late-stage derivatization. The process benefits from efficient condensation between the activation reagent and ketone substrates, which triggers aromatization-driven C-C fragmentation and rapid radical coupling with thiosulfonates. Experimental and computational mechanistic studies suggest the involvement of a radical chain pathway.

13.
Angew Chem Int Ed Engl ; 62(43): e202310697, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37672173

RESUMEN

Methods that can simultaneously install multiple different functional groups to heteroarenes via C-H functionalizations are valuable for complex molecule synthesis, which, however, remain challenging to realize. Here we report the development of vicinal di-carbo-functionalization of indoles in a site- and regioselective manner, enabled by the palladium/norbornene (Pd/NBE) cooperative catalysis. The reaction is initiated by the Pd(II)-mediated C3-metalation and specifically promoted by the C1-substituted NBEs. The mild, scalable, and robust reaction conditions allow for a good substrate scope and excellent functional group tolerance. The resulting C2-arylated C3-alkenylated indoles can be converted to diverse synthetically useful scaffolds. The combined experimental and computational mechanistic study reveals the unique role of the C1-substituted NBE in accelerating the turnover-limiting oxidative addition step.

14.
J Am Chem Soc ; 144(19): 8498-8503, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35532536

RESUMEN

The Matteson-type reactions have received increasing interest in constructing complex organic molecules via iterative synthetic strategies; however, the current tactics are almost exclusively based on homologation of pure carbon chains. Here, we report the development of the oxa-Matteson reaction that enables sequential oxygen and carbenoid insertions into diverse alkyl- and arylboronates. It offers a distinct entry to a wide range of boron-substituted ethers. The utilities of this method are demonstrated in the preparation of various functional ethers, the asymmetric synthesis of an acetyl-CoA-carboxylase inhibitor, and the programmable construction of polyethers.


Asunto(s)
Éteres
15.
J Am Chem Soc ; 144(22): 9570-9575, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35613457

RESUMEN

Deuterated organic compounds have become increasingly important in many areas; however, it remains challenging to install deuterium site-selectively to unactivated aliphatic positions with control of the degree of deuteration. Here, we report a Cu-catalyzed degree-controlled deacylative deuteration of diverse alkyl groups with the methylketone (acetyl) moiety as a traceless activating group. The use of N-methylpicolino-hydrazonamide (MPHA) promotes efficient aromatization-driven C-C cleavage. Mono-, di-, and trideuteration at specific sites can be selectively achieved. The reaction is redox-neutral with broad functional group tolerance. The utility of this method has been demonstrated in forming a complete set of deuterated ethyl groups, merging with the Diels-Alder reaction, a net devinylative deuteration, and the synthesis of the d2-analogue of Austedo.


Asunto(s)
Compuestos Orgánicos , Catálisis , Deuterio , Oxidación-Reducción
16.
J Am Chem Soc ; 144(21): 9222-9228, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35580261

RESUMEN

Transition-metal-catalyzed C-C activation has become synthetically valuable; however, it rarely involves single-electron downstream processes. To expand the repertoire of C-C activation, here we describe the discovery of a Rh-catalyzed enantioselective C-C activation involving migration of a sulfonyl radical. This reaction directly transforms cyclobutanones containing a sulfonamide-tethered 1,3-diene moiety into γ-lactams containing a ß-quaternary center with excellent enantioselectivity. This unusual process involves cleavage of C-C and N-S bonds and subsequent formation of C-N and C-S bonds. The reaction also exhibits broad functional group tolerance and a good substrate scope. A combined experimental and computational mechanistic study suggested that the reaction goes through a Rh(I)-mediated oxidative addition into the cyclobutanone C-C bond followed by a Rh(III)-triggered N-S bond homolysis and sulfonyl radical migration.


Asunto(s)
Electrones , Lactamas , Catálisis , Lactamas/química , Estereoisomerismo
17.
J Am Chem Soc ; 144(7): 3242-3249, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35138096

RESUMEN

Catalytic activation of unstrained and nonpolar C-C bonds remains a largely unmet challenge. Here, we describe our detailed efforts in developing a rhodium-catalyzed hydrogenolysis of unstrained C(aryl)-C(alkyl) bonds in 2,2'-methylenediphenols aided by removable directing groups. Good yields of the monophenol products are obtained with tolerating a wide range of functional groups. In addition, the reaction is scalable, and the catalyst loading can be reduced to as low as 0.5 mol %. Moreover, this method proves to be effective to cleave C(aryl)-C(alkyl) linkages in both models of phenolic resins and commercial novolacs resins. Finally, detailed experimental and computational mechanistic studies show that with C-H activation being a competitive but reversible off-cycle reaction, this transformation goes through a directed C(aryl)-C(alkyl) oxidative addition pathway.


Asunto(s)
Compuestos de Bencidrilo/química , Fenoles/química , Catálisis , Complejos de Coordinación/química , Hidrógeno/química , Modelos Químicos , Estructura Molecular , Oxidación-Reducción , Fenoles/síntesis química , Rodio/química
18.
J Am Chem Soc ; 144(50): 23230-23238, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36508583

RESUMEN

Direct functionalization of carbonyl ß C-H bonds without using directing groups has not been a trivial task, and it is even more challenging to realize the corresponding atom-economical transformations with common alkenes or alkynes as the coupling partner. Here, we describe the development of an iridium-catalyzed intramolecular direct ß-alkenylation of ketones with regular alkynes. The reaction is redox neutral, avoids strong acids or bases, and tolerates various functional groups. The combined experimental and computational mechanistic studies reveal a hydride-transfer pathway, involving ketone α,ß-desaturation, iridium-hydride-mediated alkyne insertion, conjugate addition, and α-protonation.


Asunto(s)
Alquinos , Iridio , Alquinos/química , Cetonas/química , Catálisis , Alquenos/química
19.
J Am Chem Soc ; 144(48): 22159-22169, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36399332

RESUMEN

Given the emerging demand to "escape from flatland" for drug discovery, synthetic methods that can efficiently construct complex three-dimensional structures with multi-stereocenters become increasingly valuable. Here, we describe the development of Rh(I)-catalyzed intramolecular annulations between cyclobutanones and 1,5-enyne groups to construct complex C(sp3)-rich scaffolds. Divergent reactivities are realized with different catalysts, and excellent diastereo- and enantioselectivity have been achieved. The use of (R)-H8-binap as the ligand favors forming the bis-bicyclic scaffolds with multiple quaternary stereocenters, while the (R)-segphos ligand prefers to generate the tetrahydro-azapinone products. Owing to the versatile reactivity of ketone moieties, these C(sp3)-rich scaffolds can be further functionalized. Experimental and computational mechanistic studies support a reaction pathway involving enyne-cyclometallation, 1,2-carbonyl addition, and then ß-carbon elimination; the divergent reactivities are dictated by a product-determining Rh-alkyl migratory insertion step.


Asunto(s)
Rodio , Ligandos
20.
J Am Chem Soc ; 144(35): 16012-16019, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-36017775

RESUMEN

While enormous progress has been achieved in synthesizing atomically precise graphene nanoribbons (GNRs), the preparation of GNRs with a fully predetermined length and monomer sequence remains an unmet challenge. Here, we report a fabrication method that provides access to structurally diverse and monodisperse "designer" GNRs through utilization of an iterative synthesis strategy, in which a single monomer is incorporated into an oligomer chain during each chemical cycle. Surface-assisted cyclodehydrogenation is subsequently employed to generate the final nanoribbons, and bond-resolved scanning tunneling microscopy is utilized to characterize them.


Asunto(s)
Grafito , Nanotubos de Carbono , Grafito/química , Nanotubos de Carbono/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA