Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 459(7248): 847-51, 2009 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-19430464

RESUMEN

Histone H3 lysine 4 methylation (H3K4me) has been proposed as a critical component in regulating gene expression, epigenetic states, and cellular identities1. The biological meaning of H3K4me is interpreted by conserved modules including plant homeodomain (PHD) fingers that recognize varied H3K4me states. The dysregulation of PHD fingers has been implicated in several human diseases, including cancers and immune or neurological disorders. Here we report that fusing an H3K4-trimethylation (H3K4me3)-binding PHD finger, such as the carboxy-terminal PHD finger of PHF23 or JARID1A (also known as KDM5A or RBBP2), to a common fusion partner nucleoporin-98 (NUP98) as identified in human leukaemias, generated potent oncoproteins that arrested haematopoietic differentiation and induced acute myeloid leukaemia in murine models. In these processes, a PHD finger that specifically recognizes H3K4me3/2 marks was essential for leukaemogenesis. Mutations in PHD fingers that abrogated H3K4me3 binding also abolished leukaemic transformation. NUP98-PHD fusion prevented the differentiation-associated removal of H3K4me3 at many loci encoding lineage-specific transcription factors (Hox(s), Gata3, Meis1, Eya1 and Pbx1), and enforced their active gene transcription in murine haematopoietic stem/progenitor cells. Mechanistically, NUP98-PHD fusions act as 'chromatin boundary factors', dominating over polycomb-mediated gene silencing to 'lock' developmentally critical loci into an active chromatin state (H3K4me3 with induced histone acetylation), a state that defined leukaemia stem cells. Collectively, our studies represent, to our knowledge, the first report that deregulation of the PHD finger, an 'effector' of specific histone modification, perturbs the epigenetic dynamics on developmentally critical loci, catastrophizes cellular fate decision-making, and even causes oncogenesis during mammalian development.


Asunto(s)
Cromatina/metabolismo , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/patología , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Fusión Oncogénica/química , Proteínas de Fusión Oncogénica/metabolismo , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/metabolismo , Secuencias de Aminoácidos/genética , Secuencias de Aminoácidos/fisiología , Animales , Transformación Celular Neoplásica , Células Cultivadas , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Genes Homeobox/genética , Neoplasias Hematológicas/genética , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Histonas/química , Histonas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Lisina/metabolismo , Espectroscopía de Resonancia Magnética , Metilación , Ratones , Modelos Moleculares , Proteínas de Complejo Poro Nuclear/química , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas de Fusión Oncogénica/genética , Unión Proteica , Conformación Proteica , Proteína 2 de Unión a Retinoblastoma , Transcripción Genética , Proteínas Supresoras de Tumor/genética
2.
Nature ; 438(7071): 1116-22, 2005 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-16222246

RESUMEN

Tri-methylation of histone H3 lysine 9 is important for recruiting heterochromatin protein 1 (HP1) to discrete regions of the genome, thereby regulating gene expression, chromatin packaging and heterochromatin formation. Here we show that HP1alpha, -beta, and -gamma are released from chromatin during the M phase of the cell cycle, even though tri-methylation levels of histone H3 lysine 9 remain unchanged. However, the additional, transient modification of histone H3 by phosphorylation of serine 10 next to the more stable methyl-lysine 9 mark is sufficient to eject HP1 proteins from their binding sites. Inhibition or depletion of the mitotic kinase Aurora B, which phosphorylates serine 10 on histone H3, causes retention of HP1 proteins on mitotic chromosomes, suggesting that H3 serine 10 phosphorylation is necessary for the dissociation of HP1 from chromatin in M phase. These findings establish a regulatory mechanism of protein-protein interactions, through a combinatorial readout of two adjacent post-translational modifications: a stable methylation and a dynamic phosphorylation mark.


Asunto(s)
Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Histonas/metabolismo , Animales , Aurora Quinasa B , Aurora Quinasas , Homólogo de la Proteína Chromobox 5 , Cromosomas Humanos/metabolismo , Células HeLa , Humanos , Metilación , Mitosis , Oocitos/metabolismo , Fosforilación , Unión Proteica , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Xenopus laevis
3.
Nat Protoc ; 2(6): 1445-57, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17545981

RESUMEN

Histone proteins are the major protein components of chromatin, the physiologically relevant form of the genome (or epigenome) in all eukaryotic cells. Chromatin is the substrate of many biological processes, such as gene regulation and transcription, replication, mitosis and apoptosis. Since histones are extensively post-translationally modified, the identification of these covalent marks on canonical and variant histones is crucial for the understanding of their biological significance. Many different biochemical techniques have been developed to purify and separate histone proteins. Here, we present standard protocols for acid extraction and salt extraction of histones from chromatin; separation of extracted histones by reversed-phase HPLC; analysis of histones and their specific post-translational modification profiles by acid urea (AU) gel electrophoresis and the additional separation of non-canonical histone variants by triton AU(TAU) and 2D TAU electrophoresis; and immunoblotting of isolated histone proteins with modification-specific antibodies.


Asunto(s)
Histonas/química , Histonas/aislamiento & purificación , Animales , Células Cultivadas , Histonas/análisis , Mamíferos , Conformación Proteica
4.
Cell Cycle ; 5(24): 2842-51, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17172865

RESUMEN

Post-translational modifications of histone proteins, the basic building blocks around which eukaryotic DNA is organized, are crucially involved in the regulation of genome activity as they control chromatin structure and dynamics. The recruitment of specific binding proteins that recognize and interact with particular histone modifications is thought to constitute a fundamental mechanism by which histone marks mediate biological function. For instance, tri-methylation of histone H3 lysine 9 (H3K9me3) is important for recruiting heterochromatin protein 1 (HP1) to discrete regions of the genome, thereby regulating gene expression, chromatin packaging, and heterochromatin formation. Until now, little was known about the regulation of effector-histone mark interactions, and in particular, of the binding of HP1 to H3K9me3. Recently, we and others presented evidence that a "binary methylation-phosphorylation switch" mechanism controls the dynamic release of HP1 from H3K9me3 during the cell cycle: phosphorylation of histone H3 serine 10 (H3S10ph) occurs at the onset of mitosis, interferes with HP1-H3K9me3 interaction, and therefore, ejects HP1 from its binding site. Here, we discuss the biological function of HP1 release from chromatin during mitosis, consider implications why the cell controls HP1 binding by such a methylation-phosphorylation switching mechanism, and reflect on other cellular pathways where binary switching of HP1 might occur.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Histonas/metabolismo , Animales , Cromatina/metabolismo , Homólogo de la Proteína Chromobox 5 , Fibroblastos/citología , Interfase , Metilación , Ratones , Mitosis , Modelos Biológicos , Fosforilación , Unión Proteica , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA