Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Pathol ; 194(1): 52-70, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37820926

RESUMEN

Loss of hepatocyte nuclear factor 4α (HNF4α) expression is frequently observed in end-stage liver disease and associated with loss of vital liver functions, thus increasing mortality. Loss of HNF4α expression is mediated by inflammatory cytokines, such as transforming growth factor (TGF)-ß. However, details of how HNF4α is suppressed are largely unknown to date. Herein, TGF-ß did not directly inhibit HNF4α but contributed to its transcriptional regulation by SMAD2/3 recruiting acetyltransferase CREB-binding protein/p300 to the HNF4α promoter. The recruitment of CREB-binding protein/p300 is indispensable for CCAAT/enhancer-binding protein α (C/EBPα) binding, another essential requirement for constitutive HNF4α expression in hepatocytes. Consistent with the in vitro observation, 67 of 98 patients with hepatic HNF4α expressed both phospho-SMAD2 and C/EBPα, whereas 22 patients without HNF4α expression lacked either phospho-SMAD2 or C/EBPα. In contrast to the observed induction of HNF4α, SMAD2/3 inhibited C/EBPα transcription. Long-term TGF-ß incubation resulted in C/EBPα depletion, which abrogated HNF4α expression. Intriguingly, SMAD2/3 inhibitory binding to the C/EBPα promoter was abolished by insulin. Two-thirds of patients without C/EBPα lacked membrane glucose transporter type 2 expression in hepatocytes, indicating insulin resistance. Taken together, these data indicate that hepatic insulin sensitivity is essential for hepatic HNF4α expression in the condition of inflammation.


Asunto(s)
Proteína de Unión a CREB , Insulina , Humanos , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Proteína de Unión a CREB/metabolismo , Factor Nuclear 4 del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/metabolismo , Hepatocitos/metabolismo , Hígado/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Factor de Crecimiento Transformador beta/metabolismo
2.
Cell Mol Life Sci ; 81(1): 115, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38436764

RESUMEN

INTRODUCTION: The Hippo pathway and its transcriptional effectors yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are targets for cancer therapy. It is important to determine if the activation of one factor compensates for the inhibition of the other. Moreover, it is unknown if YAP/TAZ-directed perturbation affects cell-cell communication of non-malignant liver cells. MATERIALS AND METHODS: To investigate liver-specific phenotypes caused by YAP and TAZ inactivation, we generated mice with hepatocyte (HC) and biliary epithelial cell (BEC)-specific deletions for both factors (YAPKO, TAZKO and double knock-out (DKO)). Immunohistochemistry, single-cell sequencing, and proteomics were used to analyze liver tissues and serum. RESULTS: The loss of BECs, liver fibrosis, and necrosis characterized livers from YAPKO and DKO mice. This phenotype was weakened in DKO tissues compared to specimens from YAPKO animals. After depletion of YAP in HCs and BECs, YAP expression was induced in non-parenchymal cells (NPCs) in a cholestasis-independent manner. YAP positivity was detected in subgroups of Kupffer cells (KCs) and endothelial cells (ECs). The secretion of pro-inflammatory chemokines and cytokines such as C-X-C motif chemokine ligand 11 (CXCL11), fms-related receptor tyrosine kinase 3 ligand (FLT3L), and soluble intercellular adhesion molecule-1 (ICAM1) was increased in the serum of YAPKO animals. YAP activation in NPCs could contribute to inflammation via TEA domain transcription factor (TEAD)-dependent transcriptional regulation of secreted factors. CONCLUSION: YAP inactivation in HCs and BECs causes liver damage, and concomitant TAZ deletion does not enhance but reduces this phenotype. Additionally, we present a new mechanism by which YAP contributes to cell-cell communication originating from NPCs.


Asunto(s)
Comunicación Celular , Hígado , Proteínas Señalizadoras YAP , Animales , Ratones , Comunicación Celular/genética , Células Endoteliales , Hepatocitos , Ligandos , Hígado/metabolismo , Proteínas Señalizadoras YAP/genética , Proteínas Señalizadoras YAP/metabolismo
3.
Int J Exp Pathol ; 105(2): 64-74, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38328944

RESUMEN

Transforming growth factor (TGF)-ß and toll-like receptors (TLRs) have been shown to independently modulate the proliferation of hepatocellular carcinoma (HCC). Since a direct cross-talk between these two signalling pathways in HCC has not been clearly described before, we aimed here to explore the possibility of such interaction. A human HCC tissue array (n = 20 vs. four control samples), human HCC samples (n = 10) and steatohepatitis-driven murine HCC samples (control, NASH and HCC; n = 6/group) were immunostained for TGFßR1, pSMAD2, TRAF6, IRAK1 and PCNA. The results were confirmed by immunoblotting. Effects of constant activation of the SMAD pathway by constitutive expression of ALK5 or knockdown of mediators of TLR signalling, IRAK1 and MyD88, on HCC proliferation, were investigated in the HCC cell line (HUH-7) after treatment with TGFß1 cytokine or TGFßR1 kinase inhibitor (LY2157299) using PCNA and MTS assay. TGFßR1 expression is decreased in human and murine HCC and associated with downregulated pSMAD2, but increased IRAK1, TRAF6 and PCNA staining. TGFßR1 kinase inhibition abolished the cytostatic effects of TGFß1 and led to the induction of IRAK1, pIRAK1 and elevated mRNA levels of TLR-9. Overexpression of ALK5 and knockdown of MyD88 or IRAK1 augmented the cytostatic effects of TGFß1 on HUH-7. In another epithelial HCC cell line, that is, HepG2, TGFßR1 kinase inhibitor similarly elevated cellular proliferation. There is a balance between the canonical SMAD-driven tumour-suppressing arm and the non-canonical tumour-promoting arm of TGFß signalling. Disruption of this balance, by inhibition of the canonical pathway, induces HCC proliferation through TLR signalling.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Citostáticos , Neoplasias Hepáticas , Animales , Humanos , Ratones , Carcinoma Hepatocelular/patología , Proliferación Celular , Neoplasias Hepáticas/patología , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Receptores Toll-Like/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
4.
Hepatology ; 77(4): 1211-1227, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35776660

RESUMEN

BACKGROUND AND AIMS: In hereditary hemorrhagic telangiectasia (HHT), severe liver vascular malformations are associated with mutations in the Activin A Receptor-Like Type 1 ( ACVRL1 ) gene encoding ALK1, the receptor for bone morphogenetic protein (BMP) 9/BMP10, which regulates blood vessel development. Here, we established an HHT mouse model with exclusive liver involvement and adequate life expectancy to investigate ALK1 signaling in liver vessel formation and metabolic function. APPROACH AND RESULTS: Liver sinusoidal endothelial cell (LSEC)-selective Cre deleter line, Stab2-iCreF3 , was crossed with Acvrl1 -floxed mice to generate LSEC-specific Acvrl1 -deficient mice ( Alk1HEC-KO ). Alk1HEC-KO mice revealed hepatic vascular malformations and increased posthepatic flow, causing right ventricular volume overload. Transcriptomic analyses demonstrated induction of proangiogenic/tip cell gene sets and arterialization of hepatic vessels at the expense of LSEC and central venous identities. Loss of LSEC angiokines Wnt2 , Wnt9b , and R-spondin-3 ( Rspo3 ) led to disruption of metabolic liver zonation in Alk1HEC-KO mice and in liver specimens of patients with HHT. Furthermore, prion-like protein doppel ( Prnd ) and placental growth factor ( Pgf ) were upregulated in Alk1HEC-KO hepatic endothelial cells, representing candidates driving the organ-specific pathogenesis of HHT. In LSEC in vitro , stimulation or inhibition of ALK1 signaling counter-regulated Inhibitors of DNA binding (ID)1-3, known Alk1 transcriptional targets. Stimulation of ALK1 signaling and inhibition of ID1-3 function confirmed regulation of Wnt2 and Rspo3 by the BMP9/ALK1/ID axis. CONCLUSIONS: Hepatic endothelial ALK1 signaling protects from development of vascular malformations preserving organ-specific endothelial differentiation and angiocrine signaling. The long-term surviving Alk1HEC-KO HHT model offers opportunities to develop targeted therapies for this severe disease.


Asunto(s)
Telangiectasia Hemorrágica Hereditaria , Ratones , Femenino , Animales , Telangiectasia Hemorrágica Hereditaria/genética , Células Endoteliales/metabolismo , Factor de Crecimiento Placentario/metabolismo , Hígado/patología , Transducción de Señal , Factor 2 de Diferenciación de Crecimiento/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo
5.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33853949

RESUMEN

Fibroblast growth factor 23 (FGF23), a hormone generally derived from bone, is important in phosphate and vitamin D homeostasis. In acute kidney injury (AKI) patients, high-circulating FGF23 levels are associated with disease progression and mortality. However, the organ and cell type of FGF23 production in AKI and the molecular mechanism of its excessive production are still unidentified. For insight, we investigated folic acid (FA)-induced AKI in mice. Interestingly, simultaneous with FGF23, orphan nuclear receptor ERR-γ expression is increased in the liver of FA-treated mice, and ectopic overexpression of ERR-γ was sufficient to induce hepatic FGF23 production. In patients and in mice, AKI is accompanied by up-regulated systemic IL-6, which was previously identified as an upstream regulator of ERR-γ expression in the liver. Administration of IL-6 neutralizing antibody to FA-treated mice or of recombinant IL-6 to healthy mice confirms IL-6 as an upstream regulator of hepatic ERR-γ-mediated FGF23 production. A significant (P < 0.001) interconnection between high IL-6 and FGF23 levels as a predictor of AKI in patients that underwent cardiac surgery was also found, suggesting the clinical relevance of the finding. Finally, liver-specific depletion of ERR-γ or treatment with an inverse ERR-γ agonist decreased hepatic FGF23 expression and plasma FGF23 levels in mice with FA-induced AKI. Thus, inverse agonist of ERR-γ may represent a therapeutic strategy to reduce adverse plasma FGF23 levels in AKI.


Asunto(s)
Lesión Renal Aguda/fisiopatología , Factor-23 de Crecimiento de Fibroblastos/metabolismo , Receptores de Estrógenos/metabolismo , Lesión Renal Aguda/metabolismo , Animales , Modelos Animales de Enfermedad , Factor-23 de Crecimiento de Fibroblastos/genética , Ácido Fólico/efectos adversos , Ácido Fólico/farmacología , Interleucina-6/metabolismo , Riñón/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores Nucleares Huérfanos/metabolismo , Receptores de Estrógenos/genética , Activación Transcripcional
6.
Gut ; 72(3): 549-559, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35444014

RESUMEN

OBJECTIVE: Multidrug resistance protein 2 (MRP2) is a bottleneck in bilirubin excretion. Its loss is sufficient to induce hyperbilirubinaemia, a prevailing characteristic of acute liver failure (ALF) that is closely associated with clinical outcome. This study scrutinises the transcriptional regulation of MRP2 under different pathophysiological conditions. DESIGN: Hepatic MRP2, farnesoid X receptor (FXR) and Forkhead box A2 (FOXA2) expression and clinicopathologic associations were examined by immunohistochemistry in 14 patients with cirrhosis and 22 patients with ALF. MRP2 regulatory mechanisms were investigated in primary hepatocytes, Fxr -/- mice and lipopolysaccharide (LPS)-treated mice. RESULTS: Physiologically, homeostatic MRP2 transcription is mediated by the nuclear receptor FXR/retinoid X receptor complex. Fxr-/- mice lack apical MRP2 expression and rapidly progress into hyperbilirubinaemia. In patients with ALF, hepatic FXR expression is undetectable, however, patients without infection maintain apical MRP2 expression and do not suffer from hyperbilirubinaemia. These patients express FOXA2 in hepatocytes. FOXA2 upregulates MRP2 transcription through binding to its promoter. Physiologically, nuclear FOXA2 translocation is inhibited by insulin. In ALF, high levels of glucagon and tumour necrosis factor α induce FOXA2 expression and nuclear translocation in hepatocytes. Impressively, ALF patients with sepsis express low levels of FOXA2, lose MRP2 expression and develop severe hyperbilirubinaemia. In this case, LPS inhibits FXR expression, induces FOXA2 nuclear exclusion and thus abrogates the compensatory MRP2 upregulation. In both Fxr -/- and LPS-treated mice, ectopic FOXA2 expression restored apical MRP2 expression and normalised serum bilirubin levels. CONCLUSION: FOXA2 replaces FXR to maintain MRP2 expression in ALF without sepsis. Ectopic FOXA2 expression to maintain MRP2 represents a potential strategy to prevent hyperbilirubinaemia in septic ALF.


Asunto(s)
Factor Nuclear 3-beta del Hepatocito , Fallo Hepático Agudo , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Animales , Ratones , Bilirrubina , Factor Nuclear 3-beta del Hepatocito/metabolismo , Hepatocitos/metabolismo , Hiperbilirrubinemia/metabolismo , Hiperbilirrubinemia/patología , Lipopolisacáridos/metabolismo , Hígado/metabolismo , Fallo Hepático Agudo/metabolismo , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos/metabolismo , Miembro 4 de la Subfamilia B de Casete de Unión a ATP
7.
J Hepatol ; 78(4): 805-819, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36669703

RESUMEN

BACKGROUND & AIMS: Capsaicin receptor, also known as transient receptor potential vanilloid 1 (TRPV1), is involved in pain physiology and neurogenic inflammation. Herein, we discovered the presence of TRPV1 in hepatic stellate cells (HSCs) and aimed to delineate its function in this cell type and liver fibrosis. METHODS: TRPV1 expression was examined in liver biopsies from patients with liver fibrosis using quantitative real-time PCR and immunostaining. Its contribution to liver fibrosis was examined in Trpv1-/- mice, upon lentiviral delivery of the TRPV1 gene, and in human and mouse primary HSCs, using patch clamp, intracellular Ca2+ mobilization determination, FACS analyses and gain/loss of function experiments. Binding of sterile alpha and Toll/interleukin-1 receptor motif-containing protein 1 (SARM1) to TRPV1 was determined using mass spectrometry, co-immunoprecipitation, surface plasmon resonance, bioluminescence resonance energy transfer, and NanoBiT. RESULTS: TRPV1 mRNA levels are significantly downregulated in patients with liver fibrosis and mouse models, showing a negative correlation with F stage and α-smooth muscle actin expression, a marker of HSC activation. TRPV1 expression and function decrease during HSC activation in fibrotic livers in vivo or during culture. Genetic and pharmacological inhibition of TRPV1 in quiescent HSCs leads to NF-κB activation and pro-inflammatory cytokine production. TRPV1 requires binding of its N-terminal ankyrin repeat domain to the TIR-His583 (Toll/interleukin-1 receptor) domain of SARM1 to prevent HSCs from pro-inflammatory activation. Trpv1-/- mice display increased HSC activation and more severe liver fibrosis, whereas TRPV1 overexpression is antifibrotic in various disease models. CONCLUSION: The antifibrotic properties of TRPV1 are attributed to the prevention of HSC activation via the recruitment of SARM1, which could be an attractive therapeutic strategy against liver fibrosis. IMPACT AND IMPLICATIONS: We identified the neuronal channel protein TRPV1 as a gatekeeper of quiescence in hepatic stellate cells, a key driver of liver fibrogenesis and chronic liver disease. Physiologically expressed in healthy liver and consistently downregulated during liver fibrosis development, its therapeutic re-expression is expected to have few side effects, making it an attractive target diagnostic tool and drug candidate for industry and clinicians.


Asunto(s)
Células Estrelladas Hepáticas , Canales Catiónicos TRPV , Humanos , Ratones , Animales , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/farmacología , Células Estrelladas Hepáticas/metabolismo , Hígado/patología , Cirrosis Hepática/patología , Regulación de la Expresión Génica , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/farmacología , Proteínas del Dominio Armadillo/genética , Proteínas del Dominio Armadillo/metabolismo
8.
Hepatology ; 76(6): 1673-1689, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35257388

RESUMEN

BACKGROUND AND AIMS: It remains unknown how patients with liver failure maintain essential albumin levels. Here, we delineate a hierarchical transcription regulatory network that ensures albumin expression under different disease conditions. APPROACH AND RESULTS: We examined albumin levels in liver tissues and serum in 157 patients, including 84 with HCC, 38 decompensated cirrhosis, and 35 acute liver failure. Even in patients with liver failure, the average serum albumin concentrations were 30.55 g/L. In healthy subjects and patients with chronic liver diseases, albumin was expressed in hepatocytes. In patients with massive hepatocyte loss, albumin was expressed in liver progenitor cells (LPCs). The albumin gene (ALB) core promoter possesses a TATA box and nucleosome-free area, which allows constitutive RNA polymerase II binding and transcription initiation. Chromatin immunoprecipitation assays revealed that hepatocyte nuclear factor 4 alpha (HNF4α), CCAAT/enhancer-binding protein alpha (C/EBPα), and forkhead box A2 (FOXA2) bound to the ALB enhancer. Knockdown of either of these factors reduced albumin expression in hepatocytes. FOXA2 acts as a pioneer factor to support HNF4α and C/EBPα. In hepatocytes lacking HNF4α and C/EBPα expression, FOXA2 synergized with retinoic acid receptor (RAR) to maintain albumin transcription. RAR nuclear translocation was induced by retinoic acids released by activated HSCs. In patients with massive hepatocyte loss, LPCs expressed HNF4α and FOXA2. RNA sequencing and quantitative PCR analyses revealed that lack of HNF4α and C/EBPα in hepatocytes increased hedgehog ligand biosynthesis. Hedgehog up-regulates FOXA2 expression through glioblastoma family zinc finger 2 binding to the FOXA2 promoter in both hepatocytes and LPCs. CONCLUSIONS: A hierarchical regulatory network formed by master and pioneer transcription factors ensures essential albumin expression in various pathophysiological conditions.


Asunto(s)
Carcinoma Hepatocelular , Fallo Hepático , Neoplasias Hepáticas , Humanos , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Erizos/metabolismo , Neoplasias Hepáticas/metabolismo , Factor Nuclear 4 del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/metabolismo , Hepatocitos/metabolismo , Hígado/metabolismo , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Albúminas , Fallo Hepático/metabolismo
9.
Hepatology ; 75(2): 322-337, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34435364

RESUMEN

BACKGROUND AND AIMS: In patients with acute liver failure (ALF) who suffer from massive hepatocyte loss, liver progenitor cells (LPCs) take over key hepatocyte functions, which ultimately determines survival. This study investigated how the expression of hepatocyte nuclear factor 4α (HNF4α), its regulators, and targets in LPCs determines clinical outcome of patients with ALF. APPROACH AND RESULTS: Clinicopathological associations were scrutinized in 19 patients with ALF (9 recovered and 10 receiving liver transplantation). Regulatory mechanisms between follistatin, activin, HNF4α, and coagulation factor expression in LPC were investigated in vitro and in metronidazole-treated zebrafish. A prospective clinical study followed up 186 patients with cirrhosis for 80 months to observe the relevance of follistatin levels in prevalence and mortality of acute-on-chronic liver failure. Recovered patients with ALF robustly express HNF4α in either LPCs or remaining hepatocytes. As in hepatocytes, HNF4α controls the expression of coagulation factors by binding to their promoters in LPC. HNF4α expression in LPCs requires the forkhead box protein H1-Sma and Mad homolog 2/3/4 transcription factor complex, which is promoted by the TGF-ß superfamily member activin. Activin signaling in LPCs is negatively regulated by follistatin, a hepatocyte-derived hormone controlled by insulin and glucagon. In contrast to patients requiring liver transplantation, recovered patients demonstrate a normal activin/follistatin ratio, robust abundance of the activin effectors phosphorylated Sma and Mad homolog 2 and HNF4α in LPCs, leading to significantly improved coagulation function. A follow-up study indicated that serum follistatin levels could predict the incidence and mortality of acute-on-chronic liver failure. CONCLUSIONS: These results highlight a crucial role of the follistatin-controlled activin-HNF4α-coagulation axis in determining the clinical outcome of massive hepatocyte loss-induced ALF. The effects of insulin and glucagon on follistatin suggest a key role of the systemic metabolic state in ALF.


Asunto(s)
Activinas/genética , Folistatina/metabolismo , Factor Nuclear 4 del Hepatocito/metabolismo , Fallo Hepático Agudo/metabolismo , Activinas/metabolismo , Insuficiencia Hepática Crónica Agudizada/sangre , Adulto , Anciano , Animales , Coagulación Sanguínea , Línea Celular , Factor V/genética , Femenino , Folistatina/sangre , Estudios de Seguimiento , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Expresión Génica , Factor Nuclear 4 del Hepatocito/genética , Hepatocitos/metabolismo , Humanos , Fallo Hepático Agudo/inducido químicamente , Fallo Hepático Agudo/patología , Fallo Hepático Agudo/cirugía , Regeneración Hepática , Trasplante de Hígado , Masculino , Metronidazol , Ratones , Persona de Mediana Edad , Pronóstico , Regiones Promotoras Genéticas , Estudios Prospectivos , Protrombina/genética , Transducción de Señal , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína smad3/genética , Proteína smad3/metabolismo , Proteína Smad4/genética , Células Madre/metabolismo , Factor de Crecimiento Transformador beta1/genética , Pez Cebra
10.
Hepatology ; 74(4): 2186-2200, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33982327

RESUMEN

BACKGROUND AND AIMS: TGFß/bone morphogenetic protein (BMP) signaling in the liver plays a critical role in liver disease. Growth factors, such as BMP2, BMP6, and TGFß1, are released from LSECs and signal in a paracrine manner to hepatocytes and hepatic stellate cells to control systemic iron homeostasis and fibrotic processes, respectively. The misregulation of the TGFß/BMP pathway affects expression of the iron-regulated hormone hepcidin, causing frequent iron overload and deficiency diseases. However, whether LSEC-secreted factors can act in an autocrine manner to maintain liver homeostasis has not been addressed so far. APPROACH AND RESULTS: We analyzed publicly available RNA-sequencing data of mouse LSECs for ligand-receptor interactions and identified members of the TGFß family (BMP2, BMP6, and TGFß1) as ligands with the highest expression levels in LSECs that may signal in an autocrine manner. We next tested the soluble factors identified through in silico analysis in optimized murine LSEC primary cultures and mice. Exposure of murine LSEC primary cultures to these ligands shows that autocrine responses to BMP2 and BMP6 are blocked despite high expression levels of the required receptor complexes partially involving the inhibitor FK-506-binding protein 12. By contrast, LSECs respond efficiently to TGFß1 treatment, which causes reduced expression of BMP2 through activation of activin receptor-like kinase 5. CONCLUSIONS: These findings reveal that TGFß1 signaling is functionally interlinked with BMP signaling in LSECs, suggesting druggable targets for the treatment of iron overload diseases associated with deficiency of the BMP2-regulated hormone hepcidin, such as hereditary hemochromatosis, ß-thalassemia, and chronic liver diseases.


Asunto(s)
Proteína Morfogenética Ósea 2/metabolismo , Proteína Morfogenética Ósea 6/metabolismo , Hepcidinas/metabolismo , Hierro/metabolismo , Cirrosis Hepática , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Animales , Descubrimiento de Drogas , Células Endoteliales/metabolismo , Regulación de la Expresión Génica , Células Estrelladas Hepáticas , Hepatocitos/metabolismo , Homeostasis , Sobrecarga de Hierro/tratamiento farmacológico , Sobrecarga de Hierro/metabolismo , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Ratones
11.
Z Gastroenterol ; 60(1): 58-66, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35042254

RESUMEN

Chronic alcohol consumption induces stress and damage in alcohol metabolising hepatocytes, which leads to inflammatory and fibrogenic responses. Besides these direct effects, alcohol disrupts intestinal barrier functions and induces gut microbial dysbiosis, causing translocation of bacteria or microbial products through the gut mucosa to the liver and, which induce inflammation indirectly. Inflammation is one of the key drivers of alcohol-associated liver disease progression from steatosis to severe alcoholic hepatitis. The current standard of care for the treatment of severe alcoholic hepatitis is prednisolone, aiming to reduce inflammation. Prednisolone, however improves only short-term but not long-term survival rates in those patients, and even increases the risk for bacterial infections. Thus, recent studies focus on the exploration of more specific inflammatory targets for the treatment of severe alcoholic hepatitis. These comprise, among others interference with inflammatory cytokines, modulation of macrophage phenotypes or targeting of immune cell communication, as summarized in the present overview. Although several approaches give promising results in preclinical studies, data robustness and ability to transfer experimental results to human disease is still not sufficient for effective clinical translation.


Asunto(s)
Microbioma Gastrointestinal , Hepatopatías Alcohólicas , Progresión de la Enfermedad , Disbiosis , Humanos , Inflamación , Hígado
12.
Z Gastroenterol ; 60(1): 36-44, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35042252

RESUMEN

Alcohol-related liver disease (ALD) impacts millions of patients worldwide each year and the numbers are increasing. Disease stages range from steatosis via steatohepatitis and fibrosis to cirrhosis, severe alcohol-associated hepatitis and liver cancer. ALD is usually diagnosed at an advanced stage of progression with no effective therapies. A major research goal is to improve diagnosis, prognosis and also treatments for early ALD. This however needs prioritization of this disease for financial investment in basic and clinical research to more deeply investigate mechanisms and identify biomarkers and therapeutic targets for early detection and intervention. Topics of interest are communication of the liver with other organs of the body, especially the gut microbiome, the individual genetic constitution, systemic and liver innate inflammation, including bacterial infections, as well as fate and number of hepatic stellate cells and the composition of the extracellular matrix in the liver. Additionally, mechanical forces and damaging stresses towards the sophisticated vessel system of the liver, including the especially equipped sinusoidal endothelium and the biliary tract, work together to mediate hepatocytic import and export of nutritional and toxic substances, adapting to chronic liver disease by morphological and functional changes. All the aforementioned parameters contribute to the outcome of alcohol use disorder and the risk to develop advanced disease stages including cirrhosis, severe alcoholic hepatitis and liver cancer. In the present collection, we summarize current knowledge on these alcohol-related liver disease parameters, excluding the aspect of inflammation, which is presented in the accompanying review article by Lotersztajn and colleagues.


Asunto(s)
Hepatopatías Alcohólicas , Neoplasias Hepáticas , Progresión de la Enfermedad , Detección Precoz del Cáncer , Humanos , Hígado , Hepatopatías Alcohólicas/diagnóstico , Hepatopatías Alcohólicas/genética
13.
BMC Cancer ; 21(1): 1006, 2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34496784

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is a major cause of cancer-related death. Paired related homeobox 1 (PRRX1) is a transcription factor that regulates cell growth and differentiation, but its importance in HCC is unclear. METHODS: We examined the expression pattern of PRRX1 in nine microarray datasets of human HCC tumour samples (n > 1100) and analyzed its function in HCC cell lines. In addition, we performed gene set enrichment, Kaplan-Meier overall survival analysis, metabolomics and functional assays. RESULTS: PRRX1 is frequently upregulated in human HCC. Pathway enrichment analysis predicted a direct correlation between PRRX1 and focal adhesion and epithelial-mesenchymal transition. High expression of PRRX1 and low ZEB1 or high ZEB2 significantly predicted better overall survival in HCC patients. In contrast, metabolic processes correlated inversely and transcriptional analyses revealed that glycolysis, TCA cycle and amino acid metabolism were affected. These findings were confirmed by metabolomics analysis. At the phenotypic level, PRRX1 knockdown accelerated proliferation and clonogenicity in HCC cell lines. CONCLUSIONS: Our results suggest that PRRX1 controls metabolism, has a tumour suppressive role, and may function in cooperation with ZEB1/2. These findings have functional relevance in HCC, including in understanding transcriptional control of distinct cancer hallmarks.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/patología , Regulación Neoplásica de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Neoplasias Hepáticas/patología , Metaboloma , Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proliferación Celular , Transición Epitelial-Mesenquimal , Proteínas de Homeodominio/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Fenotipo , Pronóstico , Tasa de Supervivencia , Células Tumorales Cultivadas
14.
Arch Toxicol ; 95(9): 3071-3084, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34191077

RESUMEN

Acute liver injury results from the complex interactions of various pathological processes. The TGF-ß superfamily plays a crucial role in orchestrating fibrogenic response. In contrast to TGF-ß1, a role of TGF-ß2 in hepatic fibrogenic response has not been fully investigated. In this study, we showed that TGF-ß2 gene expression and secretion are induced in the liver of CCl4 (1 ml/kg)-treated WT mice. Studies with hepatocyte specific ERRγ knockout mice or treatment with an ERRγ-specific inverse agonist, GSK5182 (40 mg/kg), indicated that CCl4-induced hepatic TGF-ß2 production is ERRγ dependent. Moreover, IL6 was found as upstream signal to induce hepatic ERRγ and TGF-ß2 gene expression in CCl4-mediated acute toxicity model. Over-expression of ERRγ was sufficient to induce hepatic TGF-ß2 expression, whereas ERRγ depletion markedly reduces IL6-induced TGF-ß2 gene expression and secretion in vitro and in vivo. Promoter assays showed that ERRγ directly binds to an ERR response element in the TGF-ß2 promoter to induce TGF-ß2 transcription. Finally, GSK5182 diminished CCl4-induced fibrogenic response through inhibition of ERRγ-mediated TGF-ß2 production. Taken together, these results firstly demonstrate that ERRγ can regulate the TGF-ß2-mediated fibrogenic response in a mouse model of CC14-induced acute liver injury.


Asunto(s)
Hepatopatías/fisiopatología , Receptores de Estrógenos/genética , Tamoxifeno/análogos & derivados , Factor de Crecimiento Transformador beta2/genética , Animales , Tetracloruro de Carbono , Línea Celular , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Células HEK293 , Hepatocitos/efectos de los fármacos , Hepatocitos/patología , Humanos , Hepatopatías/tratamiento farmacológico , Hepatopatías/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores de Estrógenos/efectos de los fármacos , Tamoxifeno/farmacología
15.
Int J Mol Sci ; 22(20)2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34681723

RESUMEN

Microglial activation is implicated in retinal vasoregression of the neurodegenerative ciliopathy-associated disease rat model (i.e., the polycystic kidney disease (PKD) model). microRNA can regulate microglial activation and vascular function, but the effect of microRNA-124 (miR-124) on retinal vasoregression remains unclear. Transgenic PKD and wild-type Sprague Dawley (SD) rats received miR-124 at 8 and 10 weeks of age intravitreally. Retinal glia activation was assessed by immunofluorescent staining and in situ hybridization. Vasoregression and neuroretinal function were evaluated by quantitative retinal morphometry and electroretinography (ERG), respectively. Microglial polarization was determined by immunocytochemistry and qRT-PCR. Microglial motility was examined via transwell migration assays, wound healing assays, and single-cell tracking. Our data showed that miR-124 inhibited glial activation and improved vasoregession, as evidenced by the reduced pericyte loss and decreased acellular capillary formation. In addition, miR-124 improved neuroretinal function. miR-124 shifted microglial polarization in the PKD retina from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype by suppressing TNF-α, IL-1ß, CCL2, CCL3, MHC-II, and IFN-γ and upregulating Arg1 and IL-10. miR-124 also decreased microglial motility in the migration assays. The transcriptional factor of C/EBP-α-PU.1 signaling, suppressed by miR-124 both in vivo (PKD retina) and in vitro (microglial cells), could serve as a key regulator in microglial activation and polarization. Our data illustrate that miR-124 regulates microglial activation and polarization. miR-124 inhibits pericyte loss and thereby alleviates vasoregression and ameliorates neurovascular function.


Asunto(s)
MicroARNs/metabolismo , Microglía/citología , Retina/fisiopatología , Animales , Antagomirs/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Movimiento Celular , Polaridad Celular , Modelos Animales de Enfermedad , Electrorretinografía , Regulación de la Expresión Génica , Interleucina-10/genética , Interleucina-10/metabolismo , Ratones , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Microglía/metabolismo , Enfermedades Renales Poliquísticas/genética , Enfermedades Renales Poliquísticas/metabolismo , Enfermedades Renales Poliquísticas/patología , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Retina/anatomía & histología , Transducción de Señal , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
16.
Gut ; 69(9): 1677-1690, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-31992593

RESUMEN

OBJECTIVE: TGF-ß2 (TGF-ß, transforming growth factor beta), the less-investigated sibling of TGF-ß1, is deregulated in rodent and human liver diseases. Former data from bile duct ligated and MDR2 knockout (KO) mouse models for human cholestatic liver disease suggested an involvement of TGF-ß2 in biliary-derived liver diseases. DESIGN: As we also found upregulated TGFB2 in liver tissue of patients with primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC), we now fathomed the positive prospects of targeting TGF-ß2 in early stage biliary liver disease using the MDR2-KO mice. Specifically, the influence of TgfB2 silencing on the fibrotic and inflammatory niche was analysed on molecular, cellular and tissue levels. RESULTS: TgfB2-induced expression of fibrotic genes in cholangiocytes and hepatic stellate cellswas detected. TgfB2 expression in MDR2-KO mice was blunted using TgfB2-directed antisense oligonucleotides (AON). Upon AON treatment, reduced collagen deposition, hydroxyproline content and αSMA expression as well as induced PparG expression reflected a significant reduction of fibrogenesis without adverse effects on healthy livers. Expression analyses of fibrotic and inflammatory genes revealed AON-specific regulatory effects on Ccl3, Ccl4, Ccl5, Mki67 and Notch3 expression. Further, AON treatment of MDR2-KO mice increased tissue infiltration by F4/80-positive cells including eosinophils, whereas the number of CD45-positive inflammatory cells decreased. In line, TGFB2 and CD45 expression correlated positively in PSC/PBC patients and localised in similar areas of the diseased liver tissue. CONCLUSIONS: Taken together, our data suggest a new mechanistic explanation for amelioration of fibrogenesis by TGF-ß2 silencing and provide a direct rationale for TGF-ß2-directed drug development.


Asunto(s)
Colangitis Esclerosante , Silenciador del Gen , Cirrosis Hepática Biliar , Cirrosis Hepática , Oligonucleótidos Antisentido , Factor de Crecimiento Transformador beta2/genética , Factor de Crecimiento Transformador beta2/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Animales , Colangitis Esclerosante/metabolismo , Colangitis Esclerosante/patología , Modelos Animales de Enfermedad , Descubrimiento de Drogas , Regulación de la Expresión Génica , Células Estrelladas Hepáticas/metabolismo , Humanos , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Cirrosis Hepática/prevención & control , Cirrosis Hepática Biliar/metabolismo , Cirrosis Hepática Biliar/patología , Ratones , Ratones Noqueados , Regulación hacia Arriba , Miembro 4 de la Subfamilia B de Casete de Unión a ATP
17.
Gastroenterology ; 157(5): 1352-1367.e13, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31362006

RESUMEN

BACKGROUND & AIMS: Activation of TGFB (transforming growth factor ß) promotes liver fibrosis by activating hepatic stellate cells (HSCs), but the mechanisms of TGFB activation are not clear. We investigated the role of ECM1 (extracellular matrix protein 1), which interacts with extracellular and structural proteins, in TGFB activation in mouse livers. METHODS: We performed studies with C57BL/6J mice (controls), ECM1-knockout (ECM1-KO) mice, and mice with hepatocyte-specific knockout of EMC1 (ECM1Δhep). ECM1 or soluble TGFBR2 (TGFB receptor 2) were expressed in livers of mice after injection of an adeno-associated virus vector. Liver fibrosis was induced by carbon tetrachloride (CCl4) administration. Livers were collected from mice and analyzed by histology, immunohistochemistry, in situ hybridization, and immunofluorescence analyses. Hepatocytes and HSCs were isolated from livers of mice and incubated with ECM1; production of cytokines and activation of reporter genes were quantified. Liver tissues from patients with viral or alcohol-induced hepatitis (with different stages of fibrosis) and individuals with healthy livers were analyzed by immunohistochemistry and in situ hybridization. RESULTS: ECM1-KO mice spontaneously developed liver fibrosis and died by 2 months of age without significant hepatocyte damage or inflammation. In liver tissues of mice, we found that ECM1 stabilized extracellular matrix-deposited TGFB in its inactive form by interacting with αv integrins to prevent activation of HSCs. In liver tissues from patients and in mice with CCl4-induced liver fibrosis, we found an inverse correlation between level of ECM1 and severity of fibrosis. CCl4-induced liver fibrosis was accelerated in ECM1Δhep mice compared with control mice. Hepatocytes produced the highest levels of ECM1 in livers of mice. Ectopic expression of ECM1 or soluble TGFBR2 in liver prevented fibrogenesis in ECM1-KO mice and prolonged their survival. Ectopic expression of ECM1 in liver also reduced the severity of CCl4-induced fibrosis in mice. CONCLUSIONS: ECM1, produced by hepatocytes, inhibits activation of TGFB and its activation of HSCs to prevent fibrogenesis in mouse liver. Strategies to increase levels of ECM1 in liver might be developed for treatment of fibrosis.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Proteínas de la Matriz Extracelular/metabolismo , Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática Experimental/prevención & control , Hígado/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Animales , Tetracloruro de Carbono , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Proteínas de la Matriz Extracelular/deficiencia , Proteínas de la Matriz Extracelular/genética , Células Estrelladas Hepáticas/patología , Hepatitis Alcohólica/metabolismo , Hepatitis Alcohólica/patología , Hepatitis Viral Humana/metabolismo , Hepatitis Viral Humana/patología , Humanos , Hígado/patología , Cirrosis Hepática Alcohólica/metabolismo , Cirrosis Hepática Alcohólica/patología , Cirrosis Hepática Experimental/genética , Cirrosis Hepática Experimental/metabolismo , Cirrosis Hepática Experimental/patología , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal , Miembro 4 de la Subfamilia B de Casete de Unión a ATP
18.
Hepatology ; 69(2): 666-683, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30102412

RESUMEN

Bile duct ligation (BDL) is an experimental procedure that mimics obstructive cholestatic disease. One of the early consequences of BDL in rodents is the appearance of so-called bile infarcts that correspond to Charcot-Gombault necrosis in human cholestasis. The mechanisms causing bile infarcts and their pathophysiological relevance are unclear. Therefore, intravital two photon-based imaging of BDL mice was performed with fluorescent bile salts (BS) and non-BS organic anion analogues. Key findings were followed up by matrix-assisted laser desorption ionization imaging, clinical chemistry, immunostaining, and gene expression analyses. In the acute phase, 1-3 days after BDL, BS concentrations in bile increased and single-cell bile microinfarcts occurred in dispersed hepatocytes throughout the liver caused by the rupture of the apical hepatocyte membrane. This rupture occurred after loss of mitochondrial membrane potential, followed by entry of bile, cell death, and a "domino effect" of further death events of neighboring hepatocytes. Bile infarcts provided a trans-epithelial shunt between bile canaliculi and sinusoids by which bile constituents leaked into blood. In the chronic phase, ≥21 days after BDL, uptake of BS tracers at the sinusoidal hepatocyte membrane was reduced. This contributes to elevated concentrations of BS in blood and decreased concentrations in the biliary tract. Conclusion: Bile microinfarcts occur in the acute phase after BDL in a limited number of dispersed hepatocytes followed by larger infarcts involving neighboring hepatocytes, and they allow leakage of bile from the BS-overloaded biliary tract into blood, thereby protecting the liver from BS toxicity; in the chronic phase after BDL, reduced sinusoidal BS uptake is a dominant protective factor, and the kidney contributes to the elimination of BS until cholemic nephropathy sets in.


Asunto(s)
Canalículos Biliares/fisiopatología , Colestasis/fisiopatología , Modelos Animales de Enfermedad , Hepatocitos/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Animales , Ácidos y Sales Biliares/sangre , Colestasis/diagnóstico por imagen , Colestasis/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Imagen Óptica , Miembro 4 de la Subfamilia B de Casete de Unión a ATP
19.
Arch Toxicol ; 94(2): 427-438, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31912162

RESUMEN

Chronic alcohol feeding increases the levels of 2-arachidonoylglycerol (2-AG) in the liver, which activates hepatic cannabinoid receptor type 1 (CB1R), leading to oxidative liver injury. 2-AG biosynthesis is catalyzed by diacylglycerol lipase (DAGL). However, the mechanisms regulating hepatic DAGL gene expression and 2-AG production are largely unknown. In this study, we show that CB1R-induced estrogen-related receptor γ (ERRγ) controls hepatic DAGL gene expression and 2-AG levels. Arachidonyl-2'-chloroethylamide (ACEA), a synthetic CB1R agonist, significantly upregulated ERRγ, DAGLα, and DAGLß, and increased 2-AG levels in the liver (10 mg/kg) and hepatocytes (10 µM) of wild-type (WT) mice. ERRγ overexpression upregulated DAGLα and DAGLß expressions and increased 2-AG levels, whereas ERRγ knockdown abolished ACEA-induced DAGLα, DAGLß, and 2-AG in vitro and in vivo. Promoter assays showed that ERRγ positively regulated DAGLα and DAGLß transcription by binding to the ERR response element in the DAGLα and DAGLß promoters. Chronic alcohol feeding (27.5% of total calories) induced hepatic steatosis and upregulated ERRγ, leading to increased DAGLα, DAGLß, or 2-AG in WT mice, whereas these alcohol-induced effects did not occur in hepatocyte-specific CB1R knockout mice or in those treated with the ERRγ inverse agonist GSK5182 (40 mg/kg in mice and 10 µM in vitro). Taken together, these results indicate that suppression of alcohol-induced DAGLα and DAGLß gene expressions and 2-AG levels by an ERRγ-specific inverse agonist may be a novel and attractive therapeutic approach for the treatment of alcoholic liver disease.


Asunto(s)
Ácidos Araquidónicos/biosíntesis , Ácidos Araquidónicos/farmacología , Endocannabinoides/biosíntesis , Etanol/toxicidad , Glicéridos/biosíntesis , Lipoproteína Lipasa/genética , Receptores de Estrógenos/metabolismo , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Células Hep G2 , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Lipoproteína Lipasa/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/metabolismo , Receptores de Estrógenos/genética , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacología
20.
Int J Mol Sci ; 21(19)2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-32998264

RESUMEN

Bone morphogenetic protein 6 (BMP6) is a multifunctional growth factor involved in organ development and homeostasis. BMP6 controls expression of the liver hormone, hepcidin, and thereby plays a crucial role in regulating iron homeostasis. BMP6 gene transcriptional regulation in liver is largely unknown, but would be of great help to externally modulate iron load in pathologic conditions. Here, we describe a detailed molecular mechanism of hepatic BMP6 gene expression by an orphan nuclear receptor, estrogen-related receptor γ (ERRγ), in response to the pro-inflammatory cytokine interleukin 6 (IL-6). Recombinant IL-6 treatment increases hepatic ERRγ and BMP6 expression. Overexpression of ERRγ is sufficient to increase BMP6 gene expression in hepatocytes, suggesting that IL-6 is upstream of ERRγ. In line, knock-down of ERRγ in cell lines or a hepatocyte specific knock-out of ERRγ in mice significantly decreases IL-6 mediated BMP6 expression. Promoter studies show that ERRγ directly binds to the ERR response element (ERRE) in the mouse BMP6 gene promoter and positively regulates BMP6 gene transcription in IL-6 treatment conditions, which is further confirmed by ERRE mutated mBMP6-luciferase reporter assays. Finally, an inverse agonist of ERRγ, GSK5182, markedly inhibits IL-6 induced hepatic BMP6 expression in vitro and in vivo. Taken together, these results reveal a novel molecular mechanism on ERRγ mediated transcriptional regulation of hepatic BMP6 gene expression in response to IL-6.


Asunto(s)
Proteína Morfogenética Ósea 6/genética , Interleucina-6/genética , Hígado/metabolismo , Receptores de Estrógenos/genética , Elementos de Respuesta , Activación Transcripcional , Animales , Sitios de Unión , Proteína Morfogenética Ósea 6/metabolismo , Genes Reporteros , Células Hep G2 , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepcidinas/genética , Hepcidinas/metabolismo , Humanos , Interleucina-6/metabolismo , Interleucina-6/farmacología , Hierro/metabolismo , Hígado/citología , Hígado/efectos de los fármacos , Luciferasas/genética , Luciferasas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Regiones Promotoras Genéticas , Unión Proteica , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores de Estrógenos/antagonistas & inhibidores , Receptores de Estrógenos/metabolismo , Transducción de Señal , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA