Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Dev Biol ; 504: 49-57, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37741309

RESUMEN

SAM and SH3 domain-containing 1 (SASH1), a member of the SLy protein family, is a tumor suppressor gene that has been studied for its association with various cancers. SASH1 is highly expressed in the mammalian central nervous system, particularly in glial cells, and is expressed in the central nervous system during zebrafish embryo development. However, SASH1's role in brain development has rarely been investigated. In this study, Morpholino oligonucleotides (MO) were used to down-regulate sash1a expression in zebrafish to observe morphological changes in the brain. Three transgenic zebrafish lines, Tg(gfap:eGFP), Tg(hb9:eGFP), and Tg(coro1a:eGFP) were selected to observe changes in glial cells, neurons, and immune cells after sash1a knockdown. Our results showed that the number of microglia residing in the developmental brain was reduced, whereas the axonal growth of caudal primary motor neurons was unaffected by sash1a downregulation. And more significantly, the gfap + glia presented abnormal arrangements and disordered orientations in sash1a morphants. The similar phenotype was verified in the mutation induced by the injection of cas9 mRNA and sash1a sgRNA. We further performed behavioral experiments in zebrafish larvae that had been injected with sash1a MO at one-cell stage, and found them exhibiting abnormal behavior trajectories. Moreover, injecting the human SASH1 mRNA rescued these phenomena in sash1a MO zebrafish. In summary, our study revealed that the downregulation of SASH1 leads to malformations in the embryonic brain and disorganization of glial cell marshalling, suggesting that SASH1 plays an important role in the migration of glial cells during embryonic brain development.


Asunto(s)
Proteínas Supresoras de Tumor , Pez Cebra , Animales , Humanos , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , ARN Guía de Sistemas CRISPR-Cas , Sistema Nervioso Central/metabolismo , Movimiento Celular/genética , ARN Mensajero , Mamíferos/metabolismo
2.
J Biol Chem ; 299(9): 105153, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37567476

RESUMEN

Astrocyte activation and proliferation contribute to glial scar formation during spinal cord injury (SCI), which limits nerve regeneration. The long noncoding RNAs (lncRNAs) are involved in astrocyte proliferation and act as novel epigenetic regulators. Here, we found that lncRNA-LOC100909675 (LOC9675) expression promptly increased after SCI and that reducing its expression decreased the proliferation and migration of the cultured spinal astrocytes. Depletion of LOC9675 reduced astrocyte proliferation and facilitated axonal regrowth after SCI. LOC9675 mainly localized in astrocytic nuclei. We used RNA-seq to analyze gene expression profile alterations in LOC9675-depleted astrocytes and identified the cyclin-dependent kinase 1 (Cdk1) gene as a hub candidate. Our RNA pull-down and RNA immunoprecipitation assays showed that LOC9675 directly interacted with the transcriptional regulator CCCTC-binding factor (CTCF). Dual-luciferase reporter and chromatin immunoprecipitation assays, together with downregulated/upregulated expression investigation, revealed that CTCF is a novel regulator of the Cdk1 gene. Interestingly, we found that with the simultaneous overexpression of CTCF and LOC9675 in astrocytes, the Cdk1 transcript was restored to the normal level. We then designed the deletion construct of LOC9675 by removing its interacting region with CTCF and found this effect disappeared. A transcription inhibition assay using actinomycin D revealed that LOC9675 could stabilize Cdk1 mRNA, while LOC9675 depletion or binding with CTCF reduced Cdk1 mRNA stability. These data suggest that the cooperation between CTCF and LOC9675 regulates Cdk1 transcription at a steady level, thereby strictly controlling astrocyte proliferation. This study provides a novel perspective on the regulation of the Cdk1 gene transcript by lncRNA LOC9675.

3.
J Biol Chem ; 299(3): 103020, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36791914

RESUMEN

Neural stem cells (NSCs) proliferation and differentiation rely on proper expression and posttranslational modification of transcription factors involved in the determination of cell fate. Further characterization is needed to connect modifying enzymes with their transcription factor substrates in the regulation of these processes. Here, we demonstrated that the inhibition of KAT2A, a histone acetyltransferase, leads to a phenotype of small eyes in the developing embryo of zebrafish, which is associated with enhanced proliferation and apoptosis of NSCs in zebrafish eyes. We confirmed that this phenotype is mediated by the elevated level of PAX6 protein. We further verified that KAT2A negatively regulates PAX6 at the protein level in cultured neural stem cells of rat cerebral cortex. We revealed that PAX6 is a novel acetylation substrate of KAT2A and the acetylation of PAX6 promotes its ubiquitination mediated by the E3 ligase RNF8 that facilitated PAX6 degradation. Our study proposes that KAT2A inhibition results in accelerated proliferation, delayed differentiation, or apoptosis, depending on the context of PAX6 dosage. Thus, the KAT2A/PAX6 axis plays an essential role to keep a balance between the self-renewal and differentiation of NSCs.


Asunto(s)
Células-Madre Neurales , Pez Cebra , Animales , Ratas , Diferenciación Celular/fisiología , Proliferación Celular , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Células-Madre Neurales/metabolismo , Factor de Transcripción PAX6/genética , Factor de Transcripción PAX6/metabolismo , Factores de Transcripción/metabolismo , Pez Cebra/metabolismo
4.
Eur J Neurosci ; 59(12): 3389-3402, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38663879

RESUMEN

Neurons are post-mitotic cells, with microtubules playing crucial roles in axonal transport and growth. Kinesin family member 2c (KIF2C), a member of the Kinesin-13 family, possesses the ability to depolymerize microtubules and is involved in remodelling the microtubule lattice. Myocyte enhancer factor 2c (MEF2C) was initially identified as a regulator of muscle differentiation but has recently been associated with neurological abnormalities such as severe cognitive impairment, stereotyping, epilepsy and brain malformations when mutated or deleted. However, further investigation is required to determine which target genes MEF2C acts upon to influence neuronal function as a transcription regulator. Our data demonstrate that knockdown of both Mef2c and Kif2c significantly impacts spinal motor neuron development and behaviour in zebrafish. Luciferase reporter assays and chromosome immunoprecipitation assays, along with down/upregulated expression analysis, revealed that MFE2C functions as a novel transcription regulator for the Kif2c gene. Additionally, the knockdown of either Mef2c or Kif2c expression in E18 cortical neurons substantially reduces the number of primary neurites and axonal branches during neuronal development in vitro without affecting neurite length. Finally, depletion of Kif2c eliminated the effects of overexpression of Mef2c on the neurite branching. Based on these findings, we provided novel evidence demonstrating that MEF2C regulates the transcription of the Kif2c gene thereby influencing the axonal branching.


Asunto(s)
Axones , Cinesinas , Factores de Transcripción MEF2 , Pez Cebra , Animales , Factores de Transcripción MEF2/metabolismo , Factores de Transcripción MEF2/genética , Cinesinas/metabolismo , Cinesinas/genética , Axones/metabolismo , Axones/fisiología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Neuronas Motoras/metabolismo , Neurogénesis/fisiología , Regulación del Desarrollo de la Expresión Génica , Humanos
5.
BMC Biol ; 21(1): 95, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-37095525

RESUMEN

BACKGROUND: Natronobacterium gregoryi Argonaute (NgAgo) was found to reduce mRNA without generating detectable DNA double-strand breaks in a couple of endogenous genes in zebrafish, suggesting its potential as a tool for gene knockdown. However, little is known about how it interacts with nucleic acid molecules to interfere with gene expression. RESULTS: In this study, we first confirmed that coinjection of NgAgo and gDNA downregulated target genes, generated gene-specific phenotypes and verified some factors (including 5' phosphorylation, GC ratio, and target positions) of gDNAs affecting gene downregulation. Therein, the sense and antisense gDNAs were equally effective, suggesting that NgAgo possibly binds to DNA. NgAgo-VP64 with gDNAs targeting promoters upregulated the target genes, further providing evidence that NgAgo interacts with genomic DNA and controls gene transcription. Finally, we explain the downregulation of NgAgo/gDNA target genes by interference with the process of gene transcription, which differs from that of morpholino oligonucleotides. CONCLUSIONS: The present study provides conclusions that NgAgo may target genomic DNA and that target positions and the gDNA GC ratio influence its regulation efficiency.


Asunto(s)
Edición Génica , Pez Cebra , Animales , Pez Cebra/genética , Natronobacterium/genética , Natronobacterium/metabolismo , ADN , Proteínas Argonautas/genética , Expresión Génica
6.
Metab Brain Dis ; 38(7): 2369-2381, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37256467

RESUMEN

Neuropsychiatric disorders have a high incidence worldwide. Kinesins, a family of microtubule-based molecular motor proteins, play essential roles in intracellular and axonal transport. Variants of kinesins have been found to be related to many diseases, including neurodevelopmental/neurodegenerative disorders. Kinesin-12 (also known as Kif15) was previously found to affect the frequency of both directional microtubule transports. However, whether Kif15 deficiency impacts mood in mice is yet to be investigated. In this study, we used the CRISPR/Cas9 method to obtain Kif15-/- mice. In behavioral tests, Kif15-/- female mice exhibited prominent depressive characteristics. Further studies showed that the expression of BDNF was significantly decreased in the frontal cortex, corpus callosum, and hippocampus of Kif15-/- mice, along with the upregulation of Interleukin-6 and Interleukin-1ß in the corpus callosum. In addition, the expression patterns of AnkG were notably changed in the developing brain of Kif15-/- mice. Based on our previous studies, we suggested that this appearance of altered AnkG was due to the maladjustment of the microtubule patterns induced by Kif15 deficiency. The distribution of PSD95 in neurites notably decreased after cultured neurons treated with the Kif15 inhibitor, but total PSD95 protein level was not impacted, which revealed that Kif15 may contribute to PSD95 transportation. This study suggested that Kif15 may serve as a potential target for future depression studies.


Asunto(s)
Depresión , Cinesinas , Animales , Femenino , Ratones , Depresión/genética , Cinesinas/genética , Cinesinas/metabolismo , Microtúbulos/metabolismo , Neuronas/metabolismo
7.
Traffic ; 20(1): 71-81, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30411440

RESUMEN

KIF15, the vertebrate kinesin-12, is best known as a mitotic motor protein, but continues to be expressed in neurons. Like KIF11 (the vertebrate kinesin-5), KIF15 interacts with microtubules in the axon to limit their sliding relative to one another. Unlike KIF11, KIF15 also regulates interactions between microtubules and actin filaments at sites of axonal branch formation and in growth cones. Our original work on these motors was done on cultured rat neurons, but we are now using zebrafish to extend these studies to an in vivo model. We previously studied kif15 in zebrafish by injecting splice-blocking morpholinos injected into embryos. Consistent with the cell culture work, these studies demonstrated that axons grow faster and longer when KIF15 levels are reduced. In the present study, we applied CRISPR/Cas9-based knockout technology to create kif15 mutants and labeled neurons with Tg(mnx1:GFP) transgene or transient expression of elavl3:EGFP-alpha tubulin. We then compared by live imaging the homozygotic, heterozygotic mutants to their wildtype siblings to ascertain the effects of depletion of kif15 during Caudal primary motor neuron and Rohon-Beard (R-B) sensory neuron development. The results showed, compared to the kif15 wildtype, the number of branches was reduced while axon outgrowth was accelerated in kif15 homozygotic and heterozygotic mutants. In R-B sensory neurons, after laser irradiation, injured axons with loss of kif15 displayed significantly greater regenerative velocity. Given these results and the fact that kif15 drugs are currently under development, we posit kif15 as a novel target for therapeutically augmenting regeneration of injured axons.


Asunto(s)
Cinesinas/genética , Mutación , Regeneración Nerviosa , Proyección Neuronal , Proteínas de Pez Cebra/genética , Animales , Sistemas CRISPR-Cas , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Neuronas Motoras/fisiología , Pez Cebra
8.
J Biol Chem ; 294(8): 2732-2743, 2019 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-30593510

RESUMEN

Zebrafish gata4/5/6 genes encode transcription factors that lie on the apex of the regulatory hierarchy in primitive myelopoiesis. However, little is known about the roles of microRNAs in gata4/5/6-regulated processes. Performing RNA-Seq deep sequencing analysis of the expression changes of microRNAs in gata4/5/6-knockdown embryos, we identified miR-210-5p as a regulator of zebrafish primitive myelopoiesis. Knocking down gata4/5/6 (generating gata5/6 morphants) significantly increased miR-210-5p expression, whereas gata4/5/6 overexpression greatly reduced its expression. Consistent with inhibited primitive myelopoiesis in the gata5/6 morphants, miR-210-5p overexpression repressed primitive myelopoiesis, indicated by reduced numbers of granulocytes and macrophages. Moreover, knocking out miR-210 partially rescued the defective primitive myelopoiesis in zebrafish gata4/5/6-knockdown embryos. Furthermore, we show that the restrictive role of miR-210-5p in zebrafish primitive myelopoiesis is due to impaired differentiation of hemangioblast into myeloid progenitor cells. By comparing the set of genes with reduced expression levels in the gata5/6 morphants to the predicted target genes of miR-210-5p, we found that foxj1b and slc3a2a, encoding a forkhead box transcription factor and a solute carrier family 3 protein, respectively, are two direct downstream targets of miR-210-5p that mediate its inhibitory roles in zebrafish primitive myelopoiesis. In summary, our results reveal that miR-210-5p has an important role in the genetic network controlling zebrafish primitive myelopoiesis.


Asunto(s)
Embrión no Mamífero/citología , Regulación del Desarrollo de la Expresión Génica , Silenciador del Gen , MicroARNs/genética , Mielopoyesis , ARN Mensajero/antagonistas & inhibidores , Proteínas de Pez Cebra/antagonistas & inhibidores , Pez Cebra/embriología , Animales , Embrión no Mamífero/metabolismo , Factores de Transcripción Forkhead/antagonistas & inhibidores , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Cadena Pesada de la Proteína-1 Reguladora de Fusión/antagonistas & inhibidores , Cadena Pesada de la Proteína-1 Reguladora de Fusión/genética , Cadena Pesada de la Proteína-1 Reguladora de Fusión/metabolismo , Factores de Transcripción GATA/antagonistas & inhibidores , Factores de Transcripción GATA/genética , Factores de Transcripción GATA/metabolismo , Factor de Transcripción GATA5/antagonistas & inhibidores , Factor de Transcripción GATA5/genética , Factor de Transcripción GATA5/metabolismo , Redes Reguladoras de Genes , ARN Mensajero/genética , ARN Mensajero/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
9.
BMC Dev Biol ; 19(1): 25, 2019 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-31884948

RESUMEN

BACKGROUND: Rab proteins are GTPases responsible for intracellular vesicular trafficking regulation. Rab11 proteins, members of the Rab GTPase family, are known to regulate vesicular recycling during embryonic development. In zebrafish, there are 3 rab11 paralogues, known as rab11a, rab11ba and rab11bb, sharing high identity with each other. However, the expression analysis of rab11 is so far lacking. RESULTS: Here, by phylogeny analysis, we found the three rab11 genes are highly conserved especially for their GTPase domains. We examined the expression patterns of rab11a, rab11ba and rab11bb using RT-PCR and in situ hybridization. We found that all the three genes were highly enriched in the central nervous system, but in different areas of the brain. Apart from brain, rab11a was also expressed in caudal vein, pronephric duct, proctodeum, pharyngeal arches and digestive duct, rab11ba was detected to express in muscle, and rab11bb was expressed in kidney, fin and spinal cord. Different from rab11a and rab11ba, which both have maternal expressions in embryos, rab11bb only expresses during 24hpf to 96hpf. CONCLUSIONS: Our results suggest that rab11 genes play important but distinct roles in the development of the nervous system in zebrafish. The findings could provide new evidences for better understanding the functions of rab11 in the development of zebrafish embryos.


Asunto(s)
Pez Cebra/embriología , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Animales , Sistema Nervioso Central/embriología , Sistema Nervioso Central/metabolismo , Secuencia Conservada , Femenino , Tracto Gastrointestinal/embriología , Tracto Gastrointestinal/metabolismo , Regulación del Desarrollo de la Expresión Génica , Herencia Materna , Familia de Multigenes , Dominios Proteicos , Distribución Tisular , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Proteínas de Unión al GTP rab/química
10.
J Cell Sci ; 129(12): 2438-47, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27170353

RESUMEN

Kinesin-12 (also named Kif15) participates in important events during neuronal development, such as cell division of neuronal precursors, migration of young neurons and establishment of axons and dendritic arbors, by regulating microtubule organization. Little is known about the molecular mechanisms behind the functions of kinesin-12, and even less is known about its roles in other cell types of the nervous system. Here, we show that kinesin-12 depletion from cultured rat cortical astrocytes decreases cell proliferation but increases migration. Co-immunoprecipitation, GST pulldown and small interfering RNA (siRNA) experiments indicated that kinesin-12 directly interacts with myosin-IIB through their tail domains. Immunofluorescence analyses indicated that kinesin-12 and myosin-IIB colocalize in the lamellar region of astrocytes, and fluorescence resonance energy transfer analyses revealed an interaction between the two. The phosphorylation at Thr1142 of kinesin-12 was vital for their interaction. Loss of their interaction through expression of a phosphorylation mutant of kinesin-12 promoted astrocyte migration. We suggest that kinesin-12 and myosin-IIB can form a hetero-oligomer that generates force to integrate microtubules and actin filaments in certain regions of cells, and in the case of astrocytes, that this interaction can modulate their migration.


Asunto(s)
Astrocitos/citología , Astrocitos/metabolismo , Movimiento Celular , Corteza Cerebral/citología , Cinesinas/metabolismo , Miosina Tipo IIB no Muscular/metabolismo , Animales , Animales Recién Nacidos , Proliferación Celular , Células Cultivadas , Transferencia Resonante de Energía de Fluorescencia , Modelos Biológicos , Miosina Tipo IIB no Muscular/química , Fosforilación , Unión Proteica , Dominios Proteicos , ARN Interferente Pequeño/metabolismo , Ratas , Médula Espinal/citología
11.
J Biol Chem ; 290(16): 10216-28, 2015 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-25724646

RESUMEN

Foxc1a is a member of the forkhead transcription factors. It plays an essential role in zebrafish somitogenesis. However, little is known about the molecular mechanisms underlying its controlling somitogenesis. To uncover how foxc1a regulates zebrafish somitogenesis, we generated foxc1a knock-out zebrafish using TALEN (transcription activator-like effector nuclease) technology. The foxc1a null embryos exhibited defective somites at early development. Analyses on the expressions of the key genes that control processes of somitogenesis revealed that foxc1a controlled early somitogenesis by regulating the expression of myod1. In the somites of foxc1a knock-out embryos, expressions of fgf8a and deltaC were abolished, whereas the expression of aldh1a2 (responsible for providing retinoic acid signaling) was significantly increased. Once the increased retinoic acid level in the foxc1a null embryos was reduced by knocking down aldh1a2, the reduced expression of myod1 was partially rescued by resuming expressions of fgf8a and deltaC in the somites of the mutant embryos. Moreover, a chromatin immunoprecipitation assay on zebrafish embryos revealed that Foxc1a bound aldh1a2 promoter directly. On the other hand, neither knocking down fgf8a nor inhibiting Notch signaling affected the expression of aldh1a2, although knocking down fgf8a reduced expression of deltaC in the somites of zebrafish embryos at early somitogenesis and vice versa. Taken together, our results demonstrate that foxc1a plays an essential role in early somitogenesis by controlling Fgf and Notch signaling through restricting the expression of aldh1a2 in paraxial mesoderm directly.


Asunto(s)
Tipificación del Cuerpo/genética , Factores de Transcripción Forkhead/genética , Regulación del Desarrollo de la Expresión Génica , Retinal-Deshidrogenasa/genética , Somitos/metabolismo , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Embrión no Mamífero , Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Transcripción Forkhead/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteína MioD/genética , Proteína MioD/metabolismo , Regiones Promotoras Genéticas , Receptores Notch/genética , Receptores Notch/metabolismo , Retinal-Deshidrogenasa/metabolismo , Transducción de Señal , Somitos/crecimiento & desarrollo , Tretinoina/metabolismo , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/metabolismo
12.
Toxicol Appl Pharmacol ; 277(2): 183-91, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24642059

RESUMEN

Pentachlorophenol (PCP) is a prevalent pollutant in the environment and has been demonstrated to be a serious toxicant to humans and animals. However, little is known regarding the molecular mechanism underlying its toxic effects on vertebrate early development. To explore the impacts and underlying mechanisms of PCP on early development, zebrafish (Danio rerio) embryos were exposed to PCP at concentrations of 0, 20 and 50 µg/L, and microscopic observation and cDNA microarray analysis were subsequently conducted at gastrulation stage. The morphological observations revealed that PCP caused a developmental delay of zebrafish embryos in a concentration-dependent manner. Transcriptomic data showed that 50 µg/L PCP treatment resulted in significant changes in gene expression level, and the genes involved in energy metabolism and cell behavior were identified based on gene functional enrichment analysis. The energy production of embryos was influenced by PCP via the activation of glycolysis along with the inhibition of oxidative phosphorylation (OXPHOS). The results suggested that PCP acts as an inhibitor of OXPHOS at 8 hpf (hours postfertilization). Consistent with the activated glycolysis, the cell cycle activity of PCP-treated embryos was higher than the controls. These characteristics are similar to the Warburg effect, which occurs in human tumors. The microinjection of exogenous ATP confirmed that an additional energy supply could rescue PCP-treated embryos from the developmental delay due to the energy deficit. Taken together, our results demonstrated that PCP causes a Warburg-like effect on zebrafish embryos during gastrulation, and the affected embryos had the phenotype of developmental delay.


Asunto(s)
Contaminantes Ambientales/toxicidad , Gástrula/efectos de los fármacos , Gastrulación/efectos de los fármacos , Glucólisis/efectos de los fármacos , Fosforilación Oxidativa/efectos de los fármacos , Pentaclorofenol/toxicidad , Pez Cebra/embriología , Adenosina Trifosfato/metabolismo , Animales , Ciclo Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Gástrula/metabolismo , Gástrula/patología , Gastrulación/genética , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Genotipo , Glucólisis/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Factores de Tiempo , Pez Cebra/genética , Pez Cebra/metabolismo
13.
Zebrafish ; 20(1): 10-18, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36795618

RESUMEN

The swim bladder functions to maintain the fish balance at a certain position under water. Although the motoneuron-dependent swim-up behavior is important for swim bladder inflation, the underlying molecular mechanism remains largely unknown. We generated a sox2 KO zebrafish using TALEN and found that the posterior chamber of the swim bladder was uninflated. The tail flick and the swim-up behavior were absent in the mutant zebrafish embryos and the behavior could not be accomplished. As the tail flick behavior is absent, the mutant larvae therefore cannot reach the water surface to gulp air, ultimately leading to the uninflation of the swim bladder. To understand the mechanism underlying the swim-up defects, we crossed the sox2 null allele in the background of Tg(huc:eGFP) and Tg(hb9:GFP). The deficiency of sox2 in zebrafish resulted in abnormal motoneuron axons in the regions of trunk, tail, and swim bladder. To identify the downstream target gene of sox2 to control the motor neuron development, we performed RNA sequencing on the transcriber of mutant embryos versus wild type embryos and found that the axon guidance pathway was abnormal in the mutant embryos. RT-PCR demonstrated that the expression of sema3bl, ntn1b, and robo2 were decreased in the mutants.


Asunto(s)
Factores de Transcripción SOX , Proteínas de Pez Cebra , Pez Cebra , Animales , Embrión no Mamífero/fisiología , Organogénesis , Vejiga Urinaria , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Locomoción , Factores de Transcripción SOX/genética
14.
Exp Neurol ; 361: 114315, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36586551

RESUMEN

Neurons require a constant increase in protein synthesis during axonal growth and regeneration. AKT-mTOR is a central pathway for mammalian cell survival and regeneration. Fidgetin (Fign) is an ATP-dependent microtubule (MT)-severing enzyme whose functions are associated with neurite outgrowth, axon regeneration and cell migration. Although most previous studies have indicated that depletion of Fign is involved in those biological activities by increasing labile MT mass, it remains unknown whether mTOR activation contributes to this process. Here, we showed that depletion of Fign enhanced p-mTOR/p-S6K activation, and the mTOR inhibitor Rapamycin inhibited axon outgrowth and p-rpS6 activation. We then investigated the effects of neuronal-specific Fign deletion in a rat spinal cord hemisection model by injecting syn-GFP Fign shRNA virus. BBB values revealed an improvement in functional recovery. The p-mTOR was activated along with neuronal Fign depletion. The syn-mCherry virus showed more sprouting neurites entering the injury region, which was confirmed by immunostaining GAP43 protein. Further, we showed that Fign siRNA treatment promoted axon outgrowth and branching, whose underlying mechanism was firstly attributed to local activation of the mTOR pathway, and increased MT dynamicity. Finally, considering L-leucine, promotes axonal growth and neuronal survival, we applied L-leucine with Fign depletion after spinal cord injury or in chondroitin sulfate proteoglycan inhibitory molecules. The phenomenon of synergistically augmented axon regeneration was observed. In summary, our results indicated a novel local mTOR pathway for fidgetin to impact axon growth and provided a combined strategy in SCI.


Asunto(s)
Axones , Traumatismos de la Médula Espinal , Ratas , Animales , Axones/fisiología , Regeneración Nerviosa/fisiología , Leucina/metabolismo , Leucina/farmacología , Neuronas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Mamíferos
15.
Neural Regen Res ; 18(12): 2727-2732, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37449637

RESUMEN

Fidgetin, a microtubule-severing enzyme, regulates neurite outgrowth, axonal regeneration, and cell migration by trimming off the labile domain of microtubule polymers. Because maintenance of the microtubule labile domain is essential for axon initiation, elongation, and navigation, it is of interest to determine whether augmenting the microtubule labile domain via depletion of fidgetin serves as a therapeutic approach to promote axonal regrowth in spinal cord injury. In this study, we constructed rat models of spinal cord injury and sciatic nerve injury. Compared with spinal cord injury, we found that expression level of tyrosinated microtubules in the labile portion of microtubules continuously increased, whereas fidgetin decreased after peripheral nerve injury. Depletion of fidgetin enhanced axon regeneration after spinal cord injury, whereas expression level of end binding protein 3 (EB3) markedly increased. Next, we performed RNA interference to knockdown EB3 or fidgetin. We found that deletion of EB3 did not change fidgetin expression. Conversely, deletion of fidgetin markedly increased expression of tyrosinated microtubules and EB3. Deletion of fidgetin increased the amount of EB3 at the end of neurites and thereby increased the level of tyrosinated microtubules. Finally, we deleted EB3 and overexpressed fidgetin. We found that fidgetin trimmed tyrosinated tubulins by interacting with EB3. When fidgetin was deleted, the labile portion of microtubules was elongated, and as a result the length of axons and number of axon branches were increased. These findings suggest that fidgetin can be used as a novel therapeutic target to promote axonal regeneration after spinal cord injury. Furthermore, they reveal an innovative mechanism by which fidgetin preferentially severs labile microtubules.

16.
CNS Neurosci Ther ; 29(1): 228-238, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36286186

RESUMEN

AIMS: This study aimed to evaluate the effects of the depletion of SAM and SH3 domain-containing protein 1 (SASH1) on functional recovery after spinal cord injury (SCI) and to investigate the possible mechanism of SASH1 knockdown in astrocytes facilitating axonal growth. METHODS: SCI model was established in adult rats. SASH1 small interfering RNA (siSASH1) was used to investigate its function. Hindlimb motor function was evaluated by the Basso-Bresnahan-Beattie (BBB) assay. The gene expressions were evaluated by the methods of qRT-PCR, Western-blotting, ELISA, and immunohistochemistry. RESULTS: SASH1 knockdown improved the BBB scores after SCI and significantly reduced GFAP expression. In cultured spinal astrocytes, siSASH1 treatment decreased interferon-γ release and increased brain-derived neurotrophic factor (BDNF) release. When cocultured with SASH1-knockdown astrocytes, axonal growth increased. The neuronal tropomyosin receptor kinase B (BDNF receptor) expression increased, especially in the axonal tips. SASH1 expression increased while NSCs differentiated into glial cells, instead of neurons. After SASH1 depletion, differentiated NSCs maintained a higher level of Nestin protein and an increase in BDNF release. CONCLUSIONS: These results indicate that SASH1 acts as an astrocytic differentiation-maintaining protein, and SASH1 downregulation limits glial activation and contributes toward functional recovery after SCI.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Astrocitos , Traumatismos de la Médula Espinal , Animales , Ratas , Astrocitos/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Diferenciación Celular , Ratas Sprague-Dawley , Recuperación de la Función/fisiología , ARN Interferente Pequeño/genética , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética
17.
Transgenic Res ; 21(5): 995-1004, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22407406

RESUMEN

Yellow catfish (Pelteobagrus fulvidraco Richardson) is one of the most important freshwater farmed species in China. However, its small size and slow growth rate limit its commercial value. Because genetic engineering has been a powerful tool to develop and improve fish traits for aquaculture, we performed transgenic research on yellow catfish in order to increase its size and growth rate. Performing PCR with degenerate primers, we cloned a genomic fragment comprising 5'-flanking sequence upstream of the initiation codon of ß-actin gene in yellow catfish. The sequence is 1,017 bp long, containing the core sequence of proximal promoter including CAAT box, CArG motif and TATA box. Microinjecting the transgene construct Tg(beta-actin:eYFP) of the proximal promoter fused to enhanced yellow fluorescent protein (eYFP) reporter gene into zebrafish and yellow catfish embryos, we found the promoter could drive the reporter to express transiently in both embryos at early development. Screening the offspring of five transgenic zebrafish founders developed from the embryos microinjected with Tg(ycbeta-actin:mCherry) or 19 yellow catfish founders developed from the embryos microinjected with Tg(beta-actin:eYFP), we obtained three lines of transgenic zebrafish and one transgenic yellow catfish, respectively. Analyzing the expression patterns of the reporter genes in transgenic zebrafish (Tg(ycbeta-actin:mCherry)nju8/+) and transgenic yellow catfish (Tg(beta-actin:eYFP)nju11/+), we found the reporters were broadly expressed in both animals. In summary, we have established a platform to make transgenic yellow catfish using the proximal promoter of its own ß-actin gene. The results will help us to create transgenic yellow catfish using "all yellow catfish" transgene constructs.


Asunto(s)
Actinas/metabolismo , Animales Modificados Genéticamente/metabolismo , Proteínas Bacterianas/metabolismo , Bagres/metabolismo , Proteínas Luminiscentes/metabolismo , Regiones Promotoras Genéticas , Actinas/genética , Animales , Animales Modificados Genéticamente/genética , Proteínas Bacterianas/genética , Tamaño Corporal , Bagres/genética , Clonación Molecular , Codón Iniciador/genética , Codón Iniciador/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Ingeniería Genética/métodos , Proteínas Luminiscentes/genética , Microinyecciones , Transgenes , Pez Cebra/genética , Pez Cebra/metabolismo
18.
J Mol Cell Biol ; 14(5)2022 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-35704676

RESUMEN

High-altitude cerebral edema (HACE) is a potentially fatal encephalopathy associated with a time-dependent exposure to the hypobaric hypoxia of altitude. The formation of HACE is affected by both vasogenic and cytotoxic edema. The over-activated microglia potentiate the damage of blood-brain barrier (BBB) and exacerbate cytotoxic edema. In light with the activation of microglia in HACE, we aimed to investigate whether the over-activated microglia were the key turning point of acute mountain sickness to HACE. In in vivo experiments, by exposing mice to hypobaric hypoxia (7000 m above sea level) to induce HACE model, we found that microglia were activated and migrated to blood vessels. Microglia depletion by PLX5622 obviously relieved brain edema. In in vitro experiments, we found that hypoxia induced cultured microglial activation, leading to the destruction of endothelial tight junction and astrocyte swelling. Up-regulated nuclear respiratory factor 1 (NRF1) accelerated pro-inflammatory factors through transcriptional regulation on nuclear factor kappa B p65 (NF-κB p65) and mitochondrial transcription factor A (TFAM) in activated microglia under hypoxia. NRF1 also up-regulated phagocytosis by transcriptional regulation on caveolin-1 (CAV-1) and adaptor-related protein complex 2 subunit beta (AP2B1). The present study reveals a new mechanism in HACE: hypoxia over-activates microglia through up-regulation of NRF1, which both induces inflammatory response through transcriptionally activating NF-κB p65 and TFAM, and enhances phagocytic function through up-regulation of CAV-1 and AP2B1; hypoxia-activated microglia destroy the integrity of BBB and release pro-inflammatory factors that eventually induce HACE.


Asunto(s)
Mal de Altura , Edema Encefálico , Complejo 2 de Proteína Adaptadora/metabolismo , Altitud , Mal de Altura/complicaciones , Animales , Edema Encefálico/complicaciones , Edema Encefálico/metabolismo , Caveolina 1/metabolismo , Hipoxia/complicaciones , Ratones , Microglía/metabolismo , FN-kappa B/metabolismo , Factor Nuclear 1 de Respiración/metabolismo
19.
Artículo en Inglés | MEDLINE | ID: mdl-33069857

RESUMEN

During development, highly dynamic reconstruction of microtubules is involved in many cellular processes, including cell division, migration, morphological changes, and material transportation within cells. Microtubule severing proteins (MSPs), with the function of cutting microtubules into short parts, are important regulators in the reconstruction of microtubule arrays. Fidgetin (fign) and its family members fidgetin like 1 (fignl1) and fignl2 are MSPs, and knowledge on the expression patterns of fign family members will benefit our understanding of their primary roles in one specific stage during development. In this study, we compared the evolutionary relationships of fign family members and found that fignl2 is closer to fign than fignl1. We utilized the zebrafish model and in situ hybridization (ISH) to parallelly identify the expression features of fign family members. Our findings revealed that before 12 h post fertilization (hpf), the expression patterns of fign and fignl1 and fignl2 genes were similar, but differences arose thereafter. Fignl2 transcripts were present in more tissues and organs of zebrafish after 12 hpf and potentially exhibited more ubiquitous functions. This study is the first to assess systematic comparable data on the expression patterns of fign family members during development.


Asunto(s)
Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas Asociadas a Microtúbulos/genética , Pez Cebra/embriología , Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Biología Computacional , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo
20.
Front Cell Dev Biol ; 8: 593234, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33585441

RESUMEN

Previously, fidgetin (fign) and its family members fidgetin-like 1 (fignl1) and fidgetin-like 2 (fignl2) were found to be highly expressed during zebrafish brain development, suggesting their functions in the nervous system. In this study, we report the effects of loss-of-function of these genes on development. We designed and identified single-guide RNAs targeted to generate fign, fignl1, and fignl2 mutants and then observed the overall morphological and behavioral changes. Our findings showed that while fign and fignl1 null mutants displayed no significant defects, fignl2 null zebrafish mutants displayed pericardial edema, reduced heart rate, and smaller eyes; fignl2 null mutants responded to the light-darkness shift with a lower swimming velocity. fignl2 mRNAs were identified in vascular endothelial cells by in situ hybridization and re-analysis of an online dataset of single-cell RNAseq results. Finally, we used morpholino oligonucleotides to confirm that fignl2 knockdown resulted in severe heart edema, which was caused by abnormal vascular branching. The zebrafish fignl2 morphants also showed longer axonal length and more branches of caudal primary neurons. Taken together, we summarize that Fignl2 functions on cellular branches in endothelial cells and neurons. This study reported for the first time that the microtubule-severing protein Fignl2 contributes to cell branching during development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA