Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Acta Biochim Biophys Sin (Shanghai) ; 55(1): 117-130, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36331295

RESUMEN

Phosphatidylcholines (PCs) are major phospholipids in the mammalian cell membrane. Structural remodeling of PCs is associated with many biological processes. Lysophosphatidylcholine acyltransferase 3 (Lpcat3), which catalyzes the incorporation of polyunsaturated fatty acyl chains into the sn-2 site of PCs, plays an important role in maintaining plasma membrane fluidity. Adipose tissue is one of the main distribution organs of Lpcat3, while the relationship between Lpcat3 and adipose tissue dysfunction during overexpansion remains unknown. In this study, we reveal that both polyunsaturated PC content and Lpcat3 expression are increased in abdominal adipose tissues of high-fat diet-fed mice when compared with chow-diet-fed mice, indicating that Lpcat3 is involved in adipose tissue overexpansion and dysfunction. Our experiments in 3T3-L1 adipocytes show that inhibition of Lpcat3 does not change triglyceride accumulation but increases palmitic acid-induced inflammation and lipolysis. Conversely, Lpcat3 overexpression exhibits anti-inflammatory and anti-lipolytic effects. Furthermore, mechanistic studies demonstrate that Lpcat3 deficiency promotes reactive oxygen species (ROS) generation by increasing NOX enzyme activity by facilitating the translocation of NOX4 to lipid rafts, thereby aggregating 3T3-L1 adipocyte inflammation induced by palmitic acid. Moreover, overexpression of Lpcat3 exhibits the opposite effects. These findings suggest that Lpcat3 protects adipocytes from inflammation during adipose tissue overexpansion by reducing ROS generation. In conclusion, our study demonstrates that Lpcat3 deficiency promotes palmitic acid-induced inflammation in 3T3-L1 adipocytes by enhancing ROS generation.


Asunto(s)
Adipocitos , Ácido Palmítico , Animales , Ratones , Ácido Palmítico/farmacología , Especies Reactivas de Oxígeno/metabolismo , Células 3T3-L1 , Adipocitos/metabolismo , Inflamación/metabolismo , Mamíferos/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferasa/metabolismo
2.
Acta Pharmacol Sin ; 42(1): 149-159, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32451413

RESUMEN

High infiltration of M2-polarized macrophages in the primary tumor indicates unfavorable prognosis and poor overall survival in the patients with triple-negative breast cancer (TNBC). Thus, reversing M2-polarized tumor-associated macrophages in the tumors has been considered as a potential therapeutic strategy for TNBC. Sphingomyelin synthase 2 (SMS2) is the key enzyme for sphingomyelin production, which plays an important role in plasma membrane integrity and function. In this study we investigated whether SMS2 inhibitor or SMS2 gene knockout could reduce macrophages M2 polarization and tumor progression in a mouse model of TNBC. We showed that SMS2 mRNA expression was linked to immunosuppressive tumor microenvironment and poor prognosis in TNBC patients. The knockout of SMS2 or application of 15w (a specific SMS2 inhibitor) markedly decreased the generation of M2-type macrophages in vitro, and reduced the tumor weight and lung metastatic niche formation in a 4T1-TNBC mouse model. We further demonstrated that the in vivo antitumor efficacy of 15w was accompanied by a multifaceted remodeling of tumor immune environment reflecting not only the suppression of M2-type macrophages but also diminished levels of regulatory T cells and myeloid-derived suppressor cells leading to a dramatically improved infiltration of antitumor CD8+ T lymphocytes. Collectively, our results reveal a novel and important role of SMS2 in the protumorigenic function and may offer a new strategy for macrophage-targeted anticancer therapy.


Asunto(s)
Macrófagos/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Neoplasias de la Mama Triple Negativas/fisiopatología , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/metabolismo , Línea Celular Tumoral , Progresión de la Enfermedad , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Femenino , Técnicas de Inactivación de Genes , Humanos , Inmunidad Celular/efectos de los fármacos , Isoxazoles/farmacología , Isoxazoles/uso terapéutico , Activación de Macrófagos/efectos de los fármacos , Activación de Macrófagos/fisiología , Macrófagos/efectos de los fármacos , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Pronóstico , Transferasas (Grupos de Otros Fosfatos Sustitutos)/antagonistas & inhibidores , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Neoplasias de la Mama Triple Negativas/diagnóstico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/inmunología
3.
Adv Exp Med Biol ; 1276: 189-195, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32705601

RESUMEN

Serum preß1-high-density lipoprotein (preß1-HDL) was defined by two-dimensional non-denaturing linear gel electrophoresis and apolipoprotein A-I immunoblotting. However, there are still debatable questions for its quantification and coronary artery disease (CAD) relevance. We have established a novel and simple method for human serum preß1-HDL quantification. We found that human lower preß1-HDL is an independent predictor for severer coronary artery stenosis. In this chapter, we will discuss all these.


Asunto(s)
Enfermedades Cardiovasculares , Lipoproteínas de Alta Densidad Pre-beta , Apolipoproteína A-I/sangre , Enfermedades Cardiovasculares/sangre , Enfermedad de la Arteria Coronaria/sangre , Electroforesis en Gel Bidimensional , Lipoproteínas de Alta Densidad Pre-beta/sangre , Humanos
4.
J Biol Chem ; 293(47): 18328-18336, 2018 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-30305392

RESUMEN

2-Hydroxy-oleic acid (2OHOA) is a potent anticancer drug that induces cancer cell cycle arrest and apoptosis. Previous studies have suggested that 2OHOA's anticancer effect is mediated by SMS activation in cancer cells, including A549 and U118 cells. To confirm this phenomenon, in this study, we treated both A549 and U118 cells with 2OHOA and measured SMS activity. To our surprise, we found neither 2OHOA-mediated SMS activation nor sphingomyelin accumulation in the cells. However, we noted that 2OHOA significantly reduces phosphatidylcholine in these cells. We also did not observe 2OHOA-mediated SMS activation in mouse tissue homogenates. Importantly, 2OHOA inhibited rather than activated recombinant SMS1 (rSMS1) and rSMS2 in a dose-dependent fashion. Intra-gastric treatment of C57BL/6J mice with 2OHOA for 10 days had no effects on liver and small intestine SMS activities and plasma sphingomyelin levels. The treatment inhibited lysophosphatidylcholine acyltransferase (LPCAT) activity, consistent with the aforementioned reduction in plasma phosphatidylcholine. Because total cellular phosphatidylcholine is used as a predictive biomarker for monitoring tumor responses, the previously reported 2OHOA-mediated cancer suppression could be related to this phosphatidylcholine reduction, which may influence cell membrane structure and properties. We conclude that 2OHOA is not a SMS activator and that its anticancer property may be related to an effect on phosphatidylcholine metabolism.


Asunto(s)
Antineoplásicos/metabolismo , Neoplasias/enzimología , Ácidos Oléicos/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Línea Celular Tumoral , Activación Enzimática , Activadores de Enzimas/administración & dosificación , Activadores de Enzimas/química , Activadores de Enzimas/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Ácidos Oléicos/administración & dosificación , Ácidos Oléicos/química , Fosfatidilcolinas/metabolismo , Esfingomielinas/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/química , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética
5.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(8): 834-843, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29673706

RESUMEN

Levels of polyunsaturated phosphatidylcholine (PC) influence plasma membrane structure and function. Phosphatidylcholine (PC) is synthesized de novo in the Kennedy pathway and then undergoes extensive deacylation/reacylation remodeling via Lands' cycle (non-Kennedy pathway). The reacylation is catalyzed by lysophosphatidylcholine acyltransferase (LPCAT), which adds a polyunsaturated fatty acid at the sn-2 position. Four LPCAT isoforms have been described to date, among which we found LPCAT3 to be the major isoform in adipose tissue, but its exact role in adipogenesis is unclear. In this study, we aimed to investigate whether LPCAT3 activity affects 3T3L1 cell adipogenic differentiation potential and its underline mechanism. Lentivirus-mediated LPCAT3 shRNA expression stably knocked down LPCAT3 in 3T3L1 preadipocytes and LPCAT3 deficiency dramatically reduced the levels of cellular polyunsaturated PCs. Importantly, we found that this deficiency activated the ß-catenin dependent Wnt signaling pathway, which suppressed the expression of adipogenesis-related genes, thereby inhibiting 3T3L1 preadipocyte differentiation and lipid accumulation. Moreover, three different Wnt/ß-catenin pathway inhibitors reversed the effect of LPCAP3 deficiency, suggesting that Wnt/ß-catenin pathway activation is one of the causes for the observed phenotypes. To the best of our knowledge, we show here for the first time that PC remodeling is an important regulator of adipocyte differentiation.


Asunto(s)
1-Acilglicerofosfocolina O-Aciltransferasa/deficiencia , Adipocitos/fisiología , Adipogénesis/fisiología , Vía de Señalización Wnt/fisiología , 1-Acilglicerofosfocolina O-Aciltransferasa/genética , Células 3T3-L1 , Acilación/fisiología , Animales , Membrana Celular/metabolismo , Ácidos Grasos Insaturados/metabolismo , Técnicas de Silenciamiento del Gen , Lipogénesis/fisiología , Ratones , Fosfatidilcolinas/metabolismo , ARN Interferente Pequeño/metabolismo
6.
J Sep Sci ; 39(6): 1067-72, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26763406

RESUMEN

A novel strategy for predicting bioactive components in traditional Chinese medicines using Chinese hamster ovary-sphingomyelin synthase2 (CHO-SMS2 ) cell biospecific extraction and high-performance liquid chromatography with diode array detection and tandem mass spectrometry analysis was proposed. The hypothesis is that when cells are incubated with the extract of traditional Chinese medicines, the potential bioactive components in the traditional Chinese medicines should selectively combine with the cells, while the cell-combining components would be detectable in the extract of denatured cells. The identities of the cell-combining components could be determined by liquid chromatography with tandem mass spectrometry. Using the proposed approach, the potential bioactive components of Rhizoma Polygoni Cuspidati, a commonly used traditional Chinese medicine for atherosclerosis, were detected and identified. Eight compounds in the extract of Rhizoma Polygoni Cuspidati were detected as the components selectively combined with CHO-SMS2 cells, which is a stable cell line that highly expresses sphingomyelin synthases, it was found that piceid, resveratrol, emodin-8-ß-d-glucoside, physcion-8-ß-d-glucoside, emodin, physcion, 3,5,4'-trihydroxystilbene-3-O-(6"-galloyl)-glucoside, and emodin-1-O-glucoside combined specifically with CHO-SMS2 cells. The results indicate that the proposed approach may be applied to predict the bioactive candidates in traditional Chinese medicines.


Asunto(s)
Medicamentos Herbarios Chinos/química , Extractos Vegetales/química , Rizoma/química , Transferasas (Grupos de Otros Fosfatos Sustitutos)/aislamiento & purificación , Animales , Células CHO , Células Cultivadas , Cromatografía Líquida de Alta Presión , Cricetulus , Medicina Tradicional China , Espectrometría de Masas en Tándem , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo
7.
J Lipid Res ; 56(3): 537-545, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25605874

RESUMEN

Sphingomyelin synthase-related protein (SMSr) synthesizes the sphingomyelin analog ceramide phosphoethanolamine (CPE) in cells. Previous cell studies indicated that SMSr is involved in ceramide homeostasis and is crucial for cell function. To further examine SMSr function in vivo, we generated Smsr KO mice that were fertile and had no obvious phenotypic alterations. Quantitative MS analyses of plasma, liver, and macrophages from the KO mice revealed only marginal changes in CPE and ceramide as well as other sphingolipid levels. Because SMS2 also has CPE synthase activity, we prepared Smsr/Sms2 double KO mice. We found that CPE levels were not significantly changed in macrophages, suggesting that CPE levels are not exclusively dependent on SMSr and SMS2 activities. We then measured CPE levels in Sms1 KO mice and found that Sms1 deficiency also reduced plasma CPE levels. Importantly, we found that expression of Sms1 or Sms2 in SF9 insect cells significantly increased not only SM but also CPE formation, indicating that SMS1 also has CPE synthase activity. Moreover, we measured CPE synthase Km and Vmax for SMS1, SMS2, and SMSr using different NBD ceramides. Our study reveals that all mouse SMS family members (SMSr, SMS1, and SMS2) have CPE synthase activity. However, neither CPE nor SMSr appears to be a critical regulator of ceramide levels in vivo.


Asunto(s)
Esfingomielinas/biosíntesis , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Animales , Ratones , Ratones Noqueados , Esfingomielinas/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética
9.
Arterioscler Thromb Vasc Biol ; 33(7): 1513-20, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23640498

RESUMEN

OBJECTIVE: Sphingolipid de novo biosynthesis is related to nonalcoholic fatty liver disease or hepatic steatosis. However, the mechanism is still unclear. Sphingomyelin synthase (SMS), using ceramide as one of the substrates to produce sphingomyelin, sits at the crossroads of sphingolipid biosynthesis. SMS has 2 isoforms: SMS1 and SMS2. SMS2 is the major isoform in liver. APPROACH AND RESULTS: To investigate the relationship between liver SMS2 activity-mediated sphingolipid changes and hepatic steatosis, we used 2 mouse models: Sms2 liver-specific transgenic and Sms2 knockout mice. We found that Sms2 liver-specific transgenic livers have lower ceramide and higher sphingomyelin, whereas Sms2 knockout livers have higher ceramide and lower sphingomyelin. We also found that liver Sms2 overexpression promoted fatty acid uptake and liver steatosis, whereas Sms2 deficiency had an opposite effect in comparison with their respective controls. Importantly, the exogenous ceramide supplementation to Huh7 cells, a human hepatoma cell line, reduced the expression of peroxisome proliferator-activated receptor γ2 and its target genes, Cd36 and Fsp27. Peroxisome proliferator-activated receptor γ reporter analysis confirmed this phenomenon. Furthermore, peroxisome proliferator-activated receptor γ antagonist treatment significantly decreased triglyceride accumulation in Sms2 liver-specific transgenic liver. CONCLUSIONS: We attributed these effects to ceramide that can suppress peroxisome proliferator-activated receptor γ2, thus reducing the expression of Cd36 and Fsp27 and reducing liver steatosis. After all, SMS2 inhibition in the liver could diminish liver steatosis.


Asunto(s)
Ceramidas/metabolismo , Hígado Graso/enzimología , Hígado/enzimología , PPAR gamma/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Animales , Antígenos CD36/metabolismo , Línea Celular Tumoral , Colesterol en la Dieta , Modelos Animales de Enfermedad , Regulación hacia Abajo , Hígado Graso/genética , Hígado Graso/patología , Hígado Graso/prevención & control , Femenino , Genes Reporteros , Humanos , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Noqueados , Ratones Transgénicos , PPAR gamma/antagonistas & inhibidores , PPAR gamma/genética , Fosfatidilcolinas/metabolismo , Esfingomielinas/metabolismo , Factores de Tiempo , Transfección , Transferasas (Grupos de Otros Fosfatos Sustitutos)/deficiencia , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética
10.
J Gene Med ; 15(8-9): 291-305, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24038955

RESUMEN

BACKGROUND: Reductively reversible and hydrolytically degradable cationic polymers have been used as gene delivery systems. The present study aimed to enhance the low transfection efficiency caused by PEGylation by taking advantage of a nonviral vector containing a disulfide linkage. METHODS: The novel reducible targeted gene vector c(RGDyK)-poly(ethylene glycol)-SS-polyethylenimine (RGD-PEG-SS-PEI), representing a combination of RGD-PEG with PEI through a disulfide linkage, was synthesized and its reduction-sensitivity was tested in the presence of glutathione. The RGD-PEG-SS-PEI/pDNA complexes were formed and their stability was evaluated by agarose gel electrophoresis in both phosphate-buffered saline and Dulbecco's modified Eagle's medium with 10% serum. In vitro transfection efficiency and cell viability assay of the different polymers was performed for U87 cells using pEGFP-N2 and pGL4.2 reporter gene systems. RGD-PEG-SS-PEI/pDsRED-N1 and RGD-PEG-PEI/pDsRED-N1 complexes were injected intravenously into the U87 cell-bearing nude mice via their tail vein to investigate in vivo gene expression. RESULTS: RGD-PEG-SS-PEI has been synthesized successfully and its reduction-sensitivity was confirmed in the presence of glutathione. The RGD-PEG-SS-PEI/pDNA complexes demonstrated good stability in both conditions. In comparison with mPEG-PEI/pDNA for gene delivery, the RGD-PEG-SS-PEI/pDNA complex provided improved levels of transfection efficiency and reduced cytotoxicity when tested in U87 cells in vitro, and also enhanced levels of gene expression in the brains of intracranial U87 glioblastoma-bearing mice as demonstrated using dsRed gene transfer and bioimaging in vivo. CONCLUSIONS: The results of the present study suggest that RGD-PEG-SS-PEI represents a promising candidate for further study in glioblastoma and combined gene therapies.


Asunto(s)
Neoplasias Encefálicas/terapia , Terapia Genética , Glioblastoma/terapia , Glutatión/química , Nanopartículas/química , Polietilenglicoles/química , Polietileneimina/análogos & derivados , Transfección , Animales , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Disulfuros/química , Genes Reporteros , Glioblastoma/patología , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Humanos , Proteínas Luminiscentes/biosíntesis , Proteínas Luminiscentes/genética , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Nanopartículas/toxicidad , Trasplante de Neoplasias , Oxidación-Reducción , Tamaño de la Partícula , Polietilenglicoles/toxicidad , Polietileneimina/química , Polietileneimina/toxicidad
11.
J Med Chem ; 66(4): 2681-2698, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36786607

RESUMEN

Acid sphingomyelinase (ASM), which regulates sphingolipid metabolism and lipid signaling, has been considered as a new potential target for the treatment of atherosclerosis. In this study, a series of benzene-heterocyclic-based ASM inhibitors were rationally designed, synthesized, and screened for the first time. As a result, some compounds showed favorable inhibitory activity against recombinant human ASM. The detailed SARs are also discussed. Compound 4i revealed good pharmacokinetic data and in vivo inhibitory activity against ASM by reducing the level of ceramide in mice plasma and liver. Pharmacodynamic studies confirmed that 4i could lessen lipid plaques in the aortic arch and aorta and reduce plasma ceramide concentration and Ox-LDL levels. Moreover, 4i was found to significantly decrease LPS-induced and Ox-LDL-induced cell inflammation by regulating the levels of ceramide and sphingomyelin. Overall, this study preliminarily demonstrates that ASM may be an effective target against atherosclerosis for the first time.


Asunto(s)
Aterosclerosis , Esfingomielina Fosfodiesterasa , Ratones , Humanos , Animales , Ceramidas , Aorta , Aorta Torácica
12.
Biology (Basel) ; 11(5)2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35625407

RESUMEN

Understanding the vegetation greenness dynamics in the forest-steppe transition zone is essential for ecosystem management, and in order to study ecological changes in the region. This study provides a valuable record of the vegetation greenness dynamics in the western Greater Khingan Range over the past 193 years (1826-2018) based on tree-ring data represented by the normalized difference vegetation index (NDVI). The reconstructed vegetation greenness dynamics record contains a total of 32 years of high vegetation greenness and 37 years of low vegetation greenness, together occupying 35.8% of the entire reconstructed period (193 years). Climate (precipitation) is the main influence on the vegetation greenness dynamics at this site, but human activities have also had a significant impact over the last few decades. The magnitude, frequency, and duration of extreme changes in vegetation greenness dynamics have increased significantly, with progressively shorter intervals. Analyses targeting human behavior have shown that the density of livestock, agricultural land area, and total population have gradually increased, encroaching on forests and grasslands and reducing the inter-annual variability. After 2002, the government implemented projects to return farmland to its original ecosystems, and for the implementation of new land management practices (which are more ecologically related); as such, the vegetation conditions began to improve. These findings will help us to understand the relationship between climate change and inter- and intra- annual dynamics in northeastern China, and to better understand the impact of human activities on vegetation greenness dynamics.

13.
Front Plant Sci ; 13: 841464, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35295632

RESUMEN

Plasticity of plant functional traits plays an important role in plant growth and survival under changing climate. However, knowledge about how leaf functional traits respond to the multi-level N addition rates, multiple N compound and duration of N application remains lacking. This study investigated the effects of 2-year and 7-year N addition on the leaf functional traits of Leymus chinensis and Thermopsis lanceolata in a meadow grassland. The results showed that the type of N compounds had no significant effect on leaf functional traits regardless of duration of N application. N addition significantly increased the leaf total N content (LN) and specific leaf area (SLA), and decreased the leaf total P content (LP) and leaf dry matter content (LDMC) of the two species. Compared with short-term N addition, long-term N addition increased LN, LP, SLA, and plant height, but decreased the LDMC. In addition, the traits of the two species were differentially responsive to N addition, LN and LP of T. lanceolata were consistently higher than those of L. chinensis. N addition would make L. chinensis and T. lanceolata tend to "quick investment-return" strategy. Our results provide more robust and comprehensive predictions of the effects of N deposition on leaf traits.

14.
Front Plant Sci ; 13: 917645, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35755642

RESUMEN

As nitrogen deposition intensifies under global climate change, understanding the responses of arbuscular mycorrhizal (AM) fungi to nitrogen deposition and the associated mechanisms are critical for terrestrial ecosystems. In this study, the effects of nitrogen addition and mowing on AM fungal communities in soil and mixed roots were investigated in an Inner Mongolia grassland. The results showed that nitrogen addition reduced the α-diversity of AM fungi in soil rather than that of root. Besides, nitrogen addition altered the composition of AM fungal community in soil. Soil pH and inorganic nitrogen content were the main causes of changes in AM fungal communities affected by nitrogen addition. Mowing and the interaction of nitrogen addition and mowing had no significant effect on AM fungal community diversity. In contrast, while mowing may reduce the negative effects of nitrogen addition on the richness and diversity of plants by alleviating light limitation, it could not do so with the negative effects on AM fungal communities. Furthermore, AM fungal communities clustered phylogenetically in all treatments in both soil and roots, indicating that environmental filtering was the main driving force for AM fungal community assembly. Our results highlight the different responses of AM fungi in the soil and roots of a grassland ecosystem to nitrogen addition and mowing. The study will improve our understanding of the effects of nitrogen deposition on the function of ecosystem.

15.
Front Pharmacol ; 13: 902016, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36324684

RESUMEN

Background: Tumor-associated macrophages (TAMs) are one of the most abundant immune cells in the pancreatic cancer stroma and are related to the poor prognosis of pancreatic ductal adenocarcinoma (PDAC) patients. Therefore, targeting tumor-associated macrophages is a possible strategy for the treatment of pancreatic cancer. Purpose: We would like to investigate the role of sphingomyelin synthase 2 (SMS2) and the effect of the synthase 2 selective inhibitor YE2 in TAMs and the pancreatic tumor microenvironment. In addition, we also would like to investigate the mechanism by which YE2 attenuates macrophage M2 polarization. Methods: YE2 was utilized to treat macrophages (in vitro) and mice (in vivo). Western blotting and real-time PCR were used to detect the protein levels and mRNA levels of macrophage M2 polarization markers and their downstream signaling pathways. Sphingomyelin synthase 2 gene knockout (KO) mice and their controls were used to establish a PANC-02 orthotopic pancreatic cancer model, and immune cell infiltration in the tumor tissue was analyzed by immunohistochemistry (IHC). Results: We found that sphingomyelin synthase 2 mRNA expression is positively correlated with tumor-associated macrophages, the immunosuppressive microenvironment, and poor prognosis in pancreatic ductal adenocarcinoma patients. Sphingomyelin synthase 2 deficiency was confirmed to have an inhibitory effect on the growth of orthotopic PANC-02 tumors in vivo. The deficiency not only reduced the infiltration of tumor-associated macrophages but also regulated other immune components in the tumor microenvironment. In tissue culture, YE2 inhibited M2 polarization in both bone marrow-derived macrophages (BMDMs) and THP-1 macrophages and eliminated the protumor effect of M2 macrophages. In the mouse model, YE2 treatment reduced the infiltration of TAMs and regulated other immune components in the tumor microenvironment, slowing the progression of PANC-02 tumors. In terms of mechanism, we found that the inhibition of sphingomyelin synthase 2 could downregulate the expression of IL4Rα and CSF1R, thereby attenuating M2 polarization. Conclusion: The sphingomyelin synthase 2 inhibitor YE2 or sphingomyelin synthase 2 deficiency can prevent macrophage M2 polarization in pancreatic cancer, and sphingomyelin synthase 2 could be a new potential target for the treatment of pancreatic cancer.

16.
Arterioscler Thromb Vasc Biol ; 30(11): 2114-20, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20814016

RESUMEN

OBJECTIVE: We used the sphingomyelin (SM) synthase 2 (Sms2) gene knockout (KO) approach to test our hypothesis that selectively decreasing plasma lipoprotein SM can play an important role in preventing atherosclerosis. METHODS AND RESULTS: The sphingolipid de novo synthesis pathway is considered a promising target for pharmacological intervention in atherosclerosis. However, its potential is hampered because the substance's atherogenic mechanism is not completely understood. We prepared Sms2 and apolipoprotein E (Apoe) double-KO mice. They showed a significant decrease in plasma lipoprotein SM levels (35%, P<0.01) and a significant increase in ceramide and dihydroceramide levels (87.5% and 27%, respectively; P<0.01) but no significant changes in other tested sphingolipids, cholesterol, and triglyceride. Non-high-density lipoproteins from the double-KO mice showed a reduction of SM, but not cholesterol, and displayed less tendency toward aortic sphingomyelinase-mediated lipoprotein aggregation in vitro and retention in aortas in vivo when compared with controls. More important, at the age of 19 weeks, Sms2 KO/Apoe KO mice showed a significant reduction in atherosclerotic lesions of the aortic arch and root (52%, P<0.01) compared with controls. The Sms2 KO/Apoe KO brachiocephalic artery contained significantly less SM, ceramide, free cholesterol, and cholesteryl ester (35%, 32%, 58%, and 60%, respectively; P<0.01) than that of the Apoe KO brachiocephalic artery. CONCLUSIONS: Decreasing plasma SM levels through decreasing SMS2 activity could become a promising treatment for atherosclerosis.


Asunto(s)
Aorta/metabolismo , Aterosclerosis/metabolismo , Lipoproteínas/metabolismo , Esfingomielinas/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Animales , Aorta/fisiopatología , Aterosclerosis/genética , Aterosclerosis/prevención & control , Ratones
17.
Lipids Health Dis ; 10: 46, 2011 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-21418611

RESUMEN

BACKGROUND: Studies have shown that plasma high density lipoprotein cholesterol levels are negatively correlated with the development of atherosclerosis, whereas epidemiological studies have also shown that plasma sphingomyelin level is an independent risk factor for atherosclerosis. METHODS: To evaluate the relationship between cellular sphingomyelin level and cholesterol metabolism, we created two cell lines that overexpressed sphingomyelin synthase 1 or 2 (SMS1 or SMS2), using the Tet-off expression system. RESULTS: We found that SMS1 or SMS2 overexpression in Huh7 cells, a human hepatoma cell line, significantly increased the levels of intracellular sphingomyelin, cholesterol, and apolipoprotein A-I and decreased levels of apolipoprotein A-I and cholesterol in the cell culture medium, implying a defect in both processes. CONCLUSIONS: Our findings indicate that the manipulation of sphingomyelin synthase activity could influence the metabolism of sphingomyelin, cholesterol and apolipoprotein A-I.


Asunto(s)
Colesterol/metabolismo , Hígado/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/biosíntesis , Apolipoproteína A-I/metabolismo , Línea Celular Tumoral , Humanos , Microdominios de Membrana/metabolismo , Esfingomielinas , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo
18.
Lipids Health Dis ; 10: 7, 2011 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-21235823

RESUMEN

BACKGROUND: Sphingomyelin synthase 2 (SMS2) contributes to de novo sphingomyelin (SM) biosynthesis. Its activity is related to SM levels in the plasma and the cell membrane. In this study, we investigated the possibility of a direct relationship between SMS and atherosclerosis. METHODS: The Adenovirus containing SMS2 gene was given into 10-week ApoE KO C57BL/6J mice by femoral intravenous injection. In the control group, the Adenovirus containing GFP was given. To confirm this model, we took both mRNA level examination (RT-PCR) and protein level examination (SMS activity assay). RESULT: We generated recombinant adenovirus vectors containing either human SMS2 cDNA (AdV-SMS2) or GFP cDNA (AdV-GFP). On day six after intravenous infusion of 2 × 10(11) particle numbers into ten-week-old apoE KO mice, AdV-SMS2 treatment significantly increased liver SMS2 mRNA levels and SMS activity (by 2.7-fold, 2.3-fold, p < 0.001, respectively), compared to AdV-GFP treated mice. Moreover, plasma total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), triglyceride (TG), and sphingomyelin (SM) levels were significantly increased by 39% (p < 0.05), 42% (p < 0.05), 68% (p < 0.001), and 45% (p < 0.05), respectively. Plasma high-density lipoprotein cholesterol (HDL-C), phosphatidylcholine (PC), and PC/SM ratio were decreased by 42% (p < 0.05), 18% (p < 0.05), and 45% (p < 0.05), respectively. On day 30, the atherosclerotic lesions on the aortic arch of AdV-SMS2 treated mice were increased, and the lesion areas on the whole aorta and in the aortic root were significantly increased (p < 0.001). Furthermore, the collagen content in the aorta root was significantly decreased (p < 0.01). CONCLUSIONS: Our results present direct morphological evidence for the pro-atherogenic capabilities of SMS2. SMS2 could be a potential target for treating atherosclerosis.


Asunto(s)
Apolipoproteínas E/genética , Aterosclerosis/patología , Proteínas de la Membrana/biosíntesis , Proteínas del Tejido Nervioso/biosíntesis , Proteínas Recombinantes/biosíntesis , Transferasas (Grupos de Otros Fosfatos Sustitutos)/biosíntesis , Adenoviridae/genética , Animales , Aorta/patología , Aterosclerosis/metabolismo , Grasas de la Dieta/administración & dosificación , Pruebas de Enzimas , Vectores Genéticos , Humanos , Lípidos/sangre , Hígado/metabolismo , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas Recombinantes/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética
19.
Front Pharmacol ; 12: 713331, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34566638

RESUMEN

Tumor-associated macrophages (TAMs) are an indispensable part of the tumor microenvironment (TME), and they likely play a negative rather than positive role in cancer treatment. However, the cellular landscape and transcriptional profile regulation of TAMs in the case of tumor gene inactivation or chemical interference remains unclear. The B-cell lymphoma 9/B-cell lymphoma 9-like (BCL9/BCL9L) is a critical transcription co-factor of ß-catenin. Suppression of Bcl9 inhibits tumor growth in mouse models of colorectal cancer (CRC). Here, we studied the TAMs of CRC by single-cell sequencing. Bcl9 depletion caused macrophage polarization inhibition from M0 to M2 and changed the CRC TME, which further interferes with the inflammation of M0 and M1. The transcription factor regulating these processes may be related to the Wnt signaling pathway from multiple levels. Furthermore, we also found that the cells delineated from monocyte to NK-like non-functioning cells were significantly different in the BCL9-deprived population. Combining these data, we proposed a TAM-to-NK score to evaluate the dynamic balance in TME of monocyte/TAM cells and NK-like non-functioning cells in The Cancer Genome Atlas (TCGA) clinical samples to verify the clinical significance. We demonstrated that the cell type balance and transcription differences of TAMs regulated by BCL9-driven Wnt signaling affected immune surveillance and inflammation of cancer, ultimately affecting patients' prognosis. We thereby highlighted the potential of targeting Wnt signaling pathway through cancer immunotherapy.

20.
Atherosclerosis ; 324: 9-17, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33798923

RESUMEN

BACKGROUND AND AIMS: Atherosclerosis progression and regression studies are related to its prevention and treatment. Although we have gained extensive knowledge on germline phospholipid transfer protein (PLTP) deficiency, the effect of inducible PLTP deficiency in atherosclerosis remains unexplored. METHODS: We generated inducible PLTP (iPLTP)-knockout (KO) mice and measured their plasma lipid levels after feeding a normal chow or a Western-type diet. Adenovirus associated virus-proprotein convertase subtilisin/kexin type 9 (AAV-PCSK9) was used to induce hypercholesterolemia in the mice. Collars were placed around the common carotid arteries, and atherosclerosis progression and regression in the carotid arteries and aortic roots were evaluated. RESULTS: On a normal chow diet, iPLTP-KO mice exhibited decreased cholesterol, phospholipid, apoA-I, and apoB levels compared with control mice. Furthermore, the overall amount of high-density lipoprotein (HDL) particles was reduced in these mice, but this effect was more profound for larger HDL particles. On a Western-type diet, iPLTP-KO mice again exhibited reduced levels of all tested lipids, even though the basal lipid levels were increased. Additionally, these mice displayed significantly reduced atherosclerotic plaque sizes with increased plaque stability. Importantly, inducible PLTP deficiency significantly ameliorated atherosclerosis by reducing the size of established plaques and the number of macrophages in the plaques without causing lipid accumulation in the liver. CONCLUSIONS: Induced PLTP deficiency in adult mice reduces plasma total cholesterol and triglycerides, prevents atherosclerosis progression, and promotes atherosclerosis regression. Thus, PLTP inhibition is a promising therapeutic approach for atherosclerosis.


Asunto(s)
Aterosclerosis , Proteínas de Transferencia de Fosfolípidos , Animales , Aterosclerosis/genética , Aterosclerosis/prevención & control , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Transferencia de Fosfolípidos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA