Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Rep Prog Phys ; 84(7)2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-33857928

RESUMEN

Charles Richter's observation that 'only fools and charlatans predict earthquakes,' reflects the fact that despite more than 100 years of effort, seismologists remain unable to do so with reliable and accurate results. Meaningful prediction involves specifying the location, time, and size of an earthquake before it occurs to greater precision than expected purely by chance from the known statistics of earthquakes in an area. In this context, 'forecasting' implies a prediction with a specification of a probability of the time, location, and magnitude. Two general approaches have been used. In one, the rate of motion accumulating across faults and the amount of slip in past earthquakes is used to infer where and when future earthquakes will occur and the shaking that would be expected. Because the intervals between earthquakes are highly variable, these long-term forecasts are accurate to no better than a hundred years. They are thus valuable for earthquake hazard mitigation, given the long lives of structures, but have clear limitations. The second approach is to identify potentially observable changes in the Earth that precede earthquakes. Various precursors have been suggested, and may have been real in certain cases, but none have yet proved to be a general feature preceding all earthquakes or to stand out convincingly from the normal variability of the Earth's behavior. However, new types of data, models, and computational power may provide avenues for progress using machine learning that were not previously available. At present, it is unclear whether deterministic earthquake prediction is possible. The frustrations of this search have led to the observation that (echoing Yogi Berra) 'it is difficult to predict earthquakes, especially before they happen.' However, because success would be of enormous societal benefit, the search for methods of earthquake prediction and forecasting will likely continue. In this review, we note that the focus is on anticipating the earthquake rupture before it occurs, rather than characterizing it rapidly just after it occurs. The latter is the domain of earthquake early warning, which we do not treat in detail here, although we include a short discussion in the machine learning section at the end.

2.
Earth Space Sci ; 9(11): e2022EA002343, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36583191

RESUMEN

Nowcasting is a term originating from economics, finance, and meteorology. It refers to the process of determining the uncertain state of the economy, markets or the weather at the current time by indirect means. In this paper, we describe a simple two-parameter data analysis that reveals hidden order in otherwise seemingly chaotic earthquake seismicity. One of these parameters relates to a mechanism of seismic quiescence arising from the physics of strain-hardening of the crust prior to major events. We observe an earthquake cycle associated with major earthquakes in California, similar to what has long been postulated. An estimate of the earthquake hazard revealed by this state variable time series can be optimized by the use of machine learning in the form of the Receiver Operating Characteristic skill score. The ROC skill is used here as a loss function in a supervised learning mode. Our analysis is conducted in the region of 5° × 5° in latitude-longitude centered on Los Angeles, a region which we used in previous papers to build similar time series using more involved methods (Rundle & Donnellan, 2020, https://doi.org/10.1029/2020EA001097; Rundle, Donnellan et al., 2021, https://doi.org/10.1029/2021EA001757; Rundle, Stein et al., 2021, https://doi.org/10.1088/1361-6633/abf893). Here we show that not only does the state variable time series have forecast skill, the associated spatial probability densities have skill as well. In addition, use of the standard ROC and Precision (PPV) metrics allow probabilities of current earthquake hazard to be defined in a simple, straightforward, and rigorous way.

3.
Earth Sci Inform ; 15(3): 1513-1525, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36003898

RESUMEN

GeoGateway (http://geo-gateway.org) is a web-based interface for analysis and modeling of geodetic imaging data and to support response to related disasters. Geodetic imaging data product currently supported by GeoGateway include Global Navigation Satellite System (GNSS) daily position time series and derived velocities and displacements and airborne Interferometric Synthetic Aperture Radar (InSAR) from NASA's UAVSAR platform. GeoGateway allows users to layer data products in a web map interface and extract information from various tools. Extracted products can be downloaded for further analysis. GeoGateway includes overlays of California fault traces, seismicity from user selected search parameters, and user supplied map files. GeoGateway also provides earthquake nowcasts and hazard maps as well as products created for related response to natural disasters. A user guide is present in the GeoGateway interface. The GeoGateway development team is also growing the user base through workshops, webinars, and video tutorials. GeoGateway is used in the classroom and for research by experts and non-experts including by students.

4.
Earth Space Sci ; 8(5): e2021EA001644, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34222561

RESUMEN

Because cross-polarized radar returns are highly associated with volume scatter, radar polarimetry returns tend to show strong evidence of wildfire scars and recovery in forest and chaparral. We focus on the polarimetry images from UAVSAR (PolSAR) line SanAnd_08525, which covers a roughly 20 km wide swath over the Transverse Range including parts of the Santa Monica, San Gabriel and San Bernardino Mountains. We select images from four acquisition dates from October 2009 to September 2020, very roughly 4 years apart. These are compared to fire perimeters from the national Geospatial Multi-Agency Coordination and NIFC databases for years 2003-2020, which shows the areas affected by the major fires (west to east) Springs2013, Woolsey2018, Topanga2005, LaTuna2017, Station2009, BlueCut2016, Pilot2016, Slide2007, Butler2007, and many smaller fires. PolSAR images are shown to be helpful in identifying types and boundaries of fire, 50-meter scale details of vegetation loss, and variability of vegetation recovery in post-fire years.

5.
Earth Space Sci ; 8(9): e2020EA001433, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34692923

RESUMEN

Interferometric synthetic aperture radar (InSAR) interferograms contain valuable information about the fault systems hidden beneath the surface of the Earth. In a new approach, we aim to fit InSAR ground deformation data using a distribution of multiple seismic point sources whose parameters are found by a genetic algorithm. The resulting source distribution could provide another useful tool in solving the difficult problem of accurately mapping earthquake faults. We apply the algorithm to an ALOS-2 InSAR interferogram and perform a multifractal analysis on the resulting distribution, finding that it exhibits multifractal properties. We report first results and discuss advantages and disadvantages of this approach.

6.
Earth Space Sci ; 8(8): e2021EA001682, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34595327

RESUMEN

We use UAVSAR interferograms to characterize fault slip, triggered by the Mw 7.2 El Mayor-Cucapah earthquake on the 1 San Andreas Fault in the Coachella Valley providing comprehensive maps of short-term geodetic surface deformation that complement in situ measurements. Creepmeters and geological mapping of fault offsets on Durmid Hill recorded 4 and 8 mm of average triggered slip respectively on the fault, in contrast to radar views that reveal significant off-fault dextral deformation averaging 20 mm. Unlike slip in previous triggered slip events on the southernmost San Andreas fault, dextral shear in 2010 is not confined to transpressional hills in the Coachella valley. Edge detection and gradient estimation applied to the 50-m-sampled interferogram data identify the location (to 20 m) and local strike (to <4°) of secondary surface ruptures. Transverse curve fitting applied to these local detections provides local estimates of the radar-projected dextral slip and a parameter indicating the transverse width of the slip, which we equate with the depth of subsurface shear. These estimates are partially validated by fault-transverse interferogram profiles generated using the GeoGateway UAVSAR tool, and appear consistent for radar-projected slip greater than about 5 mm. An unexpected finding is that creep and triggered slip on the San Andreas fault terminate in the shallow subsurface below a surface shear zone that resists the simple expression of aseismic fault slip. We introduce the notion of a surface locking depth above which fault slip is manifest as distributed shear, and evaluate its depth as 6-27 m.

7.
Earth Space Sci ; 8(11): e2021EA001680, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34820480

RESUMEN

We present a data-driven approach to clustering or grouping Global Navigation Satellite System (GNSS) stations according to observed velocities, displacements or other selected characteristics. Clustering GNSS stations provides useful scientific information, and is a necessary initial step in other analysis, such as detecting aseismic transient signals (Granat et al., 2013, https://doi.org/10.1785/0220130039). Desired features of the data can be selected for clustering, including some subset of displacement or velocity components, uncertainty estimates, station location, and other relevant information. Based on those selections, the clustering procedure autonomously groups the GNSS stations according to a selected clustering method. We have implemented this approach as a Python application, allowing us to draw upon the full range of open source clustering methods available in Python's scikit-learn package (Pedregosa et al., 2011, https://doi.org/10.5555/1953048.2078195). The application returns the stations labeled by group as a table and color coded KML file and is designed to work with the GNSS information available from GeoGateway (Donnellan et al., 2021, https://doi.org/10.1007/s12145-020-00561-7; Heflin et al., 2020, https://doi.org/10.1029/2019ea000644) but is easily extensible. We demonstrate the methodology on California and western Nevada. The results show partitions that follow faults or geologic boundaries, including for recent large earthquakes and post-seismic motion. The San Andreas fault system is most prominent, reflecting Pacific-North American plate boundary motion. Deformation reflected as class boundaries is distributed north and south of the central California creeping section. For most models a cluster boundary connects the southernmost San Andreas fault with the Eastern California Shear Zone (ECSZ) rather than continuing through the San Gorgonio Pass.

8.
Earth Space Sci ; 6(1): 191-197, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30854411

RESUMEN

Seismic nowcasting uses counts of small earthquakes as proxy data to estimate the current dynamical state of an earthquake fault system. The result is an earthquake potential score that characterizes the current state of progress of a defined geographic region through its nominal earthquake "cycle." The count of small earthquakes since the last large earthquake is the natural time that has elapsed since the last large earthquake (Varotsos et al., 2006, https://doi.org/10.1103/PhysRevE.74.021123). In addition to natural time, earthquake sequences can also be analyzed using Shannon information entropy ("information"), an idea that was pioneered by Shannon (1948, https://doi.org/10.1002/j.1538-7305.1948.tb01338.x). As a first step to add seismic information entropy into the nowcasting method, we incorporate magnitude information into the natural time counts by using event self-information. We find in this first application of seismic information entropy that the earthquake potential score values are similar to the values using only natural time. However, other characteristics of earthquake sequences, including the interevent time intervals, or the departure of higher magnitude events from the magnitude-frequency scaling line, may contain additional information.

9.
Earth Space Sci ; 2(9): 378-385, 2015 09.
Artículo en Inglés | MEDLINE | ID: mdl-27981074

RESUMEN

Tectonic motion across the Los Angeles region is distributed across an intricate network of strike-slip and thrust faults that will be released in destructive earthquakes similar to or larger than the 1933 M6.4 Long Beach and 1994 M6.7 Northridge events. Here we show that Los Angeles regional thrust, strike-slip, and oblique faults are connected and move concurrently with measurable surface deformation, even in moderate magnitude earthquakes, as part of a fault system that accommodates north-south shortening and westerly tectonic escape of northern Los Angeles. The 28 March 2014 M5.1 La Habra earthquake occurred on a northeast striking, northwest dipping left-lateral oblique thrust fault northeast of Los Angeles. We present crustal deformation observation spanning the earthquake showing that concurrent deformation occurred on several structures in the shallow crust. The seismic moment of the earthquake is 82% of the total geodetic moment released. Slip within the unconsolidated upper sedimentary layer may reflect shallow release of accumulated strain on still-locked deeper structures. A future M6.1-6.3 earthquake would account for the accumulated strain. Such an event could occur on any one or several of these faults, which may not have been identified by geologic surface mapping.

10.
Phys Rev Lett ; 97(23): 238501, 2006 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-17280253

RESUMEN

Earthquake occurrence in nature is thought to result from correlated elastic stresses, leading to clustering in space and time. We show that the occurrence of major earthquakes in California correlates with time intervals when fluctuations in small earthquakes are suppressed relative to the long term average. We estimate a probability of less than 1% that this coincidence is due to random clustering.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA