Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(2): 422-440.e17, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33450207

RESUMEN

Itch is an evolutionarily conserved sensation that facilitates expulsion of pathogens and noxious stimuli from the skin. However, in organ failure, cancer, and chronic inflammatory disorders such as atopic dermatitis (AD), itch becomes chronic, intractable, and debilitating. In addition to chronic itch, patients often experience intense acute itch exacerbations. Recent discoveries have unearthed the neuroimmune circuitry of itch, leading to the development of anti-itch treatments. However, mechanisms underlying acute itch exacerbations remain overlooked. Herein, we identify that a large proportion of patients with AD harbor allergen-specific immunoglobulin E (IgE) and exhibit a propensity for acute itch flares. In mice, while allergen-provoked acute itch is mediated by the mast cell-histamine axis in steady state, AD-associated inflammation renders this pathway dispensable. Instead, a previously unrecognized basophil-leukotriene (LT) axis emerges as critical for acute itch flares. By probing fundamental itch mechanisms, our study highlights a basophil-neuronal circuit that may underlie a variety of neuroimmune processes.


Asunto(s)
Basófilos/patología , Neuronas/patología , Prurito/patología , Enfermedad Aguda , Alérgenos/inmunología , Animales , Enfermedad Crónica , Dermatitis Atópica/inmunología , Dermatitis Atópica/patología , Modelos Animales de Enfermedad , Histamina/metabolismo , Humanos , Inmunoglobulina E/inmunología , Inflamación/patología , Leucotrienos/metabolismo , Mastocitos/inmunología , Ratones Endogámicos C57BL , Fenotipo , Prurito/inmunología , Canal Catiónico TRPA1/metabolismo , Canales Catiónicos TRPV/metabolismo
2.
Cell ; 178(6): 1279-1281, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31474364

RESUMEN

In this issue of Cell, King et al. (2019) have discovered a cell penetrating peptide isolated from the venom of the Australian Black Rock scorpion that activates the TRPA1 receptor in a unique way to induce pain. Their findings offer new insights into how animals evolved venoms to target specific ion channel functions.


Asunto(s)
Venenos de Escorpión , Escorpiones , Animales , Australia , Dolor , Péptidos
3.
Immunity ; 57(1): 28-39, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38198852

RESUMEN

The discovery of Mas-related G protein-coupled receptors (Mrgprs) has opened a compelling chapter in our understanding of immunity and sensory biology. This family of receptors, with their unique expression and diverse ligands, has emerged as key players in inflammatory states and hold the potential to alleviate human diseases. This review will focus on the members of this receptor family expressed on immune cells and how they govern immune and neuro-immune pathways underlying various physiological and pathological states. Immune cell-specific Mrgprs have been shown to control a variety of manifestations, including adverse drug reactions, inflammatory conditions, bacterial immunity, and the sensing of environmental exposures like allergens and irritants.


Asunto(s)
Inmunidad , Receptores Acoplados a Proteínas G , Humanos , Exposición a Riesgos Ambientales , Receptores Acoplados a Proteínas G/inmunología
4.
Immunity ; 57(2): 333-348.e6, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38295799

RESUMEN

The notion that neutrophils exist as a homogeneous population is being replaced with the knowledge that neutrophils adopt different functional states. Neutrophils can have a pro-inflammatory phenotype or an anti-inflammatory state, but how these states are regulated remains unclear. Here, we demonstrated that the neutrophil-expressed G-protein-coupled receptor (GPCR) Mrgpra1 is a negative regulator of neutrophil bactericidal functions. Mrgpra1-mediated signaling was driven by its ligand, neuropeptide FF (NPFF), which dictated the balance between pro- and anti-inflammatory programming. Specifically, the Mrgpra1-NPFF axis counter-regulated interferon (IFN) γ-mediated neutrophil polarization during acute lung infection by favoring an alternative-like polarization, suggesting that it may act to balance overzealous neutrophilic responses. Distinct, cross-regulated populations of neutrophils were the primary source of NPFF and IFNγ during infection. As a subset of neutrophils at steady state expressed NPFF, these findings could have broad implications in various infectious and inflammatory diseases. Therefore, a neutrophil-intrinsic pathway determines their cellular fate, function, and magnitude of infection.


Asunto(s)
Infecciones Bacterianas , Neuropéptidos , Humanos , Receptores de Neuropéptido/metabolismo , Neutrófilos/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Antiinflamatorios
5.
Nat Immunol ; 20(11): 1435-1443, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31591569

RESUMEN

Allergic skin diseases, such as atopic dermatitis, are clinically characterized by severe itching and type 2 immunity-associated hypersensitivity to widely distributed allergens, including those derived from house dust mites (HDMs). Here we found that HDMs with cysteine protease activity directly activated peptidergic nociceptors, which are neuropeptide-producing nociceptive sensory neurons that express the ion channel TRPV1 and Tac1, the gene encoding the precursor for the neuropeptide substance P. Intravital imaging and genetic approaches indicated that HDM-activated nociceptors drive the development of allergic skin inflammation by inducing the degranulation of mast cells contiguous to such nociceptors, through the release of substance P and the activation of the cationic molecule receptor MRGPRB2 on mast cells. These data indicate that, after exposure to HDM allergens, activation of TRPV1+Tac1+ nociceptor-MRGPRB2+ mast cell sensory clusters represents a key early event in the development of allergic skin reactions.


Asunto(s)
Alérgenos/inmunología , Dermatitis Atópica/inmunología , Mastocitos/inmunología , Nociceptores/inmunología , Pyroglyphidae/inmunología , Animales , Comunicación Celular/inmunología , Dermatitis Atópica/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Mastocitos/metabolismo , Ratones Noqueados , Nociceptores/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Piel/citología , Piel/inmunología , Canales Catiónicos TRPV/metabolismo , Taquicininas/genética , Taquicininas/metabolismo
6.
Immunity ; 55(9): 1645-1662.e7, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-35882236

RESUMEN

Healthy skin maintains a diverse microbiome and a potent immune system to fight off infections. Here, we discovered that the epithelial-cell-derived antimicrobial peptides defensins activated orphan G-protein-coupled receptors (GPCRs) Mrgpra2a/b on neutrophils. This signaling axis was required for effective neutrophil-mediated skin immunity and microbiome homeostasis. We generated mutant mouse lines lacking the entire Defensin (Def) gene cluster in keratinocytes or Mrgpra2a/b. Def and Mrgpra2 mutant animals both exhibited skin dysbiosis, with reduced microbial diversity and expansion of Staphylococcus species. Defensins and Mrgpra2 were critical for combating S. aureus infections and the formation of neutrophil abscesses, a hallmark of antibacterial immunity. Activation of Mrgpra2 by defensin triggered neutrophil release of IL-1ß and CXCL2 which are vital for proper amplification and propagation of the antibacterial immune response. This study demonstrated the importance of epithelial-neutrophil signaling via the defensin-Mrgpra2 axis in maintaining healthy skin ecology and promoting antibacterial host defense.


Asunto(s)
Infecciones Bacterianas , Neutrófilos , Receptores Acoplados a Proteínas G , Animales , Ratones , Antibacterianos , Proteínas Portadoras , Defensinas/genética , Disbiosis , Queratinocitos , Receptores Acoplados a Proteínas G/metabolismo , Staphylococcus aureus
7.
Nature ; 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39358515

RESUMEN

The brain helps us survive by forming internal representations of the external world1,2. Excitatory cortical neurons are often precisely tuned to specific external stimuli3,4. However, inhibitory neurons, such as parvalbumin-positive (PV) interneurons, are generally less selective5. PV interneurons differ from excitatory neurons in their neurotransmitter receptor subtypes, including AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors (AMPARs)6,7. Excitatory neurons express calcium-impermeable AMPARs that contain the GluA2 subunit (encoded by GRIA2), whereas PV interneurons express receptors that lack the GluA2 subunit and are calcium-permeable (CP-AMPARs). Here we demonstrate a causal relationship between CP-AMPAR expression and the low feature selectivity of PV interneurons. We find low expression stoichiometry of GRIA2 mRNA relative to other subunits in PV interneurons that is conserved across ferrets, rodents, marmosets and humans, and causes abundant CP-AMPAR expression. Replacing CP-AMPARs in PV interneurons with calcium-impermeable AMPARs increased their orientation selectivity in the visual cortex. Manipulations to induce sparse CP-AMPAR expression demonstrated that this increase was cell-autonomous and could occur with changes beyond development. Notably, excitatory-PV interneuron connectivity rates and unitary synaptic strength were unaltered by CP-AMPAR removal, which suggested that the selectivity of PV interneurons can be altered without markedly changing connectivity. In Gria2-knockout mice, in which all AMPARs are calcium-permeable, excitatory neurons showed significantly degraded orientation selectivity, which suggested that CP-AMPARs are sufficient to drive lower selectivity regardless of cell type. Moreover, hippocampal PV interneurons, which usually exhibit low spatial tuning, became more spatially selective after removing CP-AMPARs, which indicated that CP-AMPARs suppress the feature selectivity of PV interneurons independent of modality. These results reveal a new role of CP-AMPARs in maintaining low-selectivity sensory representation in PV interneurons and implicate a conserved molecular mechanism that distinguishes this cell type in the neocortex.

8.
Annu Rev Neurosci ; 43: 187-205, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32075517

RESUMEN

Itch is a unique sensation that helps organisms scratch away external threats; scratching itself induces an immune response that can contribute to more itchiness. Itch is induced chemically in the peripheral nervous system via a wide array of receptors. Given the superficial localization of itch neuron terminals, cells that dwell close to the skin contribute significantly to itch. Certain mechanical stimuli mediated by recently discovered circuits also contribute to the itch sensation. Ultimately, in the spinal cord, and likely in the brain, circuits that mediate touch, pain, and itch engage in cross modulation. Much of itch perception is still a mystery, but we present in this review the known ligands and receptors associated with itch. We also describe experiments and findings from investigations into the spinal and supraspinal circuitry responsible for the sensation of itch.


Asunto(s)
Encéfalo/fisiopatología , Dolor/fisiopatología , Sistema Nervioso Periférico/fisiopatología , Prurito/fisiopatología , Animales , Encéfalo/fisiología , Humanos , Neuronas/fisiología , Médula Espinal/fisiopatología
9.
Immunity ; 51(3): 426-428, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31533055

RESUMEN

The skin is densely innervated with nociceptive neurons specialized in detecting noxious and painful stimuli. In a recent issue of Cell, Cohen et al. report that activation of cutaneous nociceptive neurons leads to a nerve-reflex action that is sufficient to provide a danger signal that triggers regional immunity to fight a microbial challenge.


Asunto(s)
Nociceptores , Dolor , Humanos , Neuronas , Reflejo , Piel , Canales Catiónicos TRPV
10.
Immunity ; 50(5): 1163-1171.e5, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31027996

RESUMEN

Classical itch studies have focused on immunoglobulin E (IgE)-mediated mast cell activation and histamine release. Recently, members of the Mas-related G-protein-coupled receptor (Mrgpr) family have been identified as mast cell receptors, but their role in itch is unclear. Here, we report that mast cell activation via Mrgprb2 evoked non-histaminergic itch in mice independently of the IgE-Fc epsilon RI (FcεRI)-histamine axis. Compared with IgE-FcεRI stimulation, Mrgprb2 activation of mast cells was distinct in both released substances (histamine, serotonin, and tryptase) and the pattern of activated itch-sensory neurons. Mrgprb2 deficiency decreased itch in multiple preclinical models of allergic contact dermatitis (ACD), a pruritic inflammatory skin disorder, and both mast cell number and PAMP1-20 concentrations (agonist of the human Mrgprb2 homolog, MRGPRX2) were increased in human ACD skin. These findings suggest that this pathway may represent a therapeutic target for treating ACD and mast-cell-associated itch disorders in which antihistamines are ineffective.


Asunto(s)
Mastocitos/inmunología , Proteínas del Tejido Nervioso/metabolismo , Prurito/patología , Receptores Acoplados a Proteínas G/metabolismo , Receptores de IgE/metabolismo , Receptores de Neuropéptido/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Femenino , Histamina/metabolismo , Antagonistas de los Receptores Histamínicos/uso terapéutico , Humanos , Inmunoglobulina E/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Fragmentos de Péptidos/metabolismo , Receptores Acoplados a Proteínas G/genética , Serotonina/metabolismo , Piel/metabolismo , Triptasas/metabolismo , Adulto Joven
11.
Proc Natl Acad Sci U S A ; 121(6): e2309243121, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38289950

RESUMEN

Staphylococcus aureus skin colonization and eosinophil infiltration are associated with many inflammatory skin disorders, including atopic dermatitis, bullous pemphigoid, Netherton's syndrome, and prurigo nodularis. However, whether there is a relationship between S. aureus and eosinophils and how this interaction influences skin inflammation is largely undefined. We show in a preclinical mouse model that S. aureus epicutaneous exposure induced eosinophil-recruiting chemokines and eosinophil infiltration into the skin. Remarkably, we found that eosinophils had a comparable contribution to the skin inflammation as T cells, in a manner dependent on eosinophil-derived IL-17A and IL-17F production. Importantly, IL-36R signaling induced CCL7-mediated eosinophil recruitment to the inflamed skin. Last, S. aureus proteases induced IL-36α expression in keratinocytes, which promoted infiltration of IL-17-producing eosinophils. Collectively, we uncovered a mechanism for S. aureus proteases to trigger eosinophil-mediated skin inflammation, which has implications in the pathogenesis of inflammatory skin diseases.


Asunto(s)
Dermatitis Atópica , Eosinofilia , Infecciones Estafilocócicas , Animales , Ratones , Eosinófilos/metabolismo , Staphylococcus aureus/metabolismo , Péptido Hidrolasas/metabolismo , Piel/metabolismo , Dermatitis Atópica/metabolismo , Infecciones Estafilocócicas/metabolismo , Celulitis (Flemón)/metabolismo , Celulitis (Flemón)/patología , Inflamación/metabolismo
12.
Annu Rev Genet ; 51: 103-121, 2017 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-29178819

RESUMEN

Chronic, persistent itch is a devastating symptom that causes much suffering. In recent years, there has been great progress made in understanding the molecules, cells, and circuits underlying itch sensation. Once thought to be carried by pain-sensing neurons, itch is now believed to be capable of being transmitted by dedicated sensory labeled lines. Members of the Mas-related G protein-coupled receptor (Mrgpr) family demarcate an itch-specific labeled line in the peripheral nervous system. In the spinal cord, the expression of other proteins identifies additional populations of itch-dedicated sensory neurons. However, as evidence for labeled-line coding has mounted, studies promoting alternative itch-coding strategies have emerged, complicating our understanding of the neural basis of itch. In this review, we cover the molecules, cells, and circuits related to understanding the neural basis of itch, with a focus on the role of Mrgprs in mediating itch sensation.


Asunto(s)
Sistema Nervioso Periférico/metabolismo , Prurito/genética , Receptores Acoplados a Proteínas G/genética , Células Receptoras Sensoriales/metabolismo , Canal Catiónico TRPA1/genética , Canales Catiónicos TRPV/genética , Animales , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Humanos , Ratones , Nocicepción/fisiología , Sistema Nervioso Periférico/fisiopatología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Prurito/metabolismo , Prurito/fisiopatología , Receptores del Factor Natriurético Atrial/genética , Receptores del Factor Natriurético Atrial/metabolismo , Receptores de Bombesina/genética , Receptores de Bombesina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células Receptoras Sensoriales/clasificación , Células Receptoras Sensoriales/patología , Transducción de Señal , Médula Espinal/metabolismo , Médula Espinal/fisiopatología , Canal Catiónico TRPA1/metabolismo , Canales Catiónicos TRPV/metabolismo
13.
J Allergy Clin Immunol ; 153(3): 852-859.e3, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37984799

RESUMEN

BACKGROUND: Itch is a common symptom that can greatly diminish quality of life. Histamine is a potent endogenous pruritogen, and while antihistamines are often the first-line treatment for itch, in conditions like chronic spontaneous urticaria (CSU), many patients remain symptomatic while receiving maximal doses. Mechanisms that drive resistance to antihistamines are poorly defined. OBJECTIVES: Signaling of the alarmin cytokine IL-33 in sensory neurons is postulated to drive chronic itch by inducing neuronal sensitization to pruritogens. Thus, we sought to determine if IL-33 can augment histamine-induced (histaminergic) itch. METHODS: Itch behavior was assessed in response to histamine after IL-33 or saline administration. Various stimuli and conditional and global knockout mice were utilized to dissect cellular mechanisms. Multiple existing transcriptomic data sets were evaluated, including single-cell RNA sequencing of human and mouse skin, microarrays of isolated mouse mast cells at steady state and after stimulation with IL-33, and microarrays of skin biopsy samples from subjects with CSU and healthy controls. RESULTS: IL-33 amplifies histaminergic itch independent of IL-33 signaling in sensory neurons. Mast cells are the top expressors of the IL-33 receptor in both human and mouse skin. When stimulated by IL-33, mouse mast cells significantly increase IL-13 levels. Enhancement of histaminergic itch by IL-33 relies on a mast cell- and IL-13-dependent mechanism. IL-33 receptor expression is increased in lesional skin of subjects with CSU compared to healthy controls. CONCLUSIONS: Our findings suggest that IL-33 signaling may be a key driver of histaminergic itch in mast cell-associated pruritic conditions such as CSU.


Asunto(s)
Histamina , Piel , Ratones , Animales , Humanos , Piel/patología , Histamina/metabolismo , Interleucina-33/metabolismo , Interleucina-13/genética , Interleucina-13/metabolismo , Calidad de Vida , Prurito/patología , Antagonistas de los Receptores Histamínicos , Ratones Noqueados
14.
Mol Pain ; 20: 17448069241270295, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39054310

RESUMEN

The transmission of nociceptive and pruriceptive signals in the spinal cord is greatly influenced by descending modulation from brain areas such as the rostral ventromedial medulla (RVM). Within the RVM three classes of neurons have been discovered which are relevant to spinal pain modulation, the On, Off, and Neutral cells. These neurons were discovered due to their functional response to nociceptive stimulation. On cells are excited, Off cells are inhibited, and Neutral cells have no response to noxious stimulation. Since these neurons are identified by functional response characteristics it has been difficult to molecularly identify them. In the present study, we leverage our ability to perform optotagging within the RVM to determine whether RVM On, Off, and Neutral cells are GABAergic. We found that 27.27% of RVM On cells, 47.37% of RVM Off cells, and 42.6% of RVM Neutral cells were GABAergic. These results demonstrate that RVM On, Off, and Neutral cells represent a heterogeneous population of neurons and provide a reliable technique for the molecular identification of these neurons.


Asunto(s)
Neuronas GABAérgicas , Bulbo Raquídeo , Bulbo Raquídeo/fisiología , Bulbo Raquídeo/citología , Animales , Neuronas GABAérgicas/metabolismo , Masculino , Ratas Sprague-Dawley , Ratas
15.
Cell ; 139(7): 1353-65, 2009 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-20004959

RESUMEN

The cellular and molecular mechanisms mediating histamine-independent itch in primary sensory neurons are largely unknown. Itch induced by chloroquine (CQ) is a common side effect of this widely used antimalarial drug. Here, we show that Mrgprs, a family of G protein-coupled receptors expressed exclusively in peripheral sensory neurons, function as itch receptors. Mice lacking a cluster of Mrgpr genes display significant deficits in itch induced by CQ but not histamine. CQ directly excites sensory neurons in an Mrgpr-dependent manner. CQ specifically activates mouse MrgprA3 and human MrgprX1. Loss- and gain-of-function studies demonstrate that MrgprA3 is required for CQ responsiveness in mice. Furthermore, MrgprA3-expressing neurons respond to histamine and coexpress gastrin-releasing peptide, a peptide involved in itch sensation, and MrgprC11. Activation of these neurons with the MrgprC11-specific agonist BAM8-22 induces itch in wild-type but not mutant mice. Therefore, Mrgprs may provide molecular access to itch-selective neurons and constitute novel targets for itch therapeutics.


Asunto(s)
Cloroquina/efectos adversos , Prurito/inducido químicamente , Receptores Acoplados a Proteínas G/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Animales , Capsaicina/efectos adversos , Ganglios Espinales/citología , Ganglios Espinales/efectos de los fármacos , Histamina/efectos adversos , Humanos , Ratones
16.
Biol Pharm Bull ; 47(10): 1624-1630, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39370266

RESUMEN

Itch is a prominent symptom of atopic dermatitis (AD). However, the underlying mechanism remains complex and has not yet been fully elucidated. Mas-related G protein-coupled receptor A3 (MrgprA3) has emerged attention as a marker of primary sensory neurons that specifically transmit itch signals; however, its involvement in AD-related itch has not been extensively explored. In this study, we developed an AD itch mouse model by repeatedly applying house dust mite (HDM) extract to barrier-impaired skin via a special diet. To clarify the role of MrgprA3+ neurons in itch behavior in our AD model, we adopted a toxin receptor-mediated cell knockout strategy using transgenic mice in which the diphtheria toxin receptor (DTR) gene was placed under the control of the Mrgpra3 promoter. When the HDM extract was repeatedly applied to the face and back skin of special diet-fed mice, the mice exhibited AD-like dry and eczematous skin lesions accompanied by three types of itch-related behaviors:1) spontaneous scratching, 2) acute scratching after antigen challenge, and 3) light touch-evoked scratching. Upon diphtheria toxin administration, substantial depletion of DTR+/MrgprA3+ neurons was observed in the dorsal root ganglion. Ablation of MrgprA3+ neurons suppressed acute itch responses after HDM application, whereas spontaneous and touch-evoked itch behaviors remained unaffected. Our findings unequivocally demonstrate that in our AD model, MrgprA3+ primary sensory neurons mediate acute allergic itch responses, whereas these neurons are not involved in spontaneous itch or alloknesis.


Asunto(s)
Dermatitis Atópica , Modelos Animales de Enfermedad , Prurito , Receptores Acoplados a Proteínas G , Células Receptoras Sensoriales , Animales , Prurito/inmunología , Dermatitis Atópica/inmunología , Células Receptoras Sensoriales/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Ratones , Ratones Transgénicos , Factor de Crecimiento Similar a EGF de Unión a Heparina/genética , Factor de Crecimiento Similar a EGF de Unión a Heparina/metabolismo , Masculino , Toxina Diftérica , Ratones Endogámicos C57BL , Pyroglyphidae/inmunología , Piel/inervación , Piel/metabolismo , Piel/patología
17.
J Cell Physiol ; 238(4): 813-828, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36879552

RESUMEN

Chronic kidney disease (CKD) is a disease with decreased, irreversible renal function. Pruritus is the most common skin symptom in patients with CKD, especially in end-stage renal disease. The underlying molecular and neural mechanism of CKD-associated pruritus (CKD-aP) remains obscure. Our data show that the level of allantoin increases in the serum of CKD-aP and CKD model mice. Allantoin could induce scratching behavior in mice and active DRG neurons. The calcium influx and action potential reduced significantly in DRG neurons of MrgprD KO or TRPV1 KO mice. U73122, an antagonist of phospholipase C, could also block calcium influx in DRG neurons induced by allantoin. Thus, our results concluded that allantoin plays an important role in CKD-aP, mediated by MrgprD and TrpV1, in CKD patients.


Asunto(s)
Alantoína , Prurito , Insuficiencia Renal Crónica , Animales , Ratones , Alantoína/efectos adversos , Calcio , Prurito/inducido químicamente , Prurito/diagnóstico , Receptores Acoplados a Proteínas G , Insuficiencia Renal Crónica/complicaciones
18.
Mol Pain ; 19: 17448069231181358, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37232078

RESUMEN

Migraine pain is characterized by an intense, throbbing pain in the head area and possesses complex pathological and physiological origins. Among the various factors believed to contribute to migraine are mast cells (MCs), resident tissue immune cells that are closely associated with pain afferents in the meninges. In this review, we aim to examine and discuss recent findings on the individual roles of MCs and the trigeminal nerve in migraine, as well as the various connections between their mechanisms with an emphasis on the contributions those relationships make to migraine. This is seen through MC release of histamine, among other compounds, and trigeminal nerve release of calcitonin-gene-related-peptide (CGRP) and pituitary adenylate cyclase activating peptide-38 (PACAP-38), which are peptides that are thought to contribute to migraine. Secondly, we illustrate the bi-directional relationship of neurogenic inflammation as well as highlight the role of MCs and their effect on the trigeminal nerve in migraine mechanisms. Lastly, we discuss potential new targets for clinical interventions of MC- and trigeminal nerve-mediated migraine, and present future perspectives of mechanistic and translational research.


Asunto(s)
Mastocitos , Trastornos Migrañosos , Humanos , Nervio Trigémino , Péptido Relacionado con Gen de Calcitonina , Dolor , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa
19.
Exp Dermatol ; 32(4): 425-435, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36461082

RESUMEN

Phosphodiesterase 4 (PDE4) is highly expressed in keratinocytes and immune cells and promotes pro-inflammatory responses upon activation. The activity of PDE4 has been attributed to various inflammatory conditions, leading to the development and approval of PDE4 inhibitors as host-directed therapeutics in humans. For example, the topical PDE4 inhibitor, crisaborole, is approved for the treatment of mild-to-moderate atopic dermatitis and has shown efficacy in patients with psoriasis. However, the role of crisaborole in regulating the immunopathogenesis of inflammatory skin diseases and infection is not entirely known. Therefore, we evaluated the effects of crisaborole in multiple mouse models, including psoriasis-like dermatitis, AD-like skin inflammation with and without filaggrin mutations, and Staphylococcus aureus skin infection. We discovered that crisaborole dampens myeloid cells and itch in the skin during psoriasis-like dermatitis. Furthermore, crisaborole was effective in reducing skin inflammation in the context of filaggrin deficiency. Importantly, crisaborole reduced S. aureus skin colonization during AD-like skin inflammation. However, crisaborole was not efficacious in treating S. aureus skin infections, even as adjunctive therapy to antibiotics. Taken together, we found that crisaborole reduced itch during psoriasis-like dermatitis and decreased S. aureus skin colonization upon AD-like skin inflammation, which act as additional mechanisms by which crisaborole dampens the immunopathogenesis in mouse models of inflammatory skin diseases. Further examination is warranted to translate these preclinical findings to human disease.


Asunto(s)
Dermatitis Atópica , Inhibidores de Fosfodiesterasa 4 , Psoriasis , Infecciones Estafilocócicas , Humanos , Animales , Ratones , Staphylococcus aureus , Proteínas Filagrina , Modelos Animales de Enfermedad , Dermatitis Atópica/tratamiento farmacológico , Inhibidores de Fosfodiesterasa 4/uso terapéutico , Prurito/tratamiento farmacológico , Psoriasis/tratamiento farmacológico , Infecciones Estafilocócicas/tratamiento farmacológico , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4 , Inflamación/tratamiento farmacológico
20.
Cell ; 133(3): 475-85, 2008 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-18455988

RESUMEN

Transient receptor potential vanilloid 1 (TRPV1) is a molecular sensor of noxious heat and capsaicin. Its channel activity can be modulated by several mechanisms. Here we identify a membrane protein, Pirt, as a regulator of TRPV1. Pirt is expressed in most nociceptive neurons in the dorsal root ganglia (DRG) including TRPV1-positive cells. Pirt null mice show impaired responsiveness to noxious heat and capsaicin. Noxious heat- and capsaicin-sensitive currents in Pirt-deficient DRG neurons are significantly attenuated. Heterologous expression of Pirt strongly enhances TRPV1-mediated currents. Furthermore, the C terminus of Pirt binds to TRPV1 and several phosphoinositides, including phosphatidylinositol-4,5-bisphosphate (PIP2), and can potentiate TRPV1. The PIP2 binding is dependent on the cluster of basic residues in the Pirt C terminus and is crucial for Pirt regulation of TRPV1. Importantly, the enhancement of TRPV1 by PIP2 requires Pirt. Therefore, Pirt is a key component of the TRPV1 complex and positively regulates TRPV1 activity.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Nociceptores/metabolismo , Canales Catiónicos TRPV/metabolismo , Secuencia de Aminoácidos , Animales , Capsaicina/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/genética , Ganglios Espinales/metabolismo , Calor , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Neuronas Aferentes/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA