RESUMEN
The use of synthetic chemicals to selectively interfere with chromatin and the chromatin-bound proteome represents a great opportunity for pharmacological intervention. Recently, synthetic foldamers that mimic the charge surface of double-stranded DNA have been shown to interfere with selected protein-DNA interactions. However, to better understand their pharmacological potential and to improve their specificity and selectivity, the effect of these molecules on complex chromatin needs to be investigated. We therefore systematically studied the influence of the DNA mimic foldamers on the chromatin-bound proteome using an in vitro chromatin assembly extract. Our studies show that the foldamer efficiently interferes with the chromatin-association of the origin recognition complex in vitro and in vivo, which leads to a disturbance of cell cycle in cells treated with foldamers. This effect is mediated by a strong direct interaction between the foldamers and the origin recognition complex and results in a failure of the complex to organise chromatin around replication origins. Foldamers that mimic double-stranded nucleic acids thus emerge as a powerful tool with designable features to alter chromatin assembly and selectively interfere with biological mechanisms.
Asunto(s)
Biomimética , Ensamble y Desensamble de Cromatina , Ciclo Celular , Cromatina , ADN , Replicación del ADN , Complejo de Reconocimiento del Origen/metabolismo , Proteoma , Animales , Drosophila , Embrión no Mamífero/química , Ensamble y Desensamble de Cromatina/efectos de los fármacos , Proteínas Cromosómicas no Histona/metabolismoRESUMEN
A biotinylated helical aromatic oligoamide foldamer equivalent in size to a 24mer peptide was designed without any prejudice other than to display various polar and hydrophobic side chains at its surface. It was synthesized on solid phase, its P- and M-helical conformers were separated by HPLC on a chiral stationary phase, and the solid state structure of a non-biotinylated analogue was elucidated by X-ray crystallography. Pull-down experiments from a yeast cell lysate using the foldamer as a bait followed by proteomic analysis revealed potential protein binding partners. Three of these proteins were recombinantly expressed. Biolayer interferometry showed submicromolar binding demonstrating the potential of a given foldamer to have affinity for certain proteins in the absence of design considerations. Yet, binding selectivity was low in all three cases since both P- and M-conformers bound to the proteins with similar affinities.
RESUMEN
Foldamer sequences that adopt tertiary helix-turn-helix folds mediated by helix-helix hydrogen bonding in organic solvents have been previously reported. In an attempt to create genuine abiotic quaternary structures, i.e. assemblies of tertiary structures, new sequences were prepared that possess additional hydrogen bond donors at positions that may promote an association between the tertiary folds. However, a solid state structure and extensive solution state investigations by Nuclear Magnetic Resonance (NMR) and Circular Dichroism (CD) show that, instead of forming a quaternary structure, the tertiary folds assemble into stable domain-swapped dimer motifs. Domain swapping entails a complete reorganization of the arrays of hydrogen bonds and changes in relative helix orientation and handedness that can all be rationalized.
Asunto(s)
Dicroismo Circular , Enlace de Hidrógeno , Modelos Moleculares , Espectroscopía de Resonancia MagnéticaRESUMEN
Helically folded oligoamides of 8-amino-2-quinolinecarboxylic acid composed of up to 41â units were prepared using optimized manual solid-phase synthesis (SPS). The high yield and purity of the final products places these SPS protocols among the most efficient known to date. Furthermore, analytical methods allowing for the clear identification and purity assessment of the products were validated, including 1 Hâ NMR, a seldom used method for such large molecules. Adaption of the SPS protocols, in particular using inâ situ acid chloride activation under Appel's conditions, made it possible to efficiently implement SPS on a commercial peptide synthesizer, leading to a dramatic reduction of the laboratory work required to produce long sequences. Automation constitutes a breakthrough for the development of helical aromatic oligoamide foldamers.
RESUMEN
Aromatic oligoamide foldamers were designed using a newly-developed monomer so that helical folding was promoted by both local conformation preferences and solvophobic effects. Solid phase synthesis provided quick access to the desired sequences. Sharp solvent-driven conformational transitions that depended on sequence length were evidenced by both NMR and UV absorption spectroscopies.
RESUMEN
We prepared a series of water-soluble aromatic oligoamide sequences all composed of a segment prone to form a single helix and a segment prone to dimerize into a double helix. These sequences exclusively assemble as antiparallel duplexes. The modification of the duplex inner rim by varying the nature of the substituents borne by the aromatic monomers allowed us to identify sequences that can hybridize by combining two chemically different strands, with high affinity and complete selectivity in water. X-ray crystallography confirmed the expected antiparallel configuration of the duplexes whereas NMR spectroscopy and mass spectrometry allowed us to assess precisely the extent of the hybridization. The hybridization kinetics of the aromatic strands was shown to depend on both the nature of the substituents responsible for strand complementarity and the length of the aromatic strand. These results highlight the great potential of aromatic hetero-duplex as a tool to construct non-symmetrical dynamic supramolecular assemblies.
RESUMEN
Expanding the chemical diversity of peptide macrocycle libraries for display selection is desirable to improve their potential to bind biomolecular targets. We now have implemented a considerable expansion through a large aromatic helical foldamer inclusion. A foldamer was first identified that undergoes flexizyme-mediated tRNA acylation and that is capable of initiating ribosomal translation with yields sufficiently high to perform an mRNA display selection of macrocyclic foldamer-peptide hybrids. A hybrid macrocyclic nanomolar binder to the C-lobe of the E6AP HECT domain was selected that showed a highly converged peptide sequence. A crystal structure and molecular dynamics simulations revealed that both the peptide and foldamer are helical in an intriguing reciprocal stapling fashion. The strong residue convergence could be rationalized based on their involvement in specific interactions with the target protein. The foldamer stabilizes the peptide helix through stapling and through contacts with key residues. These results altogether represent a significant extension of the chemical space amenable to display selection and highlight possible benefits of inserting an aromatic foldamer into a peptide macrocycle for the purpose of protein recognition.
Asunto(s)
Péptidos , Proteínas , Péptidos/química , Secuencia de Aminoácidos , Proteínas/metabolismo , Simulación de Dinámica Molecular , Ribosomas/metabolismoRESUMEN
There is an urgent need to develop new therapeutic strategies to fight the emergence of multidrug resistant bacteria. Many antimicrobial peptides (AMPs) have been identified and characterized, but clinical translation has been limited partly due to their structural instability and degradability in physiological environments. The use of unnatural backbones leading to foldamers can generate peptidomimetics with improved properties and conformational stability. We recently reported the successful design of urea-based eukaryotic cell-penetrating foldamers (CPFs). Since cell-penetrating peptides and AMPs generally share many common features, we prepared new sequences derived from CPFs by varying the distribution of histidine- and arginine-type residues at the surface of the oligourea helix, and evaluated their activity on both Gram-positive and Gram-negative bacteria as well as on fungi. In addition, we prepared and tested new amphiphilic block cofoldamers consisting of an oligourea and a peptide segment whereby polar and charged residues are located in the peptide segment and more hydrophobic residues in the oligourea segment. Several foldamer sequences were found to display potent antibacterial activities even in the presence of 50% serum. Importantly, we show that these urea-based foldamers also possess promising antifungal properties.
Asunto(s)
AntifúngicosRESUMEN
Hybrid sequences comprising a peptide with several Cys residues and an aromatic foldamer helix with several chloroacetamide functions at its surface were synthesized. Such products may in principle form numerous macromulticyclic thioether products by intramolecularly combining all Cys residues and all chloroacetamide functions. However, we show that the reactive sites on the structurally defined helix can be placed at such locations that the peptide selectively stitches itself to form a series of different macrocycles within mostly one preferred product. Reactions were monitored by HPLC and products with two, three or four macrocycles were identified using LC-MS and NMR. The series of selective macrocyclizations define a sort of reaction trail where reaction sites otherwise identical are involved successively because of their precise positioning in space. The trails can be predicted to a large extent based on structural considerations and the assumption that smaller macrocycles form faster.
Asunto(s)
Acetamidas , Péptidos , Péptidos/química , Espectroscopía de Resonancia Magnética , SulfurosRESUMEN
The emergence of more transmissible or aggressive variants of SARS-CoV-2 requires the development of antiviral medication that is quickly adjustable to evolving viral escape mutations. Here we report the synthesis of chemically stabilized small interfering RNA (siRNA) against SARS-CoV-2. The siRNA can be further modified with receptor ligands such as peptides using CuI -catalysed click-chemistry. We demonstrate that optimized siRNAs can reduce viral loads and virus-induced cytotoxicity by up to five orders of magnitude in cell lines challenged with SARS-CoV-2. Furthermore, we show that an ACE2-binding peptide-conjugated siRNA is able to reduce virus replication and virus-induced apoptosis in 3D mucociliary lung microtissues. The adjustment of the siRNA sequence allows a rapid adaptation of their antiviral activity against different variants of concern. The ability to conjugate the siRNA via click-chemistry to receptor ligands facilitates the construction of targeted siRNAs for a flexible antiviral defence strategy.
Asunto(s)
COVID-19 , SARS-CoV-2 , Antivirales/farmacología , Humanos , Ligandos , ARN Interferente Pequeño/farmacología , SARS-CoV-2/genética , Replicación ViralRESUMEN
Derivatives of 4-aminomethyl-l-phenylalanine with aromatic oligoamide foldamers as sidechain appendages were successfully charged on tRNA by means of flexizymes. Their subsequent incorporation both at the C-terminus of, and within, peptide sequences by the ribosome, was demonstrated. These results expand the registry of chemical structures tolerated by the ribosome to sidechains significantly larger and more structurally defined than previously demonstrated.
Asunto(s)
Péptidos/química , Fenilalanina/química , ARN de Transferencia/química , Modelos Moleculares , Estructura MolecularRESUMEN
A number of foldamer backbones have been described as useful mimics of protein secondary structure elements, enabling for example the design of synthetic oligomers with the ability to engage specific protein surfaces. Synthetic folded backbones can also be used to create artificial proteins in which a folded peptide segment (e.g., an α-helix, a loop) is replaced by its unnatural counterpart, with the expectation that the resulting molecule would maintain its ability to fold while manifesting new exploitable features. The similarities in screw sense, pitch, and polarity between peptide α-helices and oligourea 2.5-helices suggest that a tertiary structure could be retained when swapping the two backbones in a protein sequence. In the present work, we move a step toward the creation of such composite proteins by replacing the 10-residue long original α-helical segment in the Cys2His2 zinc finger 3 of transcription factor Egr1 (also known as Zif268) by an oligourea sequence bearing two appropriately spaced imidazole side chains for zinc coordination. We show by spectroscopic techniques and mass spectrometry analysis under native conditions that the ability of the peptide/oligourea hybrid to coordinate the zinc ion is not affected by the foldamer replacement. Moreover, detailed NMR analysis provides evidence that the engineered zinc finger motif adopts a folded structure in which the native ß-sheet arrangement of the peptide region and global arrangement of DNA-binding side chains are preserved. Titration in the presence of the Egr1 target DNA sequence supports binding to GC bases as reported for the wild-type zinc finger.
Asunto(s)
Diseño de Fármacos , Proteína 1 de la Respuesta de Crecimiento Precoz/química , Dedos de Zinc , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Simulación de Dinámica Molecular , Conformación Proteica en Hélice alfa , Dominios ProteicosRESUMEN
Sequence specific molecules with high folding ability (i.e., foldamers) can be used to precisely control the distribution and projection of side chains in space and have recently been introduced as tailored systems for delivering nucleic acids into cells. Designed oligourea sequences with an amphipathic distribution of Arg- and His-type residues were shown to form tight complexes with plasmid DNA, and to effectively promote the release of DNA from the endosomes. Herein, we report the synthesis of new cell-penetrating foldamer sequences in which the foldamer segment is conjugated via a reducible disulfide bond to a ligand that binds cell-surface expressed nucleoproteins with the idea that this system could facilitate both assemblies with nucleic acids and cell entry. This new system was evaluated for delivery of DNA in several cell lines and was found to compare favorably with all comparators tested (DOTAP and b-PEI as well as a number of known cell penetrating peptides) in various cell lines and particularly in culture medium containing up to 50% of serum. These results suggest that this dual molecular platform which is long lasting and noncytotoxic could be of practical use for in vivo applications.
Asunto(s)
Péptidos de Penetración Celular/química , Sistemas de Liberación de Medicamentos , Suero , Línea Celular , Medios de Cultivo , ADN/química , Humanos , Plásmidos , Pliegue de Proteína , TransfecciónRESUMEN
The synthesis of hybrid urea-based foldamers containing isosteric guanidinium linkages at selected positions in the sequence is described. We used a postelongation approach whereby the guanidinium moiety is introduced by direct transformation of a parent oligo(urea/thiourea) foldamer precursor. The method involves activation of the thiourea by treatment with methyl iodide and subsequent reaction with amines. To avoid undesired cyclization with the preceding urea moiety, resulting in heterocyclic guanidinium formation in the main chain, the urea unit preceding the thiourea unit in the sequence was replaced by an isoatomic and isostructural γ-amino acid. The approach was extended to solid-phase techniques to accelerate the synthesis of longer and more functionalized sequences. Under optimized conditions, an octamer hybrid oligomer incorporating a central guanidinium linkage was obtained in good overall yield and purity. This work also reports data related to the structural consequences of urea by guanidinium replacements in solution and reveals that helical folding is substantially reduced in oligomers containing a guanidinium group.
RESUMEN
Membrane-active foldamers have recently emerged as potential mimics of antimicrobial peptides (AMPs). Amphiphilic cationic helical N,N'-linked oligoureas are one such class of AMP mimics with activities in vitro against a broad range of bacteria including Bacillus anthracis, a Gram-positive sporulating bacillus and causing agent of anthrax. Here we have used site-selective chemical modifications of the oligourea backbone to gain additional insight into the relationship between structure and function and modulate anthracidal activity. A series of analogues in which urea linkages at selected positions are replaced by thiourea and guanidium surrogates have been prepared on solid support and tested against different bacterial forms of B. anthracis (germinated spores and encapsulated bacilli). Ureaâthiourea and ureaâguanidinium replacements close to the negative end of the helix dipole led to analogues with increased potency and selectivity for B. anthracis versus mammalian cells.
Asunto(s)
Antibacterianos/farmacología , Bacillus anthracis/efectos de los fármacos , Guanidina/farmacología , Tiourea/farmacología , Urea/farmacología , Animales , Antibacterianos/síntesis química , Antibacterianos/química , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Guanidina/química , Ratones , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Células RAW 264.7 , Relación Estructura-Actividad , Tiourea/química , Urea/análogos & derivados , Urea/químicaRESUMEN
Disulfide bridge formation was investigated in helical aromatic oligoamide foldamers. Depending on the position of thiol-bearing side chains, exclusive intramolecular or intermolecular disulfide bridging may occur. The two processes are capable of self-sorting, presumably by dynamic exchange. Quantitative assessment of helix handedness inversion rates showed that bridging stabilizes the folded structures. Intermolecular disulfide bridging serendipitously yielded a well-defined, C2 -symmetrical, two-helix bundle-like macrocyclic structure in which complete control over relative handedness, that is, helix-helix handedness communication, is mediated remotely by the disulfide bridged side chains in the absence of contacts between helices. MM calculations suggest that this phenomenon is specific to a given side chain length and requires disulfide functions.
RESUMEN
Nearly isosteric oxo to thioxo substitution was employed to interrogate the structure of foldamers with a urea backbone and explore the relationship between helical folding and hydrogen-bonding interactions. A series of oligomers with urea bonds substituted by thiourea bonds at discrete or all positions in the sequence have been prepared and their folding propensity was studied by using a combination of spectroscopic methods and X-ray diffraction. The outcome of oxo to thioxo replacements on the helical folding was found to depend on whether central or terminal ureas were modified. The canonical helix geometry was not affected upon insertion of thioureas close to the negative end of the helix dipole, whereas thioureas close to the positive pole were found to increase the terminal flexibility and cause helix fraying. Perturbation was amplified when a selenourea was incorporated instead, leading to a structure that is only partly folded.
Asunto(s)
Compuestos de Organoselenio/química , Tiourea/química , Urea/análogos & derivados , Urea/química , Dicroismo Circular , Modelos Moleculares , Estructura MolecularRESUMEN
Despite significant advances in foldamer chemistry, tailored delivery systems based on foldamer architectures, which provide a high level of control over secondary structure, are curiously rare among non-viral technologies for transporting nucleic acids into cells. A potent pH-responsive, bioreducible cell-penetrating foldamer (CPF) was developed through covalent dimerization of a short (8-mer) amphipathic oligourea sequence bearing histidine-type units. This CPF exhibits a high capacity to assemble with pDNA and mediates efficient delivery of nucleic acids into the cell. Furthermore, it does not adversely affect cellular viability and was shown to compare favorably with a cognate peptide transfection agent based on His-rich sequences.
Asunto(s)
Biopolímeros/administración & dosificación , Permeabilidad de la Membrana Celular , ADN/administración & dosificación , Secuencia de Aminoácidos , Biopolímeros/química , Línea Celular , Humanos , Datos de Secuencia MolecularRESUMEN
Aliphatic N,N'-linked oligoureas are peptidomimetic foldamers that adopt a well-defined helical secondary structure stabilized by a collection of remote three-center H-bonds closing 12- and 14-membered pseudorings. Delineating the rules that govern helix formation depending on the nature of constituent units is of practical utility if one aims to utilize this helical fold to place side chains in a given arrangement and elaborate functional helices. In this work, we tested whether the helix geometry is compatible with alternative substitution patterns. The central -NH-CH(R)-CH2-NH-CO- residue in a model oligourea pentamer sequence was replaced by guest units bearing various substitution patterns [e.g., -NH-CH2-CH2-NH-CO-, -NH-CH2-CH(R)-NH-CO-, and -NH-CH(R(1))-CH(R(2))-NH-CO-], levels of preorganization (cyclic vs acyclic residues), and stereochemistries, and the helix formation was systematically assessed. The extent of helix perturbation or stabilization was primarily monitored in solution by Fourier transform IR, NMR, and electronic circular dichroism spectroscopies. Our results indicate that although three new substitution patterns were accommodated in the 2.5-helix, the helical urea backbone in short oligomers is particularly sensitive to variations in the residue substitution pattern (position and stereochemistry). For example, the trans-1,2-diaminocyclohexane unit was experimentally found to break the helix nucleation, but the corresponding cis unit did not. Theoretical calculations helped to rationalize these results. The conformational preferences in this series of oligoureas were also studied at high resolution by X-ray structure analyses of a representative set of modified oligomers.
Asunto(s)
Peptidomiméticos/química , Urea/análogos & derivados , Dicroismo Circular , Cristalografía por Rayos X , Ciclohexilaminas/química , Modelos Moleculares , Conformación Molecular , Resonancia Magnética Nuclear Biomolecular , Estructura Secundaria de Proteína , Espectroscopía Infrarroja por Transformada de FourierRESUMEN
Several helically folded aromatic oligoamides were designed and synthesized. The sequences were all water-soluble thanks to the charged side chains borne by the monomers. Replacing a few, sometimes only two, charged side chains by neutral methoxy groups was shown to trigger the formation of various aggregates which could be tentatively assigned to head-to-head stacked dimers of single helices, double helical duplexes and a quadruplex, none of which would form in organic solvent with organic-soluble analogues. The nature of the aggregates was supported by concentration and solvent dependent NMR studies, 1H DOSY experiments, mass spectrometry, and X-ray crystallography or energy-minimized models, as well as analogies with earlier studies. The hydrophobic effect appears to be the main driving force for aggregation but it can be finely modulated by the presence or absence of a small number of charges to an extent that had no precedent in aromatic foldamer architectures. These results will serve as a benchmark for future foldamer design in water.