Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cell Mol Med ; 27(16): 2340-2353, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37329158

RESUMEN

Ferroptosis, a novel type of cell death mediated by the iron-dependent lipid peroxidation, contributes to the pathogenesis of the intervertebral disc degeneration (IDD). Increasing evidence demonstrated that melatonin (MLT) displayed the therapeutic potential to prevent the development of IDD. Current mechanistic study aims to explore whether the downregulation of ferroptosis contributes to the therapeutic capability of MLT in IDD. Current studies demonstrated that conditioned medium (CM) from the lipopolysaccharide (LPS)-stimulated macrophages caused a series of changes about IDD, including increased intracellular oxidative stress (increased reactive oxygen species and malondialdehyde levels, but decreased glutathione levels), upregulated expression of inflammation-associated factors (IL-1ß, COX-2 and iNOS), increased expression of key matrix catabolic molecules (MMP-13, ADAMTS4 and ADAMTS5), reduced the expression of major matrix anabolic molecules (COL2A1 and ACAN), and increased ferroptosis (downregulated GPX4 and SLC7A11 levels, but upregulated ACSL4 and LPCAT3 levels) in nucleus pulposus (NP) cells. MLT could alleviate CM-induced NP cell injury in a dose-dependent manner. Moreover, the data substantiated that intercellular iron overload was involved in CM-induced ferroptosis in NP cells, and MLT treatment alleviated intercellular iron overload and protected NP cells against ferroptosis, and those protective effects of MLT in NP cells further attenuated with erastin and enhanced with ferrostatin-1(Fer-1). This study demonstrated that CM from the LPS-stimulated RAW264.7 macrophages promoted the NP cell injury. MLT alleviated the CM-induced NP cell injury partly through inhibiting ferroptosis. The findings support the role of ferroptosis in the pathogenesis of IDD, and suggest that MLT may serve as a potential therapeutic approach for clinical treatment of IDD.


Asunto(s)
Ferroptosis , Degeneración del Disco Intervertebral , Sobrecarga de Hierro , Melatonina , Humanos , Melatonina/farmacología , Degeneración del Disco Intervertebral/tratamiento farmacológico , Lipopolisacáridos/farmacología , Medios de Cultivo Condicionados/farmacología , Hierro
2.
J Gene Med ; 25(11): e3535, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37338187

RESUMEN

BACKGROUND: Rheumatoid arthritis (RA) is a multifactorial systemic autoimmune disease characterized by ongoing synovial inflammation, leading to the degradation of cartilage. Cuproptosis, as a newly characterized form of cell death, may influence RA progression by regulating immune cells and chondrocytes. This study sets out to identify the hub cuproptosis-related gene (CRG) associated with the pathogenesis of RA. METHODS: A series of bioinformatic analyses were performed to evaluate the expression score of CRGs and the immune infiltration landscape between RA and normal samples. The hub gene was screened through the correlation analysis of CRGs, and the interaction network between the hub gene and transcription factors (TFs) was constructed. Finally, the hub gene was validated through quantitative real-time polymerase chain reaction (qRT-PCR) of patient samples and cell experiments. RESULTS: Drolipoamide S-acetyltransferase (DLAT) was screened as the hub gene. Correlation analysis between the hub gene and immune microenvironment demonstrated that DLAT had the highest correlation with T follicular helper cells. Eight pairs of DLAT-TF interaction networks were constructed. Single-cell sequencing showed that CRGs were highly expressed in RA chondrocytes, and chondrocytes could be classified into three different subsets. qRT-PCR was used to validate the above results. Dlat knockdown in immortalized human chondrocytes led to significantly improved mitochondrial membrane potentials and reduced levels of intracellular reactive oxygen species (ROS), mitochondrial ROS and apoptosis. CONCLUSIONS: This study rudimentarily demonstrates the correlation between CRGs and immune cell infiltration in RA. The biomarker DLAT may provide comprehensive insights into the pathogenesis and drug targets of RA.


Asunto(s)
Apoptosis , Artritis Reumatoide , Humanos , Acetiltransferasas , Artritis Reumatoide/genética , Condrocitos , Inflamación , Estudios Prospectivos , Especies Reactivas de Oxígeno , Cobre
3.
Eur Radiol ; 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37848772

RESUMEN

OBJECTIVES: To develop an automatic computer-based method that can help clinicians in assessing spine growth potential based on EOS radiographs. METHODS: We developed a deep learning-based (DL) algorithm that can mimic the human judgment process to automatically determine spine growth potential and the Risser sign based on full-length spine EOS radiographs. A total of 3383 EOS cases were collected and used for the training and test of the algorithm. Subsequently, the completed DL algorithm underwent clinical validation on an additional 440 cases and was compared to the evaluations of four clinicians. RESULTS: Regarding the Risser sign, the weighted kappa value of our DL algorithm was 0.933, while that of the four clinicians ranged from 0.909 to 0.930. In the assessment of spine growth potential, the kappa value of our DL algorithm was 0.944, while the kappa values of the four clinicians were 0.916, 0.934, 0.911, and 0.920, respectively. Furthermore, our DL algorithm obtained a slightly higher accuracy (0.973) and Youden index (0.952) compared to the best values achieved by the four clinicians. In addition, the speed of our DL algorithm was 15.2 ± 0.3 s/40 cases, much faster than the inference speeds of the clinicians, ranging from 177.2 ± 28.0 s/40 cases to 241.2 ± 64.1 s/40 cases. CONCLUSIONS: Our algorithm demonstrated comparable or even better performance compared to clinicians in assessing spine growth potential. This stable, efficient, and convenient algorithm seems to be a promising approach to assist doctors in clinical practice and deserves further study. CLINICAL RELEVANCE STATEMENT: This method has the ability to quickly ascertain the spine growth potential based on EOS radiographs, and it holds promise to provide assistance to busy doctors in certain clinical scenarios. KEY POINTS: • In the clinic, there is no available computer-based method that can automatically assess spine growth potential. • We developed a deep learning-based method that could automatically ascertain spine growth potential. • Compared with the results of the clinicians, our algorithm got comparable results.

4.
Horm Metab Res ; 54(6): 389-395, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35504300

RESUMEN

Study on long-acting growth hormone (LAGH) therapy in Turner syndrome (TS) is a 2-year retrospective study including patients diagnosed with TS from 2018-2021. Patients were divided into four groups: Group 1 to 4 were low dose (0.1 mg/kg/ w), high-dose (0.2 mg/kg/w) LAGH, daily GH (0.38 mg/kg/w), and untreated control. The efficacy and safety data were analyzed. Seventy-five TS cases with the age 7.9±2.9 years and the bone age 6.8±2.8 years were recruited. In year 1: The change of height standard deviation score (ΔHtSDS) and height velocity (HV) in Group 2 were comparable to Group 3, both two groups were higher than Group 1. ΔHtSDS and HV in all GH treatment group were higher than untreated group. IGF1 increased in all treatment groups, only 4 cases had IGF1>3 SD. In year 2: ΔHtSDS and HV in Group 2 and 3 were comparable. Five cases had IGF1>3 SD. Correlation analysis for LAGH efficacy at year 1 indicated that baseline variables correlated with ΔHtSDS include: GH dose, CA (chronological age), and bone age (BA). The HV was positively correlated with baseline GH dose, HtSDS, IGF-1SDS and negatively correlated with baseline CA, BA, and BMI. No GH-related serious adverse effects were observed. The high-dose LAGH treatment in TS patients is effective and safe as daily GH for 2 years. The favorable prognosis factors include sufficient GH dose and early treatment. IGF1 monitoring and weight control are important.


Asunto(s)
Hormona de Crecimiento Humana , Síndrome de Turner , Estatura , Niño , Preescolar , Hormona del Crecimiento/farmacología , Hormona de Crecimiento Humana/uso terapéutico , Humanos , Estudios Retrospectivos , Síndrome de Turner/tratamiento farmacológico
5.
J Environ Manage ; 269: 110804, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32561011

RESUMEN

A well-developed economy and low-carbon emission intensity are important characteristics of low-carbon cities; they also represent important tasks for achieving global climate change mitigation goals. It is seldom discussed, however, how we should identify frontrunner cities from which low-carbon development experiences can be gleaned and then implemented in neighboring cities. This study, therefore, proposed a simple indicator-the "good neighbor index"-to identify frontrunner cities in low-carbon transformation based on economic and emission performance. Based on this indicator, we identified "good neighbors" in static and dynamic views for China. The results showed that the static good neighbors in 2015 were mostly large cities with higher incomes and better industrial structures whereas the dynamic neighbors achieved better economic growth and emission reductions from 2005 to 2015, though their economic and emissions statuses were generally worse. The good neighbor list is not consistent with the list of national low-carbon pilot cities, which has largely overlooked the experiences of some fast-growing cities. These results have policy implications for the Chinese government in terms of promoting the low-carbon transformation of cities. The study can also provide a reference for other countries in addressing climate change at the city level.


Asunto(s)
Carbono , Desarrollo Económico , China , Ciudades , Cambio Climático
6.
J Sci Food Agric ; 99(14): 6167-6172, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31226227

RESUMEN

BACKGROUND: Grape is an important fruit consumed either fresh or processed, therefore, fungicide misuse of grape has become an issue of global food safety and human health. Pyraclostrobin, and cyazofamid have been applied to grape frequently. RESULTS: Here a simple QuEChERS (quick, easy, cheap, effective, rugged, and safe) liquid chromatography mass spectrometry technique has been developed and validated for the determination of pyraclostrobin, cyazofamid and its metabolite CCIM in open field grape samples. The recoveries of these three in the range of 0.01 to 5 mg kg-1 (n = 5) ranged from 73.1% to 97.9%. The relative standard deviations (RSDs) were below 12% for all cases. The limits of quantitation of each analyte was 0.005 mg kg-1 , which was lower than maximum residue limits of not only pyraclostrobin but also cyazofamid. Not only dissipation kinetics but also residue determination was obtained in grape for those three pesticides. Furthermore, their half-lives in grapes were 10.7-30.1 days, recommending the pre-harvest intervals for these three of 14 days. The calculated hazard quotient and acute hazard index lower than 100% illustrated the safety of intake of grape for the Chinese population for not only long-term but also short-term dietary risk assessment. CONSLUSIONS: The less than 30 day half-life illustrated that pyraclostrobin and cyazofamid could degrade relatively easily in the environment. The long-term and short-term dietary risk assessment also illustrated the intake safety of these three. Thus, a 14 day pre-harvest interval was safe and recommended. The results of this study contributed to environmental protection, food safety and human health. © 2019 Society of Chemical Industry.


Asunto(s)
Residuos de Medicamentos/química , Fungicidas Industriales/química , Imidazoles/química , Estrobilurinas/química , Sulfonamidas/química , Vitis/química , China , Seguridad de Productos para el Consumidor , Residuos de Medicamentos/metabolismo , Contaminación de Alimentos/análisis , Frutas/química , Fungicidas Industriales/metabolismo , Semivida , Humanos , Imidazoles/metabolismo , Cinética , Medición de Riesgo , Estrobilurinas/metabolismo , Sulfonamidas/metabolismo , Espectrometría de Masas en Tándem , Vitis/metabolismo
8.
Angew Chem Int Ed Engl ; 55(40): 12465-9, 2016 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-27572334

RESUMEN

The direct urea fuel cell (DUFC) is an important but challenging renewable energy production technology, it offers great promise for energy-sustainable developments and mitigating water contamination. However, DUFCs still suffer from the sluggish kinetics of the urea oxidation reaction (UOR) owing to a 6 e(-) transfer process, which poses a severe hindrance to their practical use. Herein, taking ß-Ni(OH)2 nanosheets as the proof-of-concept study, we demonstrated a surface-chemistry strategy to achieve metallic Ni(OH)2 nanosheets by engineering their electronic structure, representing a first metallic configuration of transition-metal hydroxides. Surface sulfur incorporation successfully brings synergetic effects of more exposed active sites, good wetting behavior, and effective electron transport, giving rise to greatly enhanced performance for UOR. Metallic nanosheets exhibited a much higher current density, smaller onset potential and stronger durability.

9.
Angew Chem Int Ed Engl ; 55(9): 3176-80, 2016 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-26822504

RESUMEN

The graphene system is actively pursued in spintronics for its nontrivial sp electron magnetism and its potential for the flexible surface chemical tuning of magnetoelectronic functionality. The magnetoresistance (MR) of graphene can be effectively tuned under high magnetic fields at cryogenic temperatures, but it remains a challenge to achieve sensitive magnetoelectric response under ambient conditions. We report the use of surface modulation to realize superparamagnetism in reduced graphene oxide (rGO) with sensitive magnetic field response. The superparamagnetic rGO was obtained by a mild oxidation process to partially remove the thiol groups covalently bound to the carbon framework, which brings about large low-field negative MR at room temperature (-8.6 %, 500 Oe, 300 K). This strategy provides a new approach for optimizing the intrinsic magnetoelectric properties of two-dimensional materials.

10.
Appl Opt ; 54(14): 4509-13, 2015 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-25967509

RESUMEN

Optical polarization-division multiplexing (PDM) can double the capacity of a communication system. In this paper, PDM between a conventional fiber-optic channel and a chaos-encrypted channel, and between two chaos-encrypted channels, is proposed and experimentally investigated. The bit rate for each channel is 1.25 Gb/s, while the transmission in the standard single-mode fiber can be up to 22.54 km. The effect of the mutual power leakages on the receiver quality is experimentally explored, which is induced by the variation in polarization direction during the propagating process. In addition, the effect of optical launched power at the transmitter side on the Q-factor is tested and analyzed.

11.
Front Biosci (Landmark Ed) ; 29(2): 83, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38420794

RESUMEN

BACKGROUND: Lactic acid, previously regarded only as an endpoint of glycolysis, has emerged as a major regulator of tumor invasion, growth, and the tumor microenvironment. In this study, we aimed to explore the reprogramming of lactic acid metabolism relevant to osteosarcoma (OS) microenvironment by decoding the underlying lactic acid metabolic landscape of OS cells and intercellular signaling alterations. METHODS: The landscape of OS metabolism was evaluated using single-cell gene expression data, lactic acid metabolism clustering, and screening of the hub genes in lactic acid metabolism of OS samples using transcriptome data. The role of the hub gene NADH:Ubiquinone Oxidoreductase Complex Assembly Factor 6 (NDUFAF6) was validated with in vitro studies and patient experiments. RESULTS: Single-cell RNA sequencing data validated a lactic acid metabolismhigh subcluster in OS. Further investigation of intercellular communications revealed a unique metabolic communication pattern between the lactic acid metabolismhigh subcluster and other subclusters. Next, two lactic acid metabolic reprogramming phenotypes were defined, and six lactic acid metabolism-related genes (LRGs), including the biomarker NDUFAF6, were screened in OS. In vitro studies and patient experiments confirmed that NDUFAF6 is a crucial lactic acid metabolism-associated gene in OS. CONCLUSIONS: The patterns of lactic acid metabolism in OS suggested metabolic reprogramming phenotypes relevant to the tumor microenvironment (TME) and identified NDUFAF6 as an LRG prognostic biomarker.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Humanos , Ácido Láctico/metabolismo , Glucólisis/genética , Osteosarcoma/metabolismo , Neoplasias Óseas/metabolismo , Biomarcadores/metabolismo , Microambiente Tumoral/genética
12.
Discov Oncol ; 15(1): 109, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589585

RESUMEN

BACKGROUND: Odontogenic cysts/tumor can cause severe bone destruction, which affects maxillofacial function and aesthetics. Meanwhile, metabolic reprogramming is an important hallmark of diseases. Changes in metabolic flow affect all aspects of disease, especially bone-related diseases. At present, the researches on pathogenesis of odontogenic cysts/tumor are mainly focused on the level of gene regulation, but the effects of metabolic alterations on odontogenic cysts/tumor have still underexplored. MATERIALS AND METHODS: Imaging analysis was used to evaluate the lesion size of different odontogenic lesions. Tartrate resistant acid phosphatase (TRAP) and immunohistochemistry (IHC) assays were utilized to detect the differences in bone destruction activity in odontogenic cysts and tumors. Furthermore, metabolomics and weighted gene co-expression network analysis (WGCNA) were conducted for the metabolomic features and key metabolite screening, respectively. The effect of ferroptosis inhibition on bone destruction was confirmed by IHC, immunofluorescence, and malondialdehyde colorimetric assay. RESULTS: The bone destruction activity of ameloblastoma (AM) was the strongest and the weakest in odontogenic cysts (OC). High-throughput targeted metabolomics was used to map the metabolomic profiles of OC, odontogenic keratocyst (OKC) and AM. WGCNA and differential analysis identified L-cysteine in OKC and AM. Cystathionine γ-lyase (CTH) was further screened by Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The functions of L-cysteine were further validated. Finally, we confirmed that CTH affected destructive activities by regulating the sensitivity of epithelial cells to ferroptosis. CONCLUSION: High-throughput targeted metabolomics performed on diseased tissue confirmed the unique alteration of metabolic profiles in OKC and AM. CTH and its metabolite L-cysteine are the key factors regulating destructive activities.

13.
ACS Omega ; 9(9): 10945-10957, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38463263

RESUMEN

Zinc (Zn) is a bioabsorbable metal that shows great potential as an implant material for orthopedic applications. Suitable concentrations of zinc ions promote osteogenesis, while excess zinc ions cause apoptosis. As a result, the conflicting impacts of Zn2+ concentration on osteogenesis could prove to be significant problems for the creation of novel materials. This study thoroughly examined the cell viability, proliferation, and osteogenic differentiation of rat bone marrow mesenchymal stem cells (rBMSCs) cultured in various concentrations of Zn2+ in vitro and validated the osteogenesis effects of zinc implantation in vivo. The effective promotion of cell survival, proliferation, migration, and osteogenic differentiation of bone marrow mesenchymal stem cell (BMSCs) may be achieved at a low concentration of Zn2+ (125 µM). The excessively high concentration of zinc ions (>250 µM) not only reduces BMSCs' viability and proliferation but also causes them to suffer apoptosis due to the disturbed zinc homeostasis and excessive Zn2+. Moreover, transcriptome sequencing was used to examine the underlying mechanisms of zinc-induced osteogenic differentiation with particular attention paid to the PI3K-AKT and TGF-ß pathways. The present investigation elucidated the dual impacts of Zn2+ microenvironments on the osteogenic characteristics of rBMSCs and the associated processes and might offer significant insights for refining the blueprint for zinc-based biomaterials.

14.
Sci Rep ; 14(1): 9186, 2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649690

RESUMEN

Osteosarcoma (OS) is the most common malignant bone tumor with high pathological heterogeneity. Our study aimed to investigate disulfidptosis-related modification patterns in OS and their relationship with survival outcomes in patients with OS. We analyzed the single-cell-level expression profiles of disulfidptosis-related genes (DSRGs) in both OS microenvironment and OS subclusters, and HMGB1 was found to be crucial for intercellular regulation of OS disulfidptosis. Next, we explored the molecular clusters of OS based on DSRGs and related immune cell infiltration using transcriptome data. Subsequently, the hub genes of disulfidptosis in OS were screened by applying multiple machine models. In vitro and patient experiments validated our results. Three main disulfidptosis-related molecular clusters were defined in OS, and immune infiltration analysis suggested high immune heterogeneity between distinct clusters. The in vitro experiment confirmed decreased cell viability of OS after ACTB silencing and higher expression of ACTB in patients with lower immune scores. Our study systematically revealed the underlying relationship between disulfidptosis and OS at the single-cell level, identified disulfidptosis-related subtypes, and revealed the potential role of ACTB expression in OS disulfidptosis.


Asunto(s)
Neoplasias Óseas , Regulación Neoplásica de la Expresión Génica , Osteosarcoma , Análisis de la Célula Individual , Transcriptoma , Microambiente Tumoral , Humanos , Osteosarcoma/genética , Osteosarcoma/patología , Osteosarcoma/mortalidad , Osteosarcoma/metabolismo , Microambiente Tumoral/genética , Pronóstico , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Neoplasias Óseas/mortalidad , Neoplasias Óseas/metabolismo , Línea Celular Tumoral , Perfilación de la Expresión Génica , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Actinas/metabolismo , Actinas/genética
15.
Clin Transl Oncol ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38453817

RESUMEN

BACKGROUND: Colorectal cancer (CRC) prognosis assessment is vital for personalized treatment plans. This study investigates the prognostic value of dynamic changes of tumor markers CEA, CA19-9, CA125, and AFP before and after surgery and constructs prediction models based on these indicators. METHODS: A retrospective clinical study of 2599 CRC patients who underwent radical surgery was conducted. Patients were randomly divided into training (70%) and validation (30%) datasets. Univariate and multivariate Cox regression analyses identified independent prognostic factors, and nomograms were constructed. RESULTS: A total of 2599 CRC patients were included in the study. Patients were divided into training (70%, n = 1819) and validation (30%, n = 780) sets. Univariate and multivariate Cox regression analyses identified age, total number of resected lymph nodes, T stage, N stage, the preoperative and postoperative changes in the levels of CEA, CA19-9, and CA125 as independent prognostic factors. When their postoperative levels are normal, patients with elevated preoperative levels have significantly worse overall survival. However, when the postoperative levels of CEA/CA19-9/CA125 are elevated, whether their preoperative levels are elevated or not has no significance for prognosis. Two nomogram models were developed, and Model I, which included CEA, CA19-9, and CA125 groups, demonstrated the best performance in both training and validation sets. CONCLUSION: This study highlights the significant predictive value of dynamic changes in tumor markers CEA, CA19-9, and CA125 before and after CRC surgery. Incorporating these markers into a nomogram prediction model improves prognostic accuracy, enabling clinicians to better assess patients' conditions and develop personalized treatment plans.

16.
J Mater Chem B ; 11(40): 9742-9756, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37807764

RESUMEN

The ideal skull defect repairing material should have good biocompatibility and mechanical properties, and contribute to osteogenesis. In this study, we designed and fabricated biodegradable, bioactive and mechanically robust porous scaffolds composed completely of biological materials. We used a gelatin-chitosan blend as the matrix, sodium phytate instead of toxic glutaraldehyde for cross-linking, and the pH-neutral bioactive glass (PSC) to improve biological activity and mechanical properties. The chitosan-gelatin-30%PSC/sodium phytate composite scaffold avoided the problems of high toxicity in conventional cross-linking agents with glutaraldehyde, the poor mechanical support of the pure chitosan or gelatin scaffold, and the mismatch of the degradation rate with bone repair, becoming a promising new candidate for skull defect repair.


Asunto(s)
Quitosano , Andamios del Tejido , Gelatina , Ácido Fítico , Glutaral , Cráneo , Concentración de Iones de Hidrógeno
17.
Sci Total Environ ; 899: 166239, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37572926

RESUMEN

The Yellow River Delta (YRD) wetland is one of the largest and youngest wetland ecosystems in the world. It plays an important role in regulating climate and maintaining ecological balance in the region. This study analyzes the spatiotemporal changes in land use, wetland migration, and landscape pattern from 2013 to 2022 using Landsat-8 and Sentinel-1 data in YRD. Then wetland landscape changes and the impact of human activities are determined by analyzing correlation between landscape and socio-economic indicators including nighttime light centroid, total light intensity, cultivated land area and centroid, building area and centroid, economic and population. The results show that the total wetland area increased 1426 km2 during this decade. However, the wetland landscape pattern tended to be fragmented from 2013 to 2022, with wetlands of different types interlacing and connectivity decreasing, and distribution becoming more concentrated. Different types of human activities had influences on different aspects of wetland landscape, with the expansion of cultivated land mainly compressing the core area of wetlands from the edge, the expansion of buildings mainly disrupting wetland connectivity, and socio-economic indicators such as total light intensity and the centroid mainly causing wetland fragmentation. The results show the changes of the YRD wetland and provide an explanation of how human activities effect the change of its landscape, which provides available data to achieve sustainable development goals 6.6 and may give an access to measure the change of wetland using human-activity data, which could help to adject behaviors to protect wetlands.


Asunto(s)
Ecosistema , Humedales , Humanos , Ríos , Conservación de los Recursos Naturales , Actividades Humanas , China
18.
Biomedicines ; 11(6)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37371708

RESUMEN

The study aims to explore the medical prospect of melatonin (MLT) and the underlying therapeutic mechanism of MLT-mediated macrophage (Mφ) polarization on the function of nucleus pulposus (NP) in intervertebral disc degeneration (IDD). RAW 264.7 Mφs were induced by lipopolysaccharide (LPS) to simulate Mφ polarization and the inflammatory reaction of Mφs with or without MLT were detected. Conditioned medium (CM) collected from these activated Mφs with or without MLT treatment were further used to incubate NP cells. The oxidative stress, inflammation and extracellular matrix (ECM) metabolism in NP cells were determined. Then, the changes in SIRT1/Notch signaling were detected. The agonist (SRT1720) and inhibitor (EX527) of SIRT1 were used to further explore the association among MLT. The interaction between SIRT1 and NICD was detected by immunoprecipitation (IP). Finally, puncture-induced rat IDD models were established and IDD degrees were clarified by X-ray, MRI, H&E staining and immunofluorescence (IF). The results of flow cytometry and inflammation detection indicated that LPS could induce M1-type Mφ polarization with pro-inflammatory properties. MLT significantly inhibited the aforementioned process and inhibited M1-type Mφ polarization, accompanied by the alleviation of inflammation. Compared with those without MLT, the levels of oxidative stress, pro-inflammatory cytokines and ECM catabolism in NP cells exposed to CM with MLT were markedly downregulated in a dose-dependent manner. The inhibition of SIRT1 and the enhancement of Notch were observed in activated Mφs and they can be reversed after MLT treatment. This prediction was further confirmed by using the SRT1720 and EX527 to activate or inhibit the signaling. The interaction between SIRT1 and NICD was verified by IP. In vivo study, the results of MRI, Pfirrmann grade scores and H&E staining demonstrated the degree of disc degeneration was significantly lower in the MLT-treated groups when compared with the IDD control group. The IF data showed M1-type Mφ polarization decreased after MLT treatment. MLT could inhibit M1-type Mφ polarization and ameliorate the NP cell injury caused by inflammation in vitro and vivo, which is of great significance for the remission of IDD. The SIRT1/Notch signaling pathway is a promising target for MLT to mediate Mφ polarization.

19.
J Cancer Res Clin Oncol ; 149(15): 14045-14056, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37548773

RESUMEN

PURPOSE: The objective of this study is to examine the risk factors that contribute to the development of liver metastasis (LM) in patients who have suffered radical resection for colorectal cancer (CRC), and to establish a nomogram model that can be used to predict the occurrence of the LM. METHODS: The present study enrolled 1377 patients diagnosed with CRC between January 2010 and July 2021. The datasets were allocated to training (n = 965) and validation (n = 412) sets in a randomly stratified manner. The study utilized univariate and multivariate logistic regression analyses to establish a nomogram for predicting LM in patients with CRC. RESULTS: Multivariate analysis revealed that T stage, N stage, number of harvested lymph nodes (LNH), mismatch repair (MMR) status, neutrophil count, monocyte count, postoperative carcinoembryonic antigen (CEA) levels, postoperative cancer antigen 125 (CA125) levels, and postoperative carbohydrate antigen 19-9 (CA19-9) levels were independent predictive factors for LM after radical resection. These factors were then utilized to construct a comprehensive nomogram for predicting LM. The nomogram demonstrated great discrimination, with an area under the curve (AUC) of 0.782 for the training set and 0.768 for the validation set. Additionally, the nomogram exhibited excellent calibration and significant clinical benefit as confirmed by the calibration curves and the decision curve analysis, respectively. CONCLUSION: This nomogram has the potential to support clinicians in identifying high-risk patients who may develop LM post-surgery. Clinicians can devise personalized treatment and follow-up plans, ultimately leading to an improved prognosis for patients.

20.
Nat Commun ; 14(1): 142, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36627303

RESUMEN

Photoelectrochemical reaction is emerging as a powerful approach for biomass conversion. However, it has been rarely explored for glucose conversion into value-added chemicals. Here we develop a photoelectrochemical approach for selective oxidation of glucose to high value-added glucaric acid by using single-atom Pt anchored on defective TiO2 nanorod arrays as photoanode. The defective structure induced by the oxygen vacancies can modulate the charge carrier dynamics and band structure, simultaneously. With optimized oxygen vacancies, the defective TiO2 photoanode shows greatly improved charge separation and significantly enhanced selectivity and yield of C6 products. By decorating single-atom Pt on the defective TiO2 photoanode, selective oxidation of glucose to glucaric acid can be achieved. In this work, defective TiO2 with single-atom Pt achieves a photocurrent density of 1.91 mA cm-2 for glucose oxidation at 0.6 V versus reversible hydrogen electrode, leading to an 84.3 % yield of glucaric acid under simulated sunlight irradiation.


Asunto(s)
Ácido Glucárico , Glucosa , Biomasa , Oxígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA