Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phytother Res ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38863408

RESUMEN

Environmental pollution, virus infection, allergens, and other factors may cause respiratory disease, which could be improved by dietary therapy. Allium species are common daily food seasoning and have high nutritional and medical value. Diallyl disulfide (DADS) is the major volatile oil compound of Allium species. The present study aims to explore the preventive effect and potential mechanism of DADS on pulmonary fibrosis. C57BL/6J mice were intratracheally injected with bleomycin (BLM) to establish pulmonary fibrosis and then administrated with DADS. Primary lung fibroblasts or A549 were stimulated with BLM, followed by DADS, farnesoid X receptor (FXR) agonist (GW4064), yes-associated protein 1 (YAP1) inhibitor (verteporfin), or silencing of FXR and YAP1. In BLM-stimulated mice, DADS significantly ameliorated histopathological changes and interleukin-1ß levels in bronchoalveolar lavage fluid. DADS decreased fibrosis markers, HIF-1α, inflammatory cytokines, and epithelial-mesenchymal transition in pulmonary mice and activated fibroblasts. DADS significantly enhanced FXR expression and inhibited YAP1 activation, which functions as GW4064 and verteporfin. A deficiency of FXR or YAP1 could result in the increase of these two protein expressions, respectively. DADS ameliorated extracellular matrix deposition, hypoxia, epithelial-mesenchymal transition, and inflammation in FXR or YAP1 knockdown A549. Taken together, targeting the crosstalk of FXR and YAP1 might be the potential mechanism for DADS against pulmonary fibrosis. DADS can serve as a potential candidate or dietary nutraceutical supplement for the treatment of pulmonary fibrosis.

2.
Phytother Res ; 35(10): 5680-5693, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34250656

RESUMEN

The current study focused on the regulatory effects of parthenolide (PNL), a bioactive component derived from Chrysanthemum parthenium L., against hepatic fibrosis via regulating the crosstalk of toll-like receptor 4 (TLR4) and signal transducer and activator of transcription 3 (STAT3) in activated hepatic stellate cells (HSCs). HSCs or Raw 264.7 macrophages were activated by TGF-ß or LPS for 1 hr, respectively, and then treated with PNL, CLI-095 (TLR4 inhibitor), or Niclosamide (STAT3 inhibitor) for the indicated time to detect the crosstalk of TLR4 and STAT3. PNL significantly decreased the expressions of α-SMA, collagen I, and the ratio of TIMP1 and MMP13 in TGF-ß-activated HSCs. PNL significantly reduced the releases of pro-inflammatory cytokines, including IL-6, IL-1ß, IL-1α, IL-18, and regulated signaling P2X7r/NLRP3 axis activation. PNL obviously induced the apoptosis of activated HSCs by regulating bcl-2 and caspases family. PNL significantly inhibited the expressions of TLR4 and STAT3, including their downstream signaling. PNL could regulate the crosstalk of TLR4 and STAT3, which were verified by their inhibitors in activated HSCs or Raw 264.7 cell macrophages. Thus, PNL could decrease the expressions of fibrosis markers, reduce the releases of inflammatory cytokines, and also induce the apoptosis of activated HSCs. In conclusion, PNL could bi-directionally inhibit TLR4 and STAT3 signaling pathway, suggesting that blocking the crosstalk of TLR4 and STAT3 might be the potential mechanism of PNL against hepatic fibrosis.


Asunto(s)
Factor de Transcripción STAT3 , Receptor Toll-Like 4 , Inflamación , Cirrosis Hepática/tratamiento farmacológico , Factor de Transcripción STAT3/metabolismo , Sesquiterpenos , Transducción de Señal , Tanacetum parthenium , Receptor Toll-Like 4/metabolismo
3.
J Agric Food Chem ; 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970822

RESUMEN

Hepatic fibrosis is a compensatory response to chronic liver injury and inflammation, and dietary intervention is recommended as one of the fundamental prevention strategies. Raspberry ketone (RK) is an aromatic compound first isolated from raspberry and widely used to prepare food flavors. The current study investigated the hepatoprotection and potential mechanism of RK against hepatic fibrosis. In vitro, hepatic stellate cell (HSC) activation was stimulated with TGF-ß and cultured with RK, farnesoid X receptor (FXR), or peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) agonist or inhibitor, respectively. In vivo, C57BL/6 mice were injected intraperitoneally with thioacetamide (TAA) at 100/200 mg/kg from the first to the fifth week. Mice were intragastrically administrated with RK or Cur once a day from the second to the fifth week. In activated HSCs, RK inhibited extracellular matrix (ECM) accumulation, inflammation, and epithelial-mesenchymal transition (EMT) process. RK both activated FXR/PGC-1α and regulated their crosstalk, which were verified by their inhibitors and agonists. Deficiency of FXR or PGC-1α also attenuated the effect of RK on the reverse of activated HSCs. RK also decreased serum ALT/AST levels, liver histopathological change, ECM accumulation, inflammation, and EMT in mice caused by TAA. Double activation of FXR/PGC-1α might be the key targets for RK against hepatic fibrosis. Above all, these discoveries supported the potential of RK as a novel candidate for the dietary intervention of hepatic fibrosis.

4.
J Nat Med ; 78(2): 427-438, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38334900

RESUMEN

Angelica dahurica (A. dahurica) has a wide range of pharmacological effects, including analgesic, anti-inflammatory and hepatoprotective effects. In this study, we investigated the effect of A. dahurica extract (AD) and its effective component bergapten (BG) on hepatic fibrosis and potential mechanisms. Hepatic fibrosis was induced by intraperitoneal injection with carbon tetrachloride (CCl4) for 1 week, and mice were administrated with AD or BG by gavage for 1 week before CCl4 injection. Hepatic stellate cells (HSCs) were stimulated by transforming growth factor-ß (TGF-ß) and cultured with AD, BG, GW4064 (FXR agonist) or Guggulsterone (FXR inhibitor). In CCl4-induced mice, AD significantly decreased serum aminotransferase, reduced excess accumulation of extracellular matrix (ECM), inhibited caspase-1 and IL-1ß, and increased FXR expressions. In activated HSCs, AD suppressed the expressions of α-SMA, collagen I, and TIMP-1/MMP-13 ratio and inflammatory factors, functioning as FXR agonist. In CCl4-induced mice, BG significantly improved serum transaminase and histopathological changes, reduced ECM excessive deposition, inflammatory response, and activated FXR expression. BG increased FXR expression and inhibited α-SMA and IL-1ß expressions in activated HSCs, functioning as GW4064. FXR deficiency significantly attenuated the decreasing effect of BG on α-SMA and IL-1ß expressions in LX-2 cells. In conclusion, AD could regulate hepatic fibrosis by regulating ECM excessive deposition and inflammation. Activating FXR signaling by BG might be the potential mechanism of AD against hepatic fibrosis.


Asunto(s)
Cirrosis Hepática , Transducción de Señal , Ratones , Animales , 5-Metoxipsoraleno/efectos adversos , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Células Estrelladas Hepáticas , Factor de Crecimiento Transformador beta/farmacología , Hígado
5.
Phytochemistry ; 200: 113247, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35597316

RESUMEN

Acanthoic acid (AA) is a pimaradiene diterpene isolated from the root bark of Acanthopanax koreanum Nakai (Araliaceae) with a wide range of pharmacological activities, including anti-cancer, anti-inflammatory, anti-diabetes, liver protection, gastrointestinal protection, and cardiovascular protection. In addition, AA promotes its pharmacological effects by targeting liver X receptors (LXRs), nuclear factor-kappa B (NF-κB), Toll-Like Receptor 4 (TLR4) and IL-1 receptor-associated kinase (IRAK) signaling pathways, or AMP-activated protein kinase (AMPK) signaling pathway, etc. Also, some studies focus on the structural modification of AA to improve its pharmacological activities. The review summarizes the pharmacological activities, molecular mechanism, and the structural modification of AA, which might supply information for the development of AA in the future.


Asunto(s)
Araliaceae , Diterpenos , Eleutherococcus , Antiinflamatorios/farmacología , Diterpenos/química , Diterpenos/farmacología , Eleutherococcus/química , FN-kappa B/metabolismo
6.
Food Funct ; 13(8): 4678-4690, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35377371

RESUMEN

Siberian onions (SOs) are delicious wild vegetables. Their taste is most unique, not only like scallions but also like leeks or garlic. They also have a traditional medicinal value for anti-inflammation, anti-oxidation, and anti-pyretic analgesia, particularly facilitating hepatoprotective effects. The current study investigates the potential mechanism of SOs against toxin-induced liver dysfunction. BALB/c mice were administrated with SO or silymarin by oral gavage for one week, followed by injecting carbon tetrachloride (CCl4) to induce hepatic fibrosis. The effect of SO against hepatic fibrosis was evaluated by examining the liver tissue for serum transaminase, oxidative stress, extracellular matrix, histological alterations, cytokine levels, and apoptosis. In vitro, HSC-T6 cells were cultured with the supernatant from Raw 264.7 cells stimulated with lipopolysaccharides, followed by SO extracts or Niclosamide (Signal Transducer and Activator of Transcription 3 (STAT3) inhibitor) at indicated time periods and doses. SO decreased serum transaminase levels and oxidative stress, and regulated the balance of ECM in CCl4-induced mice, including α-SMA, collagen-I and TIMP-1. SO reduced the release of inflammatory factors and regulated apoptosis-associated proteins, which is related to the inhibition of STAT3 phosphorylation. Moreover, SO reduced the positive expressions of α-SMA and NLRP3 by inhibiting STAT3 phosphorylation in activated HSCs. SO could show health-promoting effects for liver dysfunction by alleviating hepatic fibrogenesis, apoptosis and inflammation in the development of hepatic fibrosis potential depending on the STAT3 signaling pathway.


Asunto(s)
Tetracloruro de Carbono , Cebollas , Animales , Tetracloruro de Carbono/efectos adversos , Células Estrelladas Hepáticas , Hígado/metabolismo , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/genética , Ratones , Transaminasas/metabolismo
7.
Biomol Ther (Seoul) ; 30(3): 246-256, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34815367

RESUMEN

The present study focused on the potential mechanism of betulin (BT), a pentacyclic triterpenoid isolated from the bark of white birch (Betula pubescens), against chronic alcohol-induced lipid accumulation and metaflammation. AML-12 and RAW 264.7 cells were administered ethanol (EtOH), lipopolysaccharide (LPS) or BT. Male C57BL/6 mice were fed Lieber-DeCarli liquid diets containing 5% EtOH for 4 weeks, followed by single EtOH gavage on the last day and simultaneous treatment with BT (20 or 50 mg/kg) by oral gavage once per day. In vitro, MTT showed that 0-25 mM EtOH and 0-25 µM BT had no toxic effect on AML-12 cells. BT could regulate sterolregulatory-element-binding protein 1 (SREBP1), lipin1/2, P2X7 receptor (P2X7r) and NOD-like receptor family, pyrin domains-containing protein 3 (NLRP3) expressions again EtOH-stimulation. Oil Red O staining also indicated that BT significantly reduced lipid accumulation in EtOH-stimulated AML-12 cells. Lipin1/2 deficiency indicated that BT might mediate lipin1/2 to regulate SREBP1 and P2X7r expression and further alleviate lipid accumulation and inflammation. In vivo, BT significantly alleviated histopathological changes, reduced serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and triglyceride (TG) levels, and regulated lipin1/2, SREBP1, peroxisome proliferator activated receptor α/γ (PPARα/γ) and PGC-1α expression compared with the EtOH group. BT reduced the secretion of inflammatory factors and blocked the P2X7r-NLRP3 signaling pathway. Collectively, BT attenuated lipid accumulation and metaflammation by regulating the lipin1/2-mediated P2X7r signaling pathway.

8.
Front Pharmacol ; 12: 738689, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34690775

RESUMEN

Allium victorialis L. (AVL) is a traditional medicinal plant recorded in the Compendium of Materia Medica (the Ming Dynasty). In general, it is used for hemostasis, analgesia, anti-inflammation, antioxidation, and to especially facilitate hepatoprotective effect. In recent years, it has received more and more attention due to its special nutritional and medicinal value. The present study investigates the effect and potential mechanism of AVL against alcoholic liver disease (ALD). C57BL/6 mice were fed Lieber-DeCarli liquid diet containing 5% ethanol plus a single ethanol gavage (5 g/kg), and followed up with the administration of AVL or silymarin. AML12 cells were stimulated with ethanol and incubated with AVL. AVL significantly reduced serum transaminase and triglycerides in the liver and attenuated histopathological changes caused by ethanol. AVL significantly inhibited SREBP1 and its target genes, regulated lipin 1/2, increased PPARα and its target genes, and decreased PPARγ expression caused by ethanol. In addition, AVL significantly enhanced FXR, LXRs, Sirt1, and AMPK expressions compared with the EtOH group. AVL also inhibited inflammatory factors, NLRP3, and F4/80 and MPO, macrophage and neutrophil markers. In vitro, AVL significantly reduced lipid droplets, lipid metabolism enzymes, and inflammatory factors depending on FXR activation. AVL could ameliorate alcoholic steatohepatitis, lipid deposition and inflammation in ALD by targeting FXR activation.

9.
J Agric Food Chem ; 68(31): 8195-8204, 2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-32662640

RESUMEN

Ginseng has been used as a functional food and tonic for enhancing immune power. Here, the potential protective effect of 20S-protopanaxatriol (M4), the metabolite of protopanaxatriol, against hepatic fibrosis is investigated, which could provide nutritional interventions for disease treatment. M4 could inhibit extracellular matrix (ECM) deposition and reduce the levels of proinflammatory cytokines such as caspase 1, interleukin 1 ß (IL-1ß), interleukin 1 receptor type 1 (IL1R1), and interleukin 6 (IL-6). M4 also significantly increased the expression of farnesoid X receptor (FXR), suppressed the purinergic ligand-gated ion channel 7 receptor (P2X7r) signaling pathway, and works as an FXR agonist, GW4064. In thioacetamide (TAA)-induced mice, M4 could attenuate the histopathological changes and significantly regulate the expression levels of FXR and P2X7r. M4 ameliorated TAA-induced hepatic fibrosis due to the reduction of P2X7r secretion, inhibition of hepatic stellate cell (HSCs) activation, and inflammation, which were all associated with FXR activation. Hence, M4 might be useful a nutritional preventive approach in antihepatic fibrosis and antihepatic inflammation.


Asunto(s)
Cirrosis Hepática/tratamiento farmacológico , Extractos Vegetales/administración & dosificación , Receptores Citoplasmáticos y Nucleares/inmunología , Sapogeninas/administración & dosificación , Animales , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/metabolismo , Humanos , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Interleucina-6/genética , Interleucina-6/inmunología , Cirrosis Hepática/genética , Cirrosis Hepática/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Panax/química , Extractos Vegetales/química , Receptores Citoplasmáticos y Nucleares/genética , Receptores Tipo I de Interleucina-1/genética , Receptores Tipo I de Interleucina-1/inmunología , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/inmunología , Sapogeninas/química , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA