Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(6): 1575-1588, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33675691

RESUMEN

During the past decade, immunotherapies have made a major impact on the treatment of diverse types of cancer. Inflammatory toxicities are not only a major concern for Food and Drug Administration (FDA)-approved checkpoint blockade and chimeric antigen receptor (CAR) T cell therapies, but also limit the development and use of combination therapies. Fundamentally, these adverse events highlight the intricate balance of pro- and anti-inflammatory pathways that regulate protective immune responses. Here, we discuss the cellular and molecular mechanisms of inflammatory adverse events, current approaches to treatment, as well as opportunities for the design of immunotherapies that limit such inflammatory toxicities while preserving anti-tumor efficacy.


Asunto(s)
Inmunoterapia/efectos adversos , Inflamación/etiología , Neoplasias/inmunología , Neoplasias/terapia , Animales , Citocinas/efectos adversos , Humanos , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Linfocitos T/inmunología
2.
Cell ; 182(3): 655-671.e22, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32603654

RESUMEN

Checkpoint blockade with antibodies specific for the PD-1 and CTLA-4 inhibitory receptors can induce durable responses in a wide range of human cancers. However, the immunological mechanisms responsible for severe inflammatory side effects remain poorly understood. Here we report a comprehensive single-cell analysis of immune cell populations in colitis, a common and severe side effect of checkpoint blockade. We observed a striking accumulation of CD8 T cells with highly cytotoxic and proliferative states and no evidence of regulatory T cell depletion. T cell receptor (TCR) sequence analysis demonstrated that a substantial fraction of colitis-associated CD8 T cells originated from tissue-resident populations, explaining the frequently early onset of colitis symptoms following treatment initiation. Our analysis also identified cytokines, chemokines, and surface receptors that could serve as therapeutic targets for colitis and potentially other inflammatory side effects of checkpoint blockade.


Asunto(s)
Linfocitos T CD8-positivos/citología , Antígeno CTLA-4/inmunología , Colitis/metabolismo , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Inmunoterapia/efectos adversos , Células Mieloides/metabolismo , Receptores de Quimiocina/metabolismo , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/patología , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/patología , Antígeno CTLA-4/metabolismo , Quimiocinas/metabolismo , Colitis/tratamiento farmacológico , Colitis/genética , Colitis/inmunología , Citocinas/metabolismo , Citometría de Flujo , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/inmunología , Humanos , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/metabolismo , Melanoma/genética , Melanoma/inmunología , Melanoma/metabolismo , Familia de Multigenes , Células Mieloides/citología , RNA-Seq , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores CXCR3/genética , Receptores CXCR3/metabolismo , Receptores CXCR6/genética , Receptores CXCR6/metabolismo , Receptores de Quimiocina/genética , Análisis de la Célula Individual , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/metabolismo
3.
Immunity ; 50(4): 796-811, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30995500

RESUMEN

The ß common chain cytokines GM-CSF, IL-3, and IL-5 regulate varied inflammatory responses that promote the rapid clearance of pathogens but also contribute to pathology in chronic inflammation. Therapeutic interventions manipulating these cytokines are approved for use in some cancers as well as allergic and autoimmune disease, and others show promising early clinical activity. These approaches are based on our understanding of the inflammatory roles of these cytokines; however, GM-CSF also participates in the resolution of inflammation, and IL-3 and IL-5 may also have such properties. Here, we review the functions of the ß common cytokines in health and disease. We discuss preclinical and clinical data, highlighting the potential inherent in targeting these cytokine pathways, the limitations, and the important gaps in understanding of the basic biology of this cytokine family.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Inflamación/inmunología , Interleucina-3/inmunología , Interleucina-5/inmunología , Animales , Enfermedades Autoinmunes/inmunología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/deficiencia , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Factor Estimulante de Colonias de Granulocitos y Macrófagos/uso terapéutico , Hematopoyesis/inmunología , Humanos , Inflamación/terapia , Interleucina-3/antagonistas & inhibidores , Interleucina-3/deficiencia , Interleucina-3/genética , Interleucina-5/antagonistas & inhibidores , Interleucina-5/deficiencia , Interleucina-5/genética , Ratones , Ratones Noqueados , Familia de Multigenes , Neoplasias/inmunología , Neoplasias/terapia , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Receptores de Interleucina-3/genética , Receptores de Interleucina-3/inmunología , Receptores de Interleucina-5/genética , Receptores de Interleucina-5/inmunología , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/uso terapéutico , Transducción de Señal , Relación Estructura-Actividad , Vacunación , Cicatrización de Heridas/inmunología
4.
Immunol Rev ; 318(1): 11-21, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37455375

RESUMEN

Immune checkpoint inhibitor (ICI) therapy has revolutionized the field of oncology over the past decade, leading to durable remissions in some patients but also producing a wide spectrum of treatment-limiting inflammatory toxicities that are referred to as immune-related adverse events (irAEs). Although irAEs can involve any organ system in the body, they most commonly affect the barrier tissues, including the gastrointestinal tract with colitis and enterocolitis affecting a significant fraction of patients on ICIs. We are beginning to understand the mechanisms that drive ICI colitis, with early experiments indicating a role for CD8+ resident memory T cells (TRMs) in the gut, which become activated and differentiate into cytotoxic cells in response to ICI therapy. The risk factors that define who will develop ICI colitis are not understood and substantial efforts are underway to identify potential biomarkers for risk of this and other toxicities. Optimal management of ICI colitis is also an area of active investigation. Current standard treatments are based largely on small, retrospective analyses, and while drugs like systemic glucocorticoids or the TNFα inhibitor infliximab do appear to be highly active in ICI colitis, the impact of these therapies on antitumor responses is poorly understood. As discussed in this review, future work will have to define the immune mechanisms driving ICI colitis in more detail and in comparison to antitumor responses in order to identify candidate pathways that can be targeted to improve ICI colitis without interfering in antitumor immunity. Studying these interventions will require randomized, controlled trials with both tumor and colitis endpoints, a goal that will necessitate collaboration across institutions and funding agencies. We are at a point where such collaborative trials are feasible, and have the potential to greatly improve the care of patients with ICI colitis as well as other irAEs.


Asunto(s)
Colitis , Neoplasias , Humanos , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Estudios Retrospectivos , Colitis/inducido químicamente , Colitis/tratamiento farmacológico
5.
Nature ; 586(7831): 779-784, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33087934

RESUMEN

Antibodies that antagonize extracellular receptor-ligand interactions are used as therapeutic agents for many diseases to inhibit signalling by cell-surface receptors1. However, this approach does not directly prevent intracellular signalling, such as through tonic or sustained signalling after ligand engagement. Here we present an alternative approach for attenuating cell-surface receptor signalling, termed receptor inhibition by phosphatase recruitment (RIPR). This approach compels cis-ligation of cell-surface receptors containing ITAM, ITIM or ITSM tyrosine phosphorylation motifs to the promiscuous cell-surface phosphatase CD452,3, which results in the direct intracellular dephosphorylation of tyrosine residues on the receptor target. As an example, we found that tonic signalling by the programmed cell death-1 receptor (PD-1) results in residual suppression of T cell activation, but is not inhibited by ligand-antagonist antibodies. We engineered a PD-1 molecule, which we denote RIPR-PD1, that induces cross-linking of PD-1 to CD45 and inhibits both tonic and ligand-activated signalling. RIPR-PD1 demonstrated enhanced inhibition of checkpoint blockade compared with ligand blocking by anti-PD1 antibodies, and increased therapeutic efficacy over anti-PD1 in mouse tumour models. We also show that the RIPR strategy extends to other immune-receptor targets that contain activating or inhibitory ITIM, ITSM or ITAM motifs; for example, inhibition of the macrophage SIRPα 'don't eat me' signal with a SIRPα-CD45 RIPR molecule potentiates antibody-dependent cellular phagocytosis beyond that of SIRPα blockade alone. RIPR represents a general strategy for direct attenuation of signalling by kinase-activated cell-surface receptors.


Asunto(s)
Antígenos Comunes de Leucocito/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Receptores Inmunológicos/antagonistas & inhibidores , Animales , Anticuerpos Monoclonales Humanizados/farmacología , Carcinoma de Células Pequeñas/tratamiento farmacológico , Carcinoma de Células Pequeñas/metabolismo , Carcinoma de Células Pequeñas/patología , Línea Celular Tumoral , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Reactivos de Enlaces Cruzados , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Células HEK293 , Humanos , Antígenos Comunes de Leucocito/antagonistas & inhibidores , Antígenos Comunes de Leucocito/química , Ligandos , Activación de Linfocitos/efectos de los fármacos , Masculino , Ratones , Nivolumab/farmacología , Fosforilación , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Linfocitos T/citología , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología
6.
Nat Methods ; 19(4): 449-460, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35396484

RESUMEN

Deciphering immune recognition is critical for understanding a broad range of diseases and for the development of effective vaccines and immunotherapies. Efforts to do so are limited by a lack of technologies capable of simultaneously capturing the complexity of adaptive immunoreceptor repertoires and the landscape of potential antigens. To address this, we present receptor-antigen pairing by targeted retroviruses, which combines viral pseudotyping and molecular engineering approaches to enable one-pot library-on-library interaction screens by displaying antigens on the surface of lentiviruses and encoding their identity in the viral genome. Antigen-specific viral infection of cell lines expressing human T or B cell receptors allows readout of both antigen and receptor identities via single-cell sequencing. The resulting system is modular, scalable and compatible with any cell type. These techniques provide a suite of tools for targeted viral entry, molecular engineering and interaction screens with broad potential applications.


Asunto(s)
Antígenos Virales , Lentivirus , Internalización del Virus , Antígenos , Antígenos Virales/inmunología , Antígenos Virales/aislamiento & purificación , Humanos , Inmunoterapia/métodos , Lentivirus/inmunología , Receptores de Antígenos de Linfocitos B/inmunología , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología
7.
J Immunol ; 210(7): 991-1003, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36881882

RESUMEN

Checkpoint blockade immunotherapy has failed in pancreatic cancer and other poorly responsive tumor types in part due to inadequate T cell priming. Naive T cells can receive costimulation not only via CD28 but also through TNF superfamily receptors that signal via NF-κB. Antagonists of the ubiquitin ligases cellular inhibitor of apoptosis protein (cIAP)1/2, also called second mitochondria-derived activator of caspases (SMAC) mimetics, induce degradation of cIAP1/2 proteins, allowing for the accumulation of NIK and constitutive, ligand-independent activation of alternate NF-κB signaling that mimics costimulation in T cells. In tumor cells, cIAP1/2 antagonists can increase TNF production and TNF-mediated apoptosis; however, pancreatic cancer cells are resistant to cytokine-mediated apoptosis, even in the presence of cIAP1/2 antagonism. Dendritic cell activation is enhanced by cIAP1/2 antagonism in vitro, and intratumoral dendritic cells show higher expression of MHC class II in tumors from cIAP1/2 antagonism-treated mice. In this study, we use in vivo mouse models of syngeneic pancreatic cancer that generate endogenous T cell responses ranging from moderate to poor. Across multiple models, cIAP1/2 antagonism has pleiotropic beneficial effects on antitumor immunity, including direct effects on tumor-specific T cells leading to overall increased activation, increased control of tumor growth in vivo, synergy with multiple immunotherapy modalities, and immunologic memory. In contrast to checkpoint blockade, cIAP1/2 antagonism does not increase intratumoral T cell frequencies. Furthermore, we confirm our previous findings that even poorly immunogenic tumors with a paucity of T cells can experience T cell-dependent antitumor immunity, and we provide transcriptional clues into how these rare T cells coordinate downstream immune responses.


Asunto(s)
FN-kappa B , Neoplasias Pancreáticas , Ratones , Animales , FN-kappa B/metabolismo , Línea Celular Tumoral , Linfocitos T/metabolismo , Proteínas Inhibidoras de la Apoptosis , Apoptosis , Inmunidad
8.
Nature ; 565(7738): 186-191, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30626941

RESUMEN

We describe a de novo computational approach for designing proteins that recapitulate the binding sites of natural cytokines, but are otherwise unrelated in topology or amino acid sequence. We use this strategy to design mimics of the central immune cytokine interleukin-2 (IL-2) that bind to the IL-2 receptor ßγc heterodimer (IL-2Rßγc) but have no binding site for IL-2Rα (also called CD25) or IL-15Rα (also known as CD215). The designs are hyper-stable, bind human and mouse IL-2Rßγc with higher affinity than the natural cytokines, and elicit downstream cell signalling independently of IL-2Rα and IL-15Rα. Crystal structures of the optimized design neoleukin-2/15 (Neo-2/15), both alone and in complex with IL-2Rßγc, are very similar to the designed model. Neo-2/15 has superior therapeutic activity to IL-2 in mouse models of melanoma and colon cancer, with reduced toxicity and undetectable immunogenicity. Our strategy for building hyper-stable de novo mimetics could be applied generally to signalling proteins, enabling the creation of superior therapeutic candidates.


Asunto(s)
Diseño de Fármacos , Interleucina-15/inmunología , Interleucina-2/inmunología , Imitación Molecular , Receptores de Interleucina-2/agonistas , Receptores de Interleucina-2/inmunología , Secuencia de Aminoácidos , Animales , Sitios de Unión , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/inmunología , Simulación por Computador , Cristalografía por Rayos X , Modelos Animales de Enfermedad , Humanos , Interleucina-15/uso terapéutico , Interleucina-2/uso terapéutico , Subunidad alfa del Receptor de Interleucina-2/inmunología , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Melanoma/tratamiento farmacológico , Melanoma/inmunología , Ratones , Modelos Moleculares , Estabilidad Proteica , Receptores de Interleucina-2/metabolismo , Transducción de Señal/inmunología
9.
Semin Immunol ; 52: 101473, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33726931

RESUMEN

Checkpoint blockade has transformed not only the way cancers are treated, but also highlighted the importance of mounting a proper immune response against tumors. Despite advances in the field of immunotherapy, many patients develop a range of inflammatory toxicities that limit the efficacy of these therapies. These toxicities range from barrier site injury, such as colitis, to endocrine organ dysfunction, such as diabetes. In order to properly treat patients with cancer and avoid checkpoint blockade induced toxicities, we must gain a deeper understanding of the underlying mechanisms generating these adverse events. Cytotoxic and tissue-resident T cells likely play an important role in mediating some toxicities, though high levels of cytokines and the generation of auto-antibodies in other toxicities demonstrates these mechanisms are not all shared. Certain risk factors for specific toxicities may be able to predict who might benefit most from alternative therapies given the risk-benefit associated with checkpoint blockade. As the targets of checkpoint inhibitors have important functions in the prevention of autoimmunity, insights into risk factors and causes of toxicities will further our knowledge of fundamental immunology and enable the development of novel therapeutics.


Asunto(s)
Antineoplásicos , Neoplasias , Autoinmunidad , Humanos , Factores Inmunológicos , Inmunoterapia/efectos adversos , Neoplasias/tratamiento farmacológico , Neoplasias/etiología
10.
N Engl J Med ; 385(15): 1382-1392, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34260849

RESUMEN

BACKGROUND: Patients with underlying medical conditions are at increased risk for severe coronavirus disease 2019 (Covid-19). Whereas vaccine-derived immunity develops over time, neutralizing monoclonal-antibody treatment provides immediate, passive immunity and may limit disease progression and complications. METHODS: In this phase 3 trial, we randomly assigned, in a 1:1 ratio, a cohort of ambulatory patients with mild or moderate Covid-19 who were at high risk for progression to severe disease to receive a single intravenous infusion of either a neutralizing monoclonal-antibody combination agent (2800 mg of bamlanivimab and 2800 mg of etesevimab, administered together) or placebo within 3 days after a laboratory diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The primary outcome was the overall clinical status of the patients, defined as Covid-19-related hospitalization or death from any cause by day 29. RESULTS: A total of 1035 patients underwent randomization and received an infusion of bamlanivimab-etesevimab or placebo. The mean (±SD) age of the patients was 53.8±16.8 years, and 52.0% were adolescent girls or women. By day 29, a total of 11 of 518 patients (2.1%) in the bamlanivimab-etesevimab group had a Covid-19-related hospitalization or death from any cause, as compared with 36 of 517 patients (7.0%) in the placebo group (absolute risk difference, -4.8 percentage points; 95% confidence interval [CI], -7.4 to -2.3; relative risk difference, 70%; P<0.001). No deaths occurred in the bamlanivimab-etesevimab group; in the placebo group, 10 deaths occurred, 9 of which were designated by the trial investigators as Covid-19-related. At day 7, a greater reduction from baseline in the log viral load was observed among patients who received bamlanivimab plus etesevimab than among those who received placebo (difference from placebo in the change from baseline, -1.20; 95% CI, -1.46 to -0.94; P<0.001). CONCLUSIONS: Among high-risk ambulatory patients, bamlanivimab plus etesevimab led to a lower incidence of Covid-19-related hospitalization and death than did placebo and accelerated the decline in the SARS-CoV-2 viral load. (Funded by Eli Lilly; BLAZE-1 ClinicalTrials.gov number, NCT04427501.).


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Adolescente , Adulto , Anciano , Anticuerpos Monoclonales Humanizados/efectos adversos , COVID-19/etnología , COVID-19/virología , Niño , Método Doble Ciego , Quimioterapia Combinada , Femenino , Hospitalización/estadística & datos numéricos , Humanos , Infusiones Intravenosas , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Gravedad del Paciente , Factores de Riesgo , SARS-CoV-2/aislamiento & purificación , Carga Viral/efectos de los fármacos , Adulto Joven
11.
Clin Gastroenterol Hepatol ; 22(7): 1539-1541.e2, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38142835

RESUMEN

Immune checkpoint inhibitors (ICI) have improved metastatic melanoma outcomes; however, toxicities, such as hepatitis, can be dose-limiting or even fatal.1 Systemic glucocorticoids and antimetabolite immunosuppressive medications remain the mainstay of treatment for ICI-hepatitis, but options for patients refractory to these therapies are limited.2 Herein we present 3 cases of glucocorticoid-refractory ICI-hepatitis treated with tofacitinib, an inhibitor of Janus kinase (JAK) 1 and 3. These patients represent consecutive patients referred to the Massachusetts General Hospital Severe Immunotherapy Complications service who were determined by our experts to have treatment failure with systemic glucocorticoid and antimetabolite combination therapy between August 2022 and September 2023.3 These were the only 3 patients managed by the Severe Immunotherapy Complications service who were treated with tofacitinib for ICI-hepatitis during that time.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Piperidinas , Pirimidinas , Humanos , Piperidinas/uso terapéutico , Pirimidinas/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Masculino , Persona de Mediana Edad , Femenino , Anciano , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Melanoma/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Resultado del Tratamiento
12.
Gastroenterology ; 165(4): 874-890.e10, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37263309

RESUMEN

BACKGROUND & AIMS: Transforming growth factor-b (TGFb) plays pleiotropic roles in pancreatic cancer, including promoting metastasis, attenuating CD8 T-cell activation, and enhancing myofibroblast differentiation and deposition of extracellular matrix. However, single-agent TGFb inhibition has shown limited efficacy against pancreatic cancer in mice or humans. METHODS: We evaluated the TGFß-blocking antibody NIS793 in combination with gemcitabine/nanoparticle (albumin-bound)-paclitaxel or FOLFIRINOX (folinic acid [FOL], 5-fluorouracil [F], irinotecan [IRI] and oxaliplatin [OX]) in orthotopic pancreatic cancer models. Single-cell RNA sequencing and immunofluorescence were used to evaluate changes in tumor cell state and the tumor microenvironment. RESULTS: Blockade of TGFß with chemotherapy reduced tumor burden in poorly immunogenic pancreatic cancer, without affecting the metastatic rate of cancer cells. Efficacy of combination therapy was not dependent on CD8 T cells, because response to TGFß blockade was preserved in CD8-depleted or recombination activating gene 2 (RAG2-/-) mice. TGFß blockade decreased total α-smooth muscle actin-positive fibroblasts but had minimal effect on fibroblast heterogeneity. Bulk RNA sequencing on tumor cells sorted ex vivo revealed that tumor cells treated with TGFß blockade adopted a classical lineage consistent with enhanced chemosensitivity, and immunofluorescence for cleaved caspase 3 confirmed that TGFß blockade increased chemotherapy-induced cell death in vivo. CONCLUSIONS: TGFß regulates pancreatic cancer cell plasticity between classical and basal cell states. TGFß blockade in orthotropic models of pancreatic cancer enhances sensitivity to chemotherapy by promoting a classical malignant cell state. This study provides scientific rationale for evaluation of NIS793 with FOLFIRINOX or gemcitabine/nanoparticle (albumin-bound) paclitaxel chemotherapy backbone in the clinical setting and supports the concept of manipulating cancer cell plasticity to increase the efficacy of combination therapy regimens.


Asunto(s)
Antineoplásicos , Neoplasias Pancreáticas , Humanos , Ratones , Animales , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Factor de Crecimiento Transformador beta/metabolismo , Antineoplásicos/uso terapéutico , Gemcitabina , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Albúminas , Factores de Crecimiento Transformadores/uso terapéutico , Microambiente Tumoral , Neoplasias Pancreáticas
13.
Gastrointest Endosc ; 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38272276

RESUMEN

BACKGROUND AND AIMS: No endoscopic scoring system has been established for immune-mediated colitis (IMC). This study aimed to establish such a system for IMC and explore its utility in guiding future selective immunosuppressive therapy (SIT) use compared to clinical symptoms. METHODS: This retrospective, international, 14-center study included 674 patients who developed IMC after immunotherapy and underwent endoscopic evaluation. Ten endoscopic features were selected by group consensus and assigned 1 point each to calculate an IMC endoscopic score (IMCES). IMCES cutoffs were chosen to maximize specificity for SIT use. This specificity was compared between IMCESs, and clinical symptoms were graded according to a standardized instrument. RESULTS: A total of 309 (45.8%) patients received SIT. IMCES specificity for SIT use was 82.8% with a cutoff of 4. The inclusion of ulceration as a mandatory criterion resulted in higher specificity (85.0% for a cutoff of 4). In comparison, the specificity of a Mayo endoscopic subscore of 3 was 74.6%, and the specificity of clinical symptom grading was much lower at 27.4% and 12.3%, respectively. Early endoscopy was associated with timely SIT use (P < .001; r = 0.4084). CONCLUSIONS: This is the largest multicenter study to devise an endoscopic scoring system to guide IMC management. An IMCES cutoff of 4 has a higher specificity for SIT use than clinical symptoms, supporting early endoscopic evaluation for IMC.

14.
N Engl J Med ; 383(24): 2333-2344, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33085857

RESUMEN

BACKGROUND: The efficacy of interleukin-6 receptor blockade in hospitalized patients with coronavirus disease 2019 (Covid-19) who are not receiving mechanical ventilation is unclear. METHODS: We performed a randomized, double-blind, placebo-controlled trial involving patients with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, hyperinflammatory states, and at least two of the following signs: fever (body temperature >38°C), pulmonary infiltrates, or the need for supplemental oxygen in order to maintain an oxygen saturation greater than 92%. Patients were randomly assigned in a 2:1 ratio to receive standard care plus a single dose of either tocilizumab (8 mg per kilogram of body weight) or placebo. The primary outcome was intubation or death, assessed in a time-to-event analysis. The secondary efficacy outcomes were clinical worsening and discontinuation of supplemental oxygen among patients who had been receiving it at baseline, both assessed in time-to-event analyses. RESULTS: We enrolled 243 patients; 141 (58%) were men, and 102 (42%) were women. The median age was 59.8 years (range, 21.7 to 85.4), and 45% of the patients were Hispanic or Latino. The hazard ratio for intubation or death in the tocilizumab group as compared with the placebo group was 0.83 (95% confidence interval [CI], 0.38 to 1.81; P = 0.64), and the hazard ratio for disease worsening was 1.11 (95% CI, 0.59 to 2.10; P = 0.73). At 14 days, 18.0% of the patients in the tocilizumab group and 14.9% of the patients in the placebo group had had worsening of disease. The median time to discontinuation of supplemental oxygen was 5.0 days (95% CI, 3.8 to 7.6) in the tocilizumab group and 4.9 days (95% CI, 3.8 to 7.8) in the placebo group (P = 0.69). At 14 days, 24.6% of the patients in the tocilizumab group and 21.2% of the patients in the placebo group were still receiving supplemental oxygen. Patients who received tocilizumab had fewer serious infections than patients who received placebo. CONCLUSIONS: Tocilizumab was not effective for preventing intubation or death in moderately ill hospitalized patients with Covid-19. Some benefit or harm cannot be ruled out, however, because the confidence intervals for efficacy comparisons were wide. (Funded by Genentech; ClinicalTrials.gov number, NCT04356937.).


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Receptores de Interleucina-6/antagonistas & inhibidores , Adulto , Anciano , Anciano de 80 o más Años , Boston , COVID-19/mortalidad , Progresión de la Enfermedad , Método Doble Ciego , Femenino , Humanos , Intubación/estadística & datos numéricos , Masculino , Persona de Mediana Edad , Terapia Respiratoria , Insuficiencia del Tratamiento , Adulto Joven
15.
Clin Infect Dis ; 75(1): e440-e449, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34718468

RESUMEN

BACKGROUND: Based on interim analyses and modeling data, lower doses of bamlanivimab and etesevimab together (700/1400 mg) were investigated to determine optimal dose and expand availability of treatment. METHODS: This Phase 3 portion of the BLAZE-1 trial characterized the effect of bamlanivimab with etesevimab on overall patient clinical status and virologic outcomes in ambulatory patients ≥12 years old, with mild-to-moderate coronavirus disease 2019 (COVID-19), and ≥1 risk factor for progressing to severe COVID-19 and/or hospitalization. Bamlanivimab and etesevimab together (700/1400 mg) or placebo were infused intravenously within 3 days of patients' first positive COVID-19 test. RESULTS: In total, 769 patients were infused (median age [range]; 56.0 years [12, 93], 30.3% of patients ≥65 years of age and median duration of symptoms; 4 days). By day 29, 4/511 patients (0.8%) in the antibody treatment group had a COVID-19-related hospitalization or any-cause death, as compared with 15/258 patients (5.8%) in the placebo group (Δ[95% confidence interval {CI}] = -5.0 [-8.0, -2.1], P < .001). No deaths occurred in the bamlanivimab and etesevimab group compared with 4 deaths (all COVID-19-related) in the placebo group. Patients receiving antibody treatment had a greater mean reduction in viral load from baseline to Day 7 (Δ[95% CI] = -0.99 [-1.33, -.66], P < .0001) compared with those receiving placebo. Persistently high viral load at Day 7 correlated with COVID-19-related hospitalization or any-cause death by Day 29 in all BLAZE-1 cohorts investigated. CONCLUSIONS: These data support the use of bamlanivimab and etesevimab (700/1400 mg) for ambulatory patients at high risk for severe COVID-19. Evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants will require continued monitoring to determine the applicability of this treatment. CLINICAL TRIALS REGISTRATION: NCT04427501.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Anticuerpos Monoclonales Humanizados , Anticuerpos Neutralizantes , Niño , Humanos , Persona de Mediana Edad , Pronóstico , SARS-CoV-2 , Carga Viral
16.
Gastroenterology ; 160(4): 1384-1393, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33080231

RESUMEN

BACKGROUND & AIMS: Immune checkpoint inhibitors (ICIs) have transformed the treatment landscape for oncology, leading to durable remissions in a subset of patients, but also a broad range of potentially life-threatening inflammatory toxicities, many of which involve the gastrointestinal (GI) tract and liver. The purpose of this expert review was to update gastroenterologists on the gastrointestinal and hepatic toxicities of ICIs and provide best practice advice on their diagnosis and management. METHODS: The evidence reviewed in this work combines the expert clinical opinion of the authors with a comprehensive search of several English-language databases and a manual review of relevant publications.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/diagnóstico , Colitis/diagnóstico , Gastroenterología/normas , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Guías de Práctica Clínica como Asunto , Enfermedad Hepática Inducida por Sustancias y Drogas/inmunología , Enfermedad Hepática Inducida por Sustancias y Drogas/terapia , Colitis/inducido químicamente , Colitis/inmunología , Colitis/terapia , Gastroenterología/métodos , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Sociedades Médicas/normas , Estados Unidos
17.
J Gen Intern Med ; 37(1): 154-161, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34755268

RESUMEN

IMPORTANCE: SARS-CoV-2 has infected over 200 million people worldwide, resulting in more than 4 million deaths. Randomized controlled trials are the single best tool to identify effective treatments against this novel pathogen. OBJECTIVE: To describe the characteristics of randomized controlled trials of treatments for COVID-19 in the United States launched in the first 9 months of the pandemic. Design, Setting, and Participants We conducted a cross-sectional study of all completed or actively enrolling randomized, interventional, clinical trials for the treatment of COVID-19 in the United States registered on www.clinicaltrials.gov as of August 10, 2020. We excluded trials of vaccines and other interventions intended to prevent COVID-19. Main Outcomes and Measures We used descriptive statistics to characterize the clinical trials and the statistical power for the available studies. For the late-phase trials (i.e., phase 3 and 2/3 studies), we compared the geographic distribution of the clinical trials with the geographic distribution of people diagnosed with COVID-19. RESULTS: We identified 200 randomized controlled trials of treatments for people with COVID-19. Across all trials, 87 (43.5%) were single-center, 64 (32.0%) were unblinded, and 80 (40.0%) were sponsored by industry. The most common treatments included monoclonal antibodies (N=46 trials), small molecule immunomodulators (N=28), antiviral medications (N=24 trials), and hydroxychloroquine (N=20 trials). Of the 9 trials completed by August 2020, the median sample size was 450 (IQR 67-1113); of the 191 ongoing trials, the median planned sample size was 150 (IQR 60-400). Of the late-phase trials (N=54), the most common primary outcome was a severity scale (N=23, 42.6%), followed by a composite of mortality and ventilation (N=10, 18.5%), and mortality alone (N=6, 11.1%). Among these late-phase trials, all trials of antivirals, monoclonal antibodies, or chloroquine/hydroxychloroquine had a power of less than 25% to detect a 20% relative risk reduction in mortality. Had the individual trials for a given class of treatments instead formed a single trial, the power to detect that same reduction in mortality would have been greater than 98%. There was large variability in access to trials with the highest number of trials per capita in the Northeast and the lowest in the Midwest. CONCLUSIONS AND RELEVANCE: A large number of randomized trials were launched early in the pandemic to evaluate treatments for COVID-19. However, many trials were underpowered for important clinical endpoints and substantial geographic disparities were observed, highlighting the importance of improving national clinical trial infrastructure.


Asunto(s)
COVID-19 , Estudios Transversales , Humanos , Pandemias , Ensayos Clínicos Controlados Aleatorios como Asunto , SARS-CoV-2 , Resultado del Tratamiento , Estados Unidos/epidemiología
18.
Trends Immunol ; 40(6): 511-523, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31053497

RESUMEN

Oncology has recently undergone a revolutionary change with widespread adoption of immunotherapy for many cancers. Immunotherapy using monoclonal antibodies against checkpoint molecules, including programmed death (PD)-1, PD ligand (PD-L)1, and cytotoxic T lymphocyte-associated antigen (CTLA)-4, is effective in a significant subset of patients. However, immune-related adverse events (irAEs) have emerged as frequent complications of checkpoint blockade, likely due to the physiological role of checkpoint pathways in regulating adaptive immunity and preventing autoimmunity. As immunotherapy becomes more common, a better understanding of the etiology of irAEs and ways to limit these events is needed. At the same time, studying these new therapy-related disorders provides an opportunity to better understand naturally occurring human autoimmune and inflammatory disorders, with the potential to improve therapies for cancer and autoimmune diseases.


Asunto(s)
Antineoplásicos Inmunológicos/efectos adversos , Inmunoterapia/efectos adversos , Neoplasias/terapia , Animales , Antineoplásicos Inmunológicos/administración & dosificación , Antineoplásicos Inmunológicos/uso terapéutico , Autoinmunidad , Biomarcadores de Tumor , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Humanos , Inmunomodulación/efectos de los fármacos , Inmunoterapia/métodos , Neoplasias/etiología , Neoplasias/metabolismo , Neoplasias/patología , Evaluación del Resultado de la Atención al Paciente , Subgrupos de Linfocitos T/efectos de los fármacos , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
19.
Curr Gastroenterol Rep ; 24(12): 171-181, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36264425

RESUMEN

PURPOSE OF REVIEW: Immune checkpoint inhibitor (ICI) therapy revolutionized the treatment of multiple solid and hematologic malignancies. Yet, with it came profound inflammatory toxicities that mimic autoimmune diseases, termed immune-related adverse events (irAEs). Prominent among these is gastrointestinal inflammation, including a spectrum of gastritis, enteritis, and colitis. Here we synthesize an approach to immune checkpoint related enterocolitis (irEC) - including diagnostics and therapeutics - underpinned by new insights into the mechanism behind these phenomena. RECENT FINDINGS: This review presents updated insights on how to approach irEC, including novel approaches to selective immunosuppressive therapy, the role of fecal microbiota transplant, and the underlying cellular mechanisms of irEC. This review provides an update on irEC diagnosis and therapy, with considerations of new therapies and special patient populations. The field of gastrointestinal irAEs requires additional investigation, which will ultimately provide the tools required for patients to continue to receive life-saving ICI therapy.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Humanos , Inhibidores de Puntos de Control Inmunológico/efectos adversos
20.
Proc Natl Acad Sci U S A ; 116(16): 7624-7631, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30936321

RESUMEN

Chimeric antigen receptor (CAR) T cell therapy has been successful in clinical trials against hematological cancers, but has experienced challenges in the treatment of solid tumors. One of the main difficulties lies in a paucity of tumor-specific targets that can serve as CAR recognition domains. We therefore focused on developing VHH-based, single-domain antibody (nanobody) CAR T cells that target aspects of the tumor microenvironment conserved across multiple cancer types. Many solid tumors evade immune recognition through expression of checkpoint molecules, such as PD-L1, that down-regulate the immune response. We therefore targeted CAR T cells to the tumor microenvironment via the checkpoint inhibitor PD-L1 and observed a reduction in tumor growth, resulting in improved survival. CAR T cells that target the tumor stroma and vasculature through the EIIIB+ fibronectin splice variant, which is expressed by multiple tumor types and on neovasculature, are likewise effective in delaying tumor growth. VHH-based CAR T cells can thus function as antitumor agents for multiple targets in syngeneic, immunocompetent animal models. Our results demonstrate the flexibility of VHH-based CAR T cells and the potential of CAR T cells to target the tumor microenvironment and treat solid tumors.


Asunto(s)
Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/metabolismo , Anticuerpos de Dominio Único/farmacología , Microambiente Tumoral/efectos de los fármacos , Animales , Antineoplásicos/farmacología , Ratones , Neoplasias Experimentales , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA