Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Hepatology ; 71(1): 247-258, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31136002

RESUMEN

Active secretion of bile salts into the canalicular lumen drives bile formation and promotes biliary cholesterol and phospholipid output. Disrupting hepatic bile salt uptake, by inhibition of sodium-taurocholate cotransporting polypetide (NTCP; Slc10a1) with Myrcludex B, is expected to limit bile salt flux through the liver and thereby to decrease biliary lipid excretion. Here, we show that Myrcludex B-mediated NTCP inhibition actually causes an increase in biliary cholesterol and phospholipid excretion whereas biliary bile salt output and bile salt composition remains unchanged. Increased lysosomal discharge into bile was excluded as a potential contributor to increased biliary lipid secretion. Induction of cholesterol secretion was not a consequence of increased ATP-binding cassette subfamily G member 5/8 activity given that NTCP inhibition still promoted cholesterol excretion in Abcg8-/- mice. Stimulatory effects of NTCP inhibition were maintained in Sr-b1-/- mice, eliminating the possibility that the increase in biliary lipids was derived from enhanced uptake of high-density lipoprotein-derived lipids. NTCP inhibition shifts bile salt uptake, which is generally more periportally restricted, toward pericentral hepatocytes, as was visualized using a fluorescently labeled conjugated bile salt. As a consequence, exposure of the canalicular membrane to bile salts was increased, allowing for more cholesterol and phospholipid molecules to be excreted per bile salt. Conclusion: NTCP inhibition increases biliary lipid secretion, which is independent of alterations in bile salt output, biliary bile salt hydrophobicity, or increased activity of dedicated cholesterol and phospholipid transporters. Instead, NTCP inhibition shifts hepatic bile salt uptake from mainly periportal hepatocytes toward pericentral hepatocytes, thereby increasing exposure of the canalicular membrane to bile salts linking to increased biliary cholesterol secretion. This process provides an additional level of control to biliary cholesterol and phospholipid secretion.


Asunto(s)
Sistema Biliar/metabolismo , Colesterol/metabolismo , Transportadores de Anión Orgánico Sodio-Dependiente/antagonistas & inhibidores , Fosfolípidos/metabolismo , Simportadores/antagonistas & inhibidores , Animales , Ácidos y Sales Biliares/metabolismo , Lipopéptidos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL
2.
Int J Mol Sci ; 22(24)2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34948271

RESUMEN

Over the past years, several preclinical in vitro and ex vivo models have been developed that helped to understand some of the critical aspects of intestinal functions in health and disease such as inflammatory bowel disease (IBD). However, the translation to the human in vivo situation remains problematic. The main reason for this is that these approaches fail to fully reflect the multifactorial and complex in vivo environment (e.g., including microbiota, nutrition, and immune response) in the gut system. Although conventional models such as cell lines, Ussing chamber, and the everted sac are still used, increasingly more sophisticated intestinal models have been developed over the past years including organoids, InTESTine™ and microfluidic gut-on-chip. In this review, we gathered the most recent insights on the setup, advantages, limitations, and future perspectives of most frequently used in vitro and ex vivo models to study intestinal physiology and functions in health and disease.


Asunto(s)
Mucosa Intestinal/metabolismo , Mucosa Intestinal/fisiología , Modelos Biológicos , Línea Celular , Microbioma Gastrointestinal/fisiología , Humanos , Intestinos/fisiología , Organoides
3.
Drug Metab Rev ; 52(3): 438-454, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32551945

RESUMEN

To predict the absorption, distribution, metabolism and excretion (ADME) profile of candidate drugs a variety of preclinical models can be applied. The ADME and toxicological behavior of newly developed drugs are often investigated prior to assessment in humans, which is associated with long time-lines and high costs. Therefore, good predictions of ADME profiles earlier in the drug development process are very valuable. Good prediction of intestinal absorption and renal and biliary excretion remain especially difficult, as there is an interplay of active transport and metabolism involved. To study these processes, including enterohepatic circulation, ex vivo tissue models are highly relevant and can be regarded as the bridge between in vitro and in vivo models. In this review the current in vitro, in vivo and in more detail ex vivo models for studying pharmacokinetics in health and disease are discussed. Additionally, we propose novel models, i.e., perfused whole-organs, which we envision will generate valuable pharmacokinetic information in the future due to improved translation to the in vivo situation. These machine-perfused organ models will be particularly interesting in combination with biomarkers for assessing the functionality of transporter and CYP450 proteins.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Hígado/enzimología , Modelos Biológicos , Preparaciones Farmacéuticas/metabolismo , Farmacocinética , Animales , Biomarcadores Farmacológicos , Biopsia , Interacciones Farmacológicas , Humanos , Proteínas de Transporte de Membrana/metabolismo , Tasa de Depuración Metabólica , Preparaciones Farmacéuticas/administración & dosificación , Distribución Tisular
4.
Hepatology ; 66(5): 1631-1643, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28498614

RESUMEN

The Na+ -taurocholate cotransporting polypeptide (NTCP/SLC10A1) is believed to be pivotal for hepatic uptake of conjugated bile acids. However, plasma bile acid levels are normal in a subset of NTCP knockout mice and in mice treated with myrcludex B, a specific NTCP inhibitor. Here, we elucidated which transport proteins mediate the hepatic uptake of conjugated bile acids and demonstrated intestinal sensing of elevated bile acid levels in plasma in mice. Mice or healthy volunteers were treated with myrcludex B. Hepatic bile acid uptake kinetics were determined in wild-type (WT), organic anion transporting polypeptide (OATP) knockout mice (lacking Slco1a/1b isoforms), and human OATP1B1-transgenic mice. Effects of fibroblast growth factor 19 (FGF19) on hepatic transporter mRNA levels were assessed in rat hepatoma cells and in mice by peptide injection or adeno-associated virus-mediated overexpression. NTCP inhibition using myrcludex B had only moderate effects on bile acid kinetics in WT mice, but completely inhibited active transport of conjugated bile acid species in OATP knockout mice. Cholesterol 7α-hydroxylase Cyp7a1 expression was strongly down-regulated upon prolonged inhibition of hepatic uptake of conjugated bile acids. Fgf15 (mouse counterpart of FGF19) expression was induced in hypercholanemic OATP and NTCP knockout mice, as well as in myrcludex B-treated cholestatic mice, whereas plasma FGF19 was not induced in humans treated with myrcludex B. Fgf15/FGF19 expression was induced in polarized human enterocyte-models and mouse organoids by basolateral incubation with a high concentration (1 mM) of conjugated bile acids. CONCLUSION: NTCP and OATPs contribute to hepatic uptake of conjugated bile acids in mice, whereas the predominant uptake in humans is NTCP mediated. Enterocytes sense highly elevated levels of (conjugated) bile acids in the systemic circulation to induce FGF15/19, which modulates hepatic bile acid synthesis and uptake. (Hepatology 2017;66:1631-1643).


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Enterocitos/fisiología , Factores de Crecimiento de Fibroblastos/metabolismo , Hígado/metabolismo , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Simportadores/metabolismo , Animales , Línea Celular , Colesterol 7-alfa-Hidroxilasa/metabolismo , Regulación hacia Abajo , Femenino , Humanos , Íleon/metabolismo , Lipopéptidos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Isoformas de Proteínas/metabolismo , Ratas
5.
Microbiome Res Rep ; 3(2): 18, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38841408

RESUMEN

Background: The gut and its microbiome have a major impact on many aspects of health and are therefore also an attractive target for drug- or food-based therapies. Here, we report on the added value of combining a microbiome screening model, the i-screen, with fresh intestinal tissue explants in a microfluidic gut-on-a-chip model, the Intestinal Explant Barrier Chip (IEBC). Methods: Adult human gut microbiome (fecal pool of 6 healthy donors) was cultured anaerobically in the i-screen platform for 24 h, without and with exposure to 4 mg/mL inulin. The i-screen cell-free culture supernatant was subsequently applied to the luminal side of adult human colon tissue explants (n = 3 donors), fixed in the IEBC, for 24 h and effects were evaluated. Results: The supplementation of the media with inulin promoted the growth of Anaerostipes, Bifidobacterium, Blautia, and Collinsella in the in vitro i-screen, and triggered an elevated production of butyrate by the microbiota. Human colon tissue exposed to inulin-treated i-screen cell-free culture supernatant or control i-screen cell-free culture supernatant with added short-chain fatty acids (SCFAs) showed improved tissue barrier integrity measured by a 28.2%-34.2% reduction in FITC-dextran 4000 (FD4) leakage and 1.3 times lower transport of antipyrine. Furthermore, the release of pro-inflammatory cytokines IL-1ß, IL-6, IL-8, and TNF-α was reduced under these circumstances. Gene expression profiles confirmed these findings, but showed more profound effects for inulin-treated supernatant compared to SCFA-supplemented supernatant. Conclusion: The combination of i-screen and IEBC facilitates the study of complex intestinal processes such as host-microbial metabolite interaction and gut health.

6.
Biomimetics (Basel) ; 8(2)2023 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-37366821

RESUMEN

The gut plays a key role in drug absorption and metabolism of orally ingested drugs. Additionally, the characterization of intestinal disease processes is increasingly gaining more attention, as gut health is an important contributor to our overall health. The most recent innovation to study intestinal processes in vitro is the development of gut-on-a-chip (GOC) systems. Compared to conventional in vitro models, they offer more translational value, and many different GOC models have been presented over the past years. Herein, we reflect on the almost unlimited choices in designing and selecting a GOC for preclinical drug (or food) development research. Four components that largely influence the GOC design are highlighted, namely (1) the biological research questions, (2) chip fabrication and materials, (3) tissue engineering, and (4) the environmental and biochemical cues to add or measure in the GOC. Examples of GOC studies in the two major areas of preclinical intestinal research are presented: (1) intestinal absorption and metabolism to study the oral bioavailability of compounds, and (2) treatment-orientated research for intestinal diseases. The last section of this review presents an outlook on the limitations to overcome in order to accelerate preclinical GOC research.

7.
Clin Pharmacol Ther ; 114(1): 137-147, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37042227

RESUMEN

Realistic models predicting hepatobiliary processes in health and disease are lacking. We therefore aimed to develop a physiologically relevant human liver model consisting of normothermic machine perfusion (NMP) of explanted diseased human livers that can assess hepatic extraction, clearance, biliary excretion, and drug-drug interaction (DDI). Eleven livers were included in the study, seven with a cirrhotic and four with a noncirrhotic disease background. After explantation of the diseased liver, NMP was initiated. After 120 minutes of perfusion, a drug cocktail (rosuvastatin, digoxin, metformin, and furosemide; OATP1B1/1B3, P-gp, BCRP, and OCT1 model compounds) was administered to the portal vein and 120 minutes later, a second bolus of the drug cocktail was co-administered with perpetrator drugs to study relevant DDIs. The explanted livers showed good viability and functionality during 360 minutes of NMP. Hepatic extraction ratios close to in vivo reported values were measured. Hepatic clearance of rosuvastatin and digoxin showed to be the most affected by cirrhosis with an increase in maximum plasma concentration (Cmax ) of 11.50 and 2.89 times, respectively, compared with noncirrhotic livers. No major differences were observed for metformin and furosemide. Interaction of rosuvastatin or digoxin with perpetrator drugs were more pronounced in noncirrhotic livers compared with cirrhotic livers. Our results demonstrated that NMP of human diseased explanted livers is an excellent model to assess hepatic extraction, clearance, biliary excretion, and DDI. Gaining insight into pharmacokinetic profiles of OATP1B1/1B3, P-gp, BCRP, and OCT1 model compounds is a first step toward studying transporter functions in diseased livers.


Asunto(s)
Furosemida , Metformina , Humanos , Rosuvastatina Cálcica/farmacocinética , Furosemida/farmacocinética , Eliminación Hepatobiliar , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Hígado/metabolismo , Cirrosis Hepática , Metformina/farmacocinética , Digoxina/farmacocinética , Interacciones Farmacológicas
8.
Lab Chip ; 22(2): 326-342, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34877953

RESUMEN

The majority of intestinal in vitro screening models use cell lines that do not reflect the complexity of the human intestinal tract and hence often fail to accurately predict intestinal drug absorption. Tissue explants have intact intestinal architecture and cell type diversity, but show short viability in static conditions. Here, we present a medium throughput microphysiological system, Intestinal Explant Barrier Chip (IEBC), that creates a dynamic microfluidic microenvironment and prolongs tissue viability. Using a snap fit mechanism, we successfully incorporated human and porcine colon tissue explants and studied tissue functionality, integrity and viability for 24 hours. With a proper distinction of transcellular over paracellular transport (ratio >2), tissue functionality was good at early and late timepoints. Low leakage of FITC-dextran and preserved intracellular lactate dehydrogenase levels indicate maintained tissue integrity and viability, respectively. From a selection of low to high permeability drugs, 6 out of 7 properly ranked according to their fraction absorbed. In conclusion, the IEBC is a novel screening platform benefitting from the complexity of tissue explants and the flow in microfluidic chips.


Asunto(s)
Absorción Intestinal , Intestinos , Animales , Línea Celular , Humanos , Mucosa Intestinal/metabolismo , Microfluídica , Permeabilidad , Porcinos
9.
Cell Mol Gastroenterol Hepatol ; 10(3): 451-466, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32330730

RESUMEN

BACKGROUND & AIMS: Bile acids are important metabolic signaling molecules. Bile acid receptor activation promotes body weight loss and improves glycemic control. The incretin hormone GLP-1 and thyroid hormone activation of T4 to T3 have been suggested as important contributors. Here, we identify the hepatic bile acid uptake transporter Na+ taurocholate co-transporting polypeptide (NTCP) as target to prolong postprandial bile acid signaling. METHODS: Organic anion transporting polypeptide (OATP)1a/1b KO mice with or without reconstitution with human OATP1B1 in the liver were treated with the NTCP inhibitor Myrcludex B for 3.5 weeks after the onset of obesity induced by high fat diet-feeding. Furthermore, radiolabeled T4 was injected to determine the role of NTCP and OATPs in thyroid hormone clearance from plasma. RESULTS: Inhibition of NTCP by Myrcludex B in obese Oatp1a/1b KO mice inhibited hepatic clearance of bile acids from portal and systemic blood, stimulated GLP-1 secretion, reduced body weight, and decreased (hepatic) adiposity. NTCP inhibition did not affect hepatic T4 uptake nor lead to increased thyroid hormone activation. Myrcludex B treatment increased fecal energy output, explaining body weight reductions amongst unaltered food intake and energy expenditure. CONCLUSIONS: Pharmacologically targeting hepatic bile acid uptake to increase bile acid signaling is a novel approach to treat obesity and induce GLP1- secretion.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Lipopéptidos/farmacología , Obesidad/tratamiento farmacológico , Transportadores de Anión Orgánico Sodio-Dependiente/antagonistas & inhibidores , Simportadores/antagonistas & inhibidores , Animales , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Femenino , Humanos , Lipopéptidos/uso terapéutico , Hígado/efectos de los fármacos , Hígado/metabolismo , Transportador 1 de Anión Orgánico Específico del Hígado/genética , Masculino , Ratones , Ratones Transgénicos , Obesidad/etiología , Proteínas de Transporte de Catión Orgánico/genética
10.
JHEP Rep ; 1(4): 278-285, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32039379

RESUMEN

BACKGROUND & AIMS: The sodium taurocholate co-transporting polypeptide (NTCP) is the entry receptor for the hepatitis B and delta virus (HBV/HDV) and the main hepatic uptake transporter of conjugated bile acids. Myrcludex B, a synthetic peptide mimicking the NTCP-binding domain of HBV, blocks HBV/HDV infection and inhibits NTCP-mediated bile acid uptake. In humans this increases systemic bile acid levels, which remain elevated for hours even after Myrcludex B is cleared from the circulation. Here, we investigated the dynamics of Myrcludex B-induced NTCP-mediated bile acid transport inhibition in mice and if/how the duration of this effect relates to NTCP protein turnover. METHODS: Plasma bile acids were determined in Myrcludex B-treated OATP1a/1b-deficient mice. In vitro, plasma membrane-resident NTCP was labeled with biotin or fluorescein isothiocyanate (FITC)-labeled Myrcludex B and traced in time using hNTCP-overexpressing U2OS cells. Förster resonance energy transfer by fluorescent lifetime imaging microscopy was used to investigate whether Myrcludex B can transfer to newly synthesized NTCP. RESULTS: Conjugated bile salt levels in plasma peaked 4 h after subcutaneous Myrcludex B administration. After 24 h, plasma bile salt levels were completely normalized, in line with restored NTCP-mediated bile acid transport in vitro. Biotin-labeled NTCP disappeared faster than Myrcludex B-FITC, with almost 40% of FITC signal remaining after 24 h. FITC fluorescence lifetime was strongly decreased upon expression of DY547-labeled acyl carrier protein-tagged NTCP, demonstrating transfer of pre-bound Myrcludex B-FITC to newly formed NTCP. CONCLUSIONS: The dynamics of NTCP protein turnover and Myrcludex B-induced plasma bile salt elevations are similar, suggesting that the Myrcludex B:NTCP interaction is very long-lived. Nevertheless, Myrcludex B is not completely degraded together with NTCP and can transfer to newly synthesized NTCP. LAY SUMMARY: The experimental drug Myrcludex B binds the sodium taurocholate co-transporting polypeptide (NTCP), the viral entry receptor for the hepatitis B and D virus (HBV/HDV), and thereby prevents infection, but also inhibits hepatic bile salt uptake leading to transiently elevated bile salt levels. This study describes that while the normalization of plasma bile salt levels likely depends on the protein turnover rate of NTCP, Myrcludex B partly escapes co-degradation with NTCP by transferring from one NTCP molecule to another. This is of importance to the HBV/HDV research field as it provides a potential explanation for the distinct kinetics and dose-dependence of Myrcludex B's effects on viral infection versus bile salt transport.

11.
Biochem Pharmacol ; 161: 1-13, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30582898

RESUMEN

Bile acids, amphipathic molecules known for their facilitating role in fat absorption, are also recognized as signalling molecules acting via nuclear and membrane receptors. Of the bile acid-activated receptors, the Farnesoid X Receptor (FXR) and the G protein-coupled bile acid receptor-1 (Gpbar1 or TGR5) have been studied most extensively. Bile acid signaling is critical in the regulation of bile acid metabolism itself, but it also plays a significant role in glucose, lipid and energy metabolism. Activation of FXR and TGR5 leads to reduced hepatic bile salt load, improved insulin sensitivity and glucose regulation, increased energy expenditure, and anti-inflammatory effects. These beneficial effects render bile acid signaling an interesting therapeutic target for the treatment of diseases such as cholestasis, non-alcoholic fatty liver disease, and diabetes. Here, we summarize recent findings on bile acid signaling and discuss potential and current limitations of bile acid receptor agonist and modulators of bile acid transport as future therapeutics for a wide-spectrum of diseases.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Ácidos y Sales Biliares/uso terapéutico , Desarrollo de Medicamentos/métodos , Fármacos Gastrointestinales/metabolismo , Fármacos Gastrointestinales/uso terapéutico , Animales , Enfermedades de los Conductos Biliares/tratamiento farmacológico , Enfermedades de los Conductos Biliares/metabolismo , Humanos , Enfermedades Metabólicas/tratamiento farmacológico , Enfermedades Metabólicas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo
12.
Antiviral Res ; 170: 104588, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31415805

RESUMEN

Hepatitis E virus (HEV) infection is the leading cause of acute hepatitis worldwide and can develop into chronic infection in immunocompromised patients, promoting the development of effective antiviral therapies. In this study, we performed a screening of a library containing over 1000 FDA-approved drugs. We have identified deptropine, a classical histamine H1 receptor antagonist used to treat asthmatic symptoms, as a potent inhibitor of HEV replication. The anti-HEV activity of deptropine appears dispensable of the histamine pathway, but requires the inhibition on nuclear factor-κB (NF-κB) activity. This further activates caspase mediated by receptor-interacting protein kinase 1 (RIPK1) to restrict HEV replication. Given deptropine being widely used in the clinic, our results warrant further evaluation of its anti-HEV efficacy in future clinical studies. Importantly, the discovery that NF-κB-RIPK1-caspase pathway interferes with HEV infection reveals new insight of HEV-host interactions.


Asunto(s)
Antivirales/farmacología , Caspasas/metabolismo , Virus de la Hepatitis E/efectos de los fármacos , FN-kappa B/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Transducción de Señal , Tropanos/farmacología , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos , Hepatitis E/tratamiento farmacológico , Hepatocitos/efectos de los fármacos , Hepatocitos/virología , Ensayos Analíticos de Alto Rendimiento , Interacciones Microbiota-Huesped/efectos de los fármacos , Humanos , Bibliotecas de Moléculas Pequeñas , Estados Unidos , United States Food and Drug Administration , Replicación Viral/efectos de los fármacos
13.
JCI Insight ; 52019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31237863

RESUMEN

Bile acids play a major role in the regulation of lipid and energy metabolism. Here we propose the hepatic bile acid uptake transporter Na+ taurocholate co-transporting polypeptide (NTCP) as a target to prolong postprandial bile acid elevations in plasma. Reducing hepatic clearance of bile acids from plasma by genetic deletion of NTCP moderately increased plasma bile acid levels, reduced diet-induced obesity, attenuated hepatic steatosis, and lowered plasma cholesterol levels. NTCP-G protein-coupled bile acid receptor (TGR5) double knockout mice were equally protected against diet-induced-obesity as NTCP single knockout mice. NTCP knockout mice displayed decreased intestinal fat absorption and a trend towards higher fecal energy output. Furthermore, NTCP deficiency was associated with an increased uncoupled respiration in brown adipose tissue, leading to increased energy expenditure. We conclude that targeting NTCP-mediated bile acid uptake can be a novel approach to treat obesity and obesity-related hepatosteatosis by simultaneously dampening intestinal fat absorption and increasing energy expenditure.


Asunto(s)
Dieta Alta en Grasa , Hígado Graso/genética , Obesidad/genética , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Receptores Acoplados a Proteínas G/genética , Simportadores/genética , Aumento de Peso/genética , Tejido Adiposo Pardo/metabolismo , Animales , Ácidos y Sales Biliares/sangre , Glucemia/metabolismo , Peso Corporal , Colesterol/sangre , Grasas de la Dieta/metabolismo , Metabolismo Energético/genética , Hígado Graso/metabolismo , Prueba de Tolerancia a la Glucosa , Insulina/sangre , Absorción Intestinal/genética , Ratones , Ratones Noqueados , Obesidad/metabolismo , Triglicéridos/sangre
14.
PLoS One ; 13(4): e0193664, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29672606

RESUMEN

Practice-changing culturing techniques of hepatocytes are highly required to increase their differentiation. Previously, we found that human liver cell lines HepaRG and C3A acquire higher functionality and increased mitochondrial biogenesis when cultured in the AMC-Bioartificial liver (BAL). Dynamic medium flow (DMF) is one of the major contributors to this stimulatory effect. Recently, we found that DMF-culturing by shaking of HepaRG monolayers resulted in higher mitochondrial biogenesis. Here we further investigated the effect of DMF-culturing on energy metabolism and hepatic functionality of HepaRG and C3A monolayers. HepaRG and C3A DMF-monolayers were incubated with orbital shaking at 60 rpm during the differentiation phase, while control monolayers were maintained statically. Subsequently, energy metabolism and hepatic functionality were compared between static and DMF-cultures. DMF-culturing of HepaRG cells substantially increased hepatic differentiation; transcript levels of hepatic structural genes and hepatic transcription regulators were increased up to 15-fold (Cytochrome P450 3A4) and nuclear translocation of hepatic transcription factor CEBPα was stimulated. Accordingly, hepatic functions were positively affected, including ammonia elimination, urea production, bile acid production, and CYP3A4 activity. DMF-culturing shifted energy metabolism from aerobic glycolysis towards oxidative phosphorylation, as indicated by a decline in lactate production and glucose consumption, and an increase in oxygen consumption. Similarly, DMF-culturing increased mitochondrial energy metabolism and hepatic functionality of C3A cells. In conclusion, simple shaking of monolayer cultures substantially improves mitochondrial energy metabolism and hepatic differentiation of human liver cell lines. This practice-changing culture method may prove to prolong the in-vitro maintenance of primary hepatocytes and increase hepatic differentiation of stem cells.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Metabolismo Energético/fisiología , Hepatocitos/metabolismo , Mitocondrias Hepáticas/metabolismo , Línea Celular , Citocromo P-450 CYP3A/metabolismo , Hepatocitos/citología , Humanos
15.
Endocrinology ; 158(10): 3307-3318, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28938430

RESUMEN

The thyroid hormone (TH) analog eprotirome (KB2115) was developed to lower cholesterol through selective activation of the TH receptor (TR) ß1 in the liver. Interestingly, eprotirome shows low uptake in nonhepatic tissues, explaining its lipid-lowering action without adverse extrahepatic thyromimetic effects. Clinical trials have shown marked decreases in serum cholesterol levels. We explored the transport of eprotirome across the plasma membrane by members of three TH transporter families: monocarboxylate transporters MCT8 and MCT10; Na-independent organic anion transporters 1A2, 1B1, 1B3, 1C1, 2A1, and 2B1; and Na-dependent organic anion transporters SLC10A1 to SLC10A7. Cellular transport was studied in transfected COS1 cells using [14C]eprotirome and [125I]TH analogs. Of the 15 transporters tested initially, the liver-specific bile acid transporter SLC10A1 showed the highest eprotirome uptake (greater than a sevenfold induction after 60 minutes) as well as TRß1-mediated transcriptional activity. Uptake of eprotirome by SLC10A1 was Na+ dependent and saturable with a Michaelis constant of 8 µM. Eprotirome transport was inhibited by known substrates for SLC10A1 (e.g., cholate and taurocholate), and by TH analogs such as triiodothyropropionic acid and triiodothyroacetic acid. However, no significant SLC10A1-mediated transport was observed of these [125I]TH analogs. We also studied the plasma disappearance and biliary excretion of [14C]eprotirome injected in control and Slc10a1 knockout mice. Although eprotirome is also transported by mouse Slc10a1, the pharmacokinetics of eprotirome were not affected by Slc10a1 deficiency. In conclusion, we have demonstrated that the liver-specific bile acid transporter SLC10A1 effectively transports eprotirome. However, Slc10a1 does not appear to be critical for the liver targeting of this TH analog in mice. Therefore, the importance of SLC10A1 for liver uptake of eprotirome in humans remains to be elucidated.


Asunto(s)
Anilidas/farmacología , Anilidas/farmacocinética , Anticolesterolemiantes , Hígado/efectos de los fármacos , Transportadores de Anión Orgánico Sodio-Dependiente/fisiología , Simportadores/fisiología , Animales , Transporte Biológico , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Humanos , Hígado/metabolismo , Ratones , Ratones Noqueados , Terapia Molecular Dirigida , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico Sodio-Dependiente/deficiencia , Transportadores de Anión Orgánico Sodio-Dependiente/genética , ARN Mensajero/análisis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sodio/farmacología , Simportadores/deficiencia , Simportadores/genética , Hormonas Tiroideas/metabolismo , Transfección
16.
Sci Rep ; 7(1): 15307, 2017 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-29127322

RESUMEN

The sodium taurocholate co-transporting polypeptide (NTCP, SLC10A1) is the main hepatic transporter of conjugated bile acids, and the entry receptor for hepatitis B virus (HBV) and hepatitis delta virus (HDV). Myrcludex B, a synthetic peptide mimicking the NTCP-binding domain of HBV, effectively blocks HBV and HDV infection. In addition, Myrcludex B inhibits NTCP-mediated bile acid uptake, suggesting that also other NTCP inhibitors could potentially be a novel treatment of HBV/HDV infection. This study aims to identify clinically-applied compounds intervening with NTCP-mediated bile acid transport and HBV/HDV infection. 1280 FDA/EMA-approved drugs were screened to identify compounds that reduce uptake of taurocholic acid and lower Myrcludex B-binding in U2OS cells stably expressing human NTCP. HBV/HDV viral entry inhibition was studied in HepaRG cells. The four most potent inhibitors of human NTCP were rosiglitazone (IC50 5.1 µM), zafirlukast (IC50 6.5 µM), TRIAC (IC50 6.9 µM), and sulfasalazine (IC50 9.6 µM). Chicago sky blue 6B (IC50 7.1 µM) inhibited both NTCP and ASBT, a distinct though related bile acid transporter. Rosiglitazone, zafirlukast, TRIAC, sulfasalazine, and chicago sky blue 6B reduced HBV/HDV infection in HepaRG cells in a dose-dependent manner. Five out of 1280 clinically approved drugs were identified that inhibit NTCP-mediated bile acid uptake and HBV/HDV infection in vitro.


Asunto(s)
Antivirales/farmacología , Virus de la Hepatitis B/metabolismo , Hepatitis B , Hepatitis D , Virus de la Hepatitis Delta/metabolismo , Transportadores de Anión Orgánico Sodio-Dependiente/antagonistas & inhibidores , Simportadores/antagonistas & inhibidores , Internalización del Virus/efectos de los fármacos , Animales , Perros , Hepatitis B/tratamiento farmacológico , Hepatitis B/metabolismo , Hepatitis B/patología , Hepatitis D/tratamiento farmacológico , Hepatitis D/metabolismo , Hepatitis D/patología , Humanos , Indoles , Lipopéptidos/farmacología , Células de Riñón Canino Madin Darby , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Fenilcarbamatos , Rosiglitazona/farmacología , Sulfasalazina/farmacología , Sulfonamidas , Simportadores/genética , Simportadores/metabolismo , Compuestos de Tosilo/farmacología , Triyodotironina/análogos & derivados , Triyodotironina/farmacología , Azul de Tripano/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA