Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Pharmacol Exp Ther ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38955493

RESUMEN

Secondary spinal cord injury (SCI) is characterized by increased cytokines and chemokines at the site of injury that have been associated with the development of neuropathic pain. Nearly 80% of SCI patients report suffering from chronic pain, which is poorly managed with available analgesics. While treatment with the FDA-approved ß2-adrenergic receptor agonist, formoterol, improves various aspects of recovery post-SCI in vivo, its effects on cytokines, chemokines and neuropathic pain remain unknown. Female mice were subjected to moderate (60 kdyn) or severe (80 kdyn) SCI followed by daily treatment with vehicle or formoterol (0.3 mg/kg, i.p.) beginning 8h after injury. The expression of pro-inflammatory cytokines/chemokines, such as IP-10, MIP-1a, MCP-1, BCA-1 and NF-κB, was increased in the injury site of vehicle-treated mice 24h post-SCI, which was ameliorated with formoterol treatment, regardless of injury severity. Thermal hyperalgesia and mechanical allodynia, as measured by Hargreaves infrared apparatus and von Frey filaments, respectively, were assessed prior to SCI and then weekly beginning 21 days post injury (DPI). While all injured mice exhibited decreased withdrawal latency following thermal stimulation compared to baseline, formoterol treatment reduced this response ~15% by 35 DPI. Vehicle-treated mice displayed significant mechanical allodynia, as evidenced by a 55% decrease in withdrawal threshold from baseline. In contrast, mice treated with formoterol maintained a consistent withdrawal time at all times tested. These data indicate that formoterol reduces inflammation post-SCI, likely contributing to mitigation of neuropathic pain, and further supporting the therapeutic potential of this treatment strategy. Significance Statement Chronic pain is a detrimental consequence of spinal cord injury (SCI). We show that treatment with the FDA-approved drug formoterol after SCI decreases injury site pro-inflammatory chemo/cytokines and alters markers of glial cell activation and infiltration. Additionally, formoterol treatment improves locomotor function and body composition, and decreases lesion volume. Finally, formoterol treatment decreased mechanical allodynia and thermal hyperalgesia post-SCI. These data are suggestive of the mechanism of formoterol-induced recovery, and further indicate its potential as a therapeutic strategy for SCI.

2.
J Neurosci ; 42(2): 325-348, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-34819339

RESUMEN

Globally, more than 67 million people are living with the effects of ischemic stroke. Importantly, many stroke survivors develop a chronic inflammatory response that may contribute to cognitive impairment, a common and debilitating sequela of stroke that is insufficiently studied and currently untreatable. 2-Hydroxypropyl-ß-cyclodextrin (HPßCD) is an FDA-approved cyclic oligosaccharide that can solubilize and entrap lipophilic substances. The goal of the present study was to determine whether the repeated administration of HPßCD curtails the chronic inflammatory response to stroke by reducing lipid accumulation within stroke infarcts in a distal middle cerebral artery occlusion mouse model of stroke. To achieve this goal, we subcutaneously injected young adult and aged male mice with vehicle or HPßCD 3 times per week, with treatment beginning 1 week after stroke. We evaluated mice at 7 weeks following stroke using immunostaining, RNA sequencing, lipidomic, and behavioral analyses. Chronic stroke infarct and peri-infarct regions of HPßCD-treated mice were characterized by an upregulation of genes involved in lipid metabolism and a downregulation of genes involved in innate and adaptive immunity, reactive astrogliosis, and chemotaxis. Correspondingly, HPßCD reduced the accumulation of lipid droplets, T lymphocytes, B lymphocytes, and plasma cells in stroke infarcts. Repeated administration of HPßCD also preserved NeuN immunoreactivity in the striatum and thalamus and c-Fos immunoreactivity in hippocampal regions. Additionally, HPßCD improved recovery through the protection of hippocampal-dependent spatial working memory and reduction of impulsivity. These results indicate that systemic HPßCD treatment following stroke attenuates chronic inflammation and secondary neurodegeneration and prevents poststroke cognitive decline.SIGNIFICANCE STATEMENT Dementia is a common and debilitating sequela of stroke. Currently, there are no available treatments for poststroke dementia. Our study shows that lipid metabolism is disrupted in chronic stroke infarcts, which causes an accumulation of uncleared lipid debris and correlates with a chronic inflammatory response. To our knowledge, these substantial changes in lipid homeostasis have not been previously recognized or investigated in the context of ischemic stroke. We also provide a proof of principle that solubilizing and entrapping lipophilic substances using HPßCD could be an effective strategy for treating chronic inflammation after stroke and other CNS injuries. We propose that using HPßCD for the prevention of poststroke dementia could improve recovery and increase long-term quality of life in stroke sufferers.


Asunto(s)
2-Hidroxipropil-beta-Ciclodextrina/uso terapéutico , Encéfalo/efectos de los fármacos , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Factores de Edad , Animales , Encéfalo/metabolismo , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Infarto de la Arteria Cerebral Media/metabolismo , Inflamación/metabolismo , Masculino , Ratones , Proteínas del Tejido Nervioso/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Resultado del Tratamiento
3.
Neurobiol Dis ; 181: 106130, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37068641

RESUMEN

Inflammation is a crucial part of the healing process after an ischemic stroke and is required to restore tissue homeostasis. However, the inflammatory response to stroke also worsens neurodegeneration and creates a tissue environment that is unfavorable to regeneration for several months, thereby postponing recovery. In animal models, inflammation can also contribute to the development of delayed cognitive deficits. Myeloid cells that take on a foamy appearance are one of the most prominent immune cell types within chronic stroke infarcts. Emerging evidence indicates that they form as a result of mechanisms of myelin lipid clearance becoming overwhelmed, and that they are a key driver of the chronic inflammatory response to stroke. Therefore, targeting lipid accumulation in foam cells may be a promising strategy for improving recovery. The aim of this review is to provide an overview of current knowledge regarding inflammation and foam cell formation in the brain in the weeks and months following ischemic stroke and identify targets that may be amenable to therapeutic intervention.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Animales , Células Espumosas/metabolismo , Accidente Cerebrovascular/metabolismo , Isquemia Encefálica/metabolismo , Inflamación , Lípidos
4.
Int J Mol Sci ; 24(23)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38068955

RESUMEN

Following ischemic stroke, the degradation of myelin and other cellular membranes surpasses the lipid-processing capabilities of resident microglia and infiltrating macrophages. This imbalance leads to foam cell formation in the infarct and areas of secondary neurodegeneration, instigating sustained inflammation and furthering neurological damage. Given that mitochondria are the primary sites of fatty acid metabolism, augmenting mitochondrial biogenesis (MB) may enhance lipid processing, curtailing foam cell formation and post-stroke chronic inflammation. Previous studies have shown that the pharmacological activation of the ß2-adrenergic receptor (ß2-AR) stimulates MB. Consequently, our study sought to discern the effects of intensified ß2-AR signaling on MB, the processing of brain lipid debris, and neurological outcome using a mouse stroke model. To achieve this goal, aged mice were treated with formoterol, a long-acting ß2-AR agonist, daily for two and eight weeks following stroke. Formoterol increased MB in the infarct region, modified fatty acid metabolism, and reduced foam cell formation. However, it did not reduce markers of post-stroke neurodegeneration or improve recovery. Although our findings indicate that enhancing MB in myeloid cells can aid in the processing of brain lipid debris after stroke, it is important to note that boosting MB alone may not be sufficient to significantly impact stroke recovery.


Asunto(s)
Biogénesis de Organelos , Accidente Cerebrovascular , Humanos , Células Espumosas/metabolismo , Fumarato de Formoterol/farmacología , Accidente Cerebrovascular/metabolismo , Encéfalo/metabolismo , Inflamación , Infarto , Ácidos Grasos , Lípidos
5.
J Pharmacol Exp Ther ; 380(2): 126-141, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34893553

RESUMEN

The aim of this study was to test whether poststroke oral administration of a small molecule p75 neurotrophin receptor (p75NTR) modulator (LM11A-31) can augment neuronal survival and improve recovery in a mouse model of stroke. Mice were administered LM11A-31 for up to 12 weeks, beginning 1 week after stroke. Metabolomic analysis revealed that after 2 weeks of daily treatment, mice that received LM11A-31 were distinct from vehicle-treated mice by principal component analysis and had higher levels of serotonin, acetylcholine, and dopamine in their ipsilateral hemisphere. LM11A-31 treatment also improved redox homeostasis by restoring reduced glutathione. It also offset a stroke-induced reduction in glycolysis by increasing acetyl-CoA. There was no effect on cytokine levels in the infarct. At 13 weeks after stroke, adaptive immune cell infiltration in the infarct was unchanged in LM11A-31-treated mice, indicating that LM11A-31 does not alter the chronic inflammatory response to stroke at the site of the infarct. However, LM11A-31-treated mice had less brain atrophy, neurodegeneration, tau pathology, and microglial activation in other regions of the ipsilateral hemisphere. These findings correlated with improved recovery of motor function on a ladder test, improved sensorimotor and cognitive abilities on a nest construction test, and less impulsivity in an open field test. These data support small molecule modulation of the p75NTR for preserving neuronal health and function during stroke recovery. SIGNIFICANCE STATEMENT: The findings from this study introduce the p75 neurotrophin receptor as a novel small molecule target for promotion of stroke recovery. Given that LM11A-31 is in clinical trials as a potential therapy for Alzheimer's disease, it could be considered as a candidate for assessment in stroke or vascular dementia studies.


Asunto(s)
Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Isoleucina/análogos & derivados , Morfolinas/farmacología , Fármacos Neuroprotectores/farmacología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Glutatión/metabolismo , Glucólisis , Infarto de la Arteria Cerebral Media/metabolismo , Isoleucina/farmacología , Isoleucina/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Morfolinas/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Neurotransmisores/metabolismo , Receptor de Factor de Crecimiento Nervioso/metabolismo
6.
J Neuroinflammation ; 18(1): 236, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34654436

RESUMEN

BACKGROUND: Decreased cerebral blood flow and systemic inflammation during heart failure (HF) increase the risk for vascular contributions to cognitive impairment and dementia (VCID) and Alzheimer disease-related dementias (ADRD). We previously demonstrated that PNA5, a novel glycosylated angiotensin 1-7 (Ang-(1-7)) Mas receptor (MasR) agonist peptide, is an effective therapy to rescue cognitive impairment in our preclinical model of VCID. Neurofilament light (NfL) protein concentration is correlated with cognitive impairment and elevated in neurodegenerative diseases, hypoxic brain injury, and cardiac disease. The goal of the present study was to determine (1) if treatment with Ang-(1-7)/MasR agonists can rescue cognitive impairment and decrease VCID-induced increases in NfL levels as compared to HF-saline treated mice and, (2) if NfL levels correlate with measures of cognitive function and brain cytokines in our VCID model. METHODS: VCID was induced in C57BL/6 male mice via myocardial infarction (MI). At 5 weeks post-MI, mice were treated with daily subcutaneous injections for 24 days, 5 weeks after MI, with PNA5 or angiotensin 1-7 (500 microg/kg/day or 50 microg/kg/day) or saline (n = 15/group). Following the 24-day treatment protocol, cognitive function was assessed using the Novel Object Recognition (NOR) test. Cardiac function was measured by echocardiography and plasma concentrations of NfL were quantified using a Quanterix Simoa assay. Brain and circulating cytokine levels were determined with a MILLIPLEX MAP Mouse High Sensitivity Multiplex Immunoassay. Treatment groups were compared via ANOVA, significance was set at p < 0.05. RESULTS: Treatment with Ang-(1-7)/MasR agonists reversed VCID-induced cognitive impairment and significantly decreased NfL levels in our mouse model of VCID as compared to HF-saline treated mice. Further, NfL levels were significantly negatively correlated with cognitive scores and the concentrations of multiple pleiotropic cytokines in the brain. CONCLUSIONS: These data show that treatment with Ang-(1-7)/MasR agonists rescues cognitive impairment and decreases plasma NfL relative to HF-saline-treated animals in our VCID mouse model. Further, levels of NfL are significantly negatively correlated with cognitive function and with several brain cytokine concentrations. Based on these preclinical findings, we propose that circulating NfL might be a candidate for a prognostic biomarker for VCID and may also serve as a pharmacodynamic/response biomarker for therapeutic target engagement.


Asunto(s)
Angiotensina I/agonistas , Angiotensina I/metabolismo , Disfunción Cognitiva/metabolismo , Citocinas/metabolismo , Demencia Vascular/metabolismo , Proteínas de Neurofilamentos/metabolismo , Fragmentos de Péptidos/agonistas , Fragmentos de Péptidos/metabolismo , Angiotensina I/uso terapéutico , Animales , Biomarcadores/metabolismo , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/patología , Demencia Vascular/tratamiento farmacológico , Demencia Vascular/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Fragmentos de Péptidos/uso terapéutico , Pronóstico , Volumen Sistólico/fisiología
7.
Brain Behav Immun ; 91: 578-586, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32956832

RESUMEN

Up to 30% of stroke patients experience cognitive decline within one year of their stroke. There are currently no FDA-approved drugs that can prevent post-stroke cognitive decline, in part due to a poor understanding of the mechanisms involved. We have previously demonstrated that a B-lymphocyte response to stroke, marked by IgA + cells, can cause delayed cognitive dysfunction in mice and that a similar adaptive immune response occurs in the brains of some human stroke patients that suffer from vascular dementia. The stimuli which trigger B-lymphocyte activation following stroke, and their target antigens, are still unknown. Therefore, to learn more about the mechanisms by which B-lymphocytes become activated following stroke we first characterized the temporal kinetics of the B-lymphocyte, T-lymphocyte, and plasma cell (PC) response to stroke in the brain by immunohistochemistry (IHC). We discovered that B-lymphocyte, T-lymphocyte, and plasma cell infiltration within the infarct progressively increases between 2 and 7 weeks after stroke. We then compared the B-lymphocyte response to stroke in WT, MHCII-/-, CD4-/-, and MyD88-/- mice to determine if B-lymphocytes mature into IgA + PCs through a T-lymphocyte and MyD88 dependent mechanism. Our data from a combination of IHC and flow cytometry indicate that following stroke, a population of IgA + PCs develops independently of CD4 + helper T-lymphocytes and MyD88 signaling. Subsequent sequencing of immunoglobulin genes of individual IgA + PCs present within the infarct identified a novel population of natural antibodies with few somatic mutations in complementarity-determining regions. These findings indicate that a population of IgA + PCs develops in the infarct following stroke by B-lymphocytes interacting with one or more thymus independent type 2 (TI-2) antigens, and that they produce IgA natural antibodies.


Asunto(s)
Activación de Linfocitos , Accidente Cerebrovascular , Animales , Linfocitos B , Linfocitos T CD4-Positivos , Humanos , Inmunoglobulina A , Ratones
8.
Curr Opin Neurol ; 33(1): 30-36, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31789707

RESUMEN

PURPOSE OF REVIEW: To review new evidence on links between poststroke dementia and inflammation. RECENT FINDINGS: Although there are still no treatments for poststroke dementia, recent evidence has improved our understanding that stroke increases the risk of incident dementia and worsens cognitive trajectory for at least a decade afterwards. Within approximately the first year dementia onset is associated with stroke severity and location, whereas later absolute risk is associated with more traditional dementia risk factors, such as age and imaging findings. The molecular mechanisms that underlie increased risk of incident dementia in stroke survivors remain unproven; however new data in both human and animal studies suggests links between cognitive decline and inflammation. These point to a model where chronic brain inflammation, provoked by inefficient clearance of myelin debris and a prolonged innate and adaptive immune response, causes poststroke dementia. These localized immune events in the brain may themselves be influenced by the peripheral immune state at key times after stroke. SUMMARY: This review recaps clinical evidence on poststroke dementia, new mechanistic links between the chronic inflammatory response to stroke and poststroke dementia, and proposes a model of immune-mediated neurodegeneration after stroke.


Asunto(s)
Disfunción Cognitiva/etiología , Demencia/etiología , Inflamación/etiología , Accidente Cerebrovascular/complicaciones , Disfunción Cognitiva/patología , Demencia/patología , Humanos , Inflamación/patología , Factores de Riesgo , Accidente Cerebrovascular/patología
9.
J Neurosci ; 38(40): 8707-8722, 2018 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-30201775

RESUMEN

Microcirculatory damage is a common complication for those with vascular risk factors, such as diabetes. To resolve vascular insults, the brain's immune cells (microglia) must rapidly envelop the site of injury. Currently, it is unknown whether Type 1 diabetes, a condition associated with chronic immune system dysfunction, alters microglial responses to damage and what mechanisms are responsible. Using in vivo two-photon microscopy in adult male mice, we show that microglial envelopment of laser-induced cerebral microbleeds is diminished in a hyperglycemic mouse model of Type 1 diabetes, which could not be fully rescued with chronic insulin treatment. Microglia were important for vessel repair because reduced microglial accumulation in diabetic mice or near-complete depletion in healthy controls was associated with greater secondary leakage of the damaged vessel. Broadly suppressing inflammation with dexamethasone in diabetic mice but not healthy controls, significantly enhanced microglial responses to microbleeds and attenuated secondary vessel leakage. These enhancements were associated with changes in IFN-γ signaling because dexamethasone suppressed abnormally high levels of IFN-γ protein levels in brain and blood serum of diabetic mice. Further, blocking IFN-γ in diabetic mice with neutralizing antibodies restored normal microglial chemotaxic responses and purinoceptor P2ry12 gene expression, as well as mitigated secondary leakage. These results suggest that abnormal IFN-γ signaling disrupts microglial function in the diabetic brain, and that immunotherapies targeting IFN-γ can stimulate microglial repair of damaged vessels.SIGNIFICANCE STATEMENT Although Type 1 diabetes is an established risk factor for vascular complications, such as microbleeds, and is known to hinder wound healing in the body, no study has examined how diabetes impacts the brain's innate immune reparative response (involving cells called microglia) to vascular injury. Here we show that microglial responses to brain microbleeds were diminished in diabetic animals, which also exacerbated secondary leakage from damaged vessels. These impairments were related to abnormally high levels of the proinflammatory cytokine IFN-γ because reducing IFN-γ with immunosuppressant drugs or blocking antibodies helped restore normal microglial responses and repair of damaged vessels. These data highlight the use of IFN-γ modulating therapeutics to enhance vascular repair in at-risk populations.


Asunto(s)
Corteza Cerebral/inmunología , Hemorragia Cerebral/inmunología , Diabetes Mellitus Tipo 1/inmunología , Interferón gamma/inmunología , Microglía/inmunología , Animales , Corteza Cerebral/irrigación sanguínea , Hemorragia Cerebral/complicaciones , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/inmunología , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/complicaciones , Modelos Animales de Enfermedad , Encefalitis/sangre , Encefalitis/complicaciones , Encefalitis/inmunología , Masculino , Ratones Endogámicos C57BL , Imagen Óptica
10.
Hum Mol Genet ; 26(24): 4823-4835, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29036636

RESUMEN

Aging is the major risk factor for several neurodegenerative diseases, including Alzheimer's disease (AD). However, the mechanisms by which aging contributes to neurodegeneration remain elusive. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a transcription factor that regulates expression of a vast number of genes by binding to the antioxidant response element. Nrf2 levels decrease as a function of age, and reduced Nrf2 levels have been reported in postmortem human brains and animal models of AD. Nevertheless, it is still unknown whether Nrf2 plays a role in the cognitive deficits associated with AD. To address this question, we used a genetic approach to remove the Nrf2 gene from APP/PS1 mice, a widely used animal model of AD. We found that the lack of Nrf2 significantly exacerbates cognitive deficits in APP/PS1, without altering gross motor function. Specifically, we found an exacerbation of deficits in spatial learning and memory, as well as in working and associative memory. Different brain regions control these behavioral tests, indicating that the lack of Nrf2 has a global effect on brain function. The changes in cognition were linked to an increase in Aß and interferon-gamma (IFNγ) levels, and microgliosis. The changes in IFNγ levels are noteworthy as previously published evidence indicates that IFNγ can increase microglia activation and induce Aß production. Our data suggest a clear link between Nrf2 and AD-mediated cognitive decline and further strengthen the connection between Nrf2 and AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Trastornos del Conocimiento/genética , Factor 2 Relacionado con NF-E2/deficiencia , Factor 2 Relacionado con NF-E2/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/psicología , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Encéfalo/metabolismo , Trastornos del Conocimiento/metabolismo , Modelos Animales de Enfermedad , Femenino , Masculino , Trastornos de la Memoria/genética , Ratones , Ratones Transgénicos , Factor 2 Relacionado con NF-E2/metabolismo , Presenilina-1/genética
11.
J Pharmacol Exp Ther ; 369(1): 9-25, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30709867

RESUMEN

Increasing evidence indicates that decreased brain blood flow, increased reactive oxygen species (ROS) production, and proinflammatory mechanisms accelerate neurodegenerative disease progression such as that seen in vascular contributions to cognitive impairment and dementia (VCID) and Alzheimer's disease and related dementias. There is a critical clinical need for safe and effective therapies for the treatment and prevention of cognitive impairment known to occur in patients with VCID and chronic inflammatory diseases such as heart failure (HF), hypertension, and diabetes. This study used our mouse model of VCID/HF to test our novel glycosylated angiotensin-(1-7) peptide Ang-1-6-O-Ser-Glc-NH2 (PNA5) as a therapy to treat VCID and to investigate circulating inflammatory biomarkers that may be involved. We demonstrate that PNA5 has greater brain penetration compared with the native angiotensin-(1-7) peptide. Moreover, after treatment with 1.0/mg/kg, s.c., for 21 days, PNA5 exhibits up to 10 days of sustained cognitive protective effects in our VCID/HF mice that last beyond the peptide half-life. PNA5 reversed object recognition impairment in VCID/HF mice and rescued spatial memory impairment. PNA5 activation of the Mas receptor results in a dose-dependent inhibition of ROS in human endothelial cells. Last, PNA5 treatment decreased VCID/HF-induced activation of brain microglia/macrophages and inhibited circulating tumor necrosis factor α, interleukin (IL)-7, and granulocyte cell-stimulating factor serum levels while increasing that of the anti-inflammatory cytokine IL-10. These results suggest that PNA5 is an excellent candidate and "first-in-class" therapy for treating VCID and other inflammation-related brain diseases.


Asunto(s)
Angiotensina I/química , Angiotensina I/farmacología , Disfunción Cognitiva/complicaciones , Disfunción Cognitiva/tratamiento farmacológico , Demencia Vascular/complicaciones , Memoria/efectos de los fármacos , Fragmentos de Péptidos/química , Fragmentos de Péptidos/farmacología , Proteínas Proto-Oncogénicas/agonistas , Receptores Acoplados a Proteínas G/agonistas , Angiotensina I/farmacocinética , Angiotensina I/uso terapéutico , Animales , Conducta Animal/efectos de los fármacos , Biomarcadores/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/fisiopatología , Electrocardiografía , Glicosilación , Semivida , Insuficiencia Cardíaca/complicaciones , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Inflamación/fisiopatología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Fragmentos de Péptidos/farmacocinética , Fragmentos de Péptidos/uso terapéutico , Proto-Oncogenes Mas , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Memoria Espacial/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos
12.
Neurobiol Dis ; 112: 63-78, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29331263

RESUMEN

Following stroke, the damaged tissue undergoes liquefactive necrosis, a stage of infarct resolution that lasts for months although the exact length of time is currently unknown. One method of repair involves reactive astrocytes and microglia forming a glial scar to compartmentalize the area of liquefactive necrosis from the rest of the brain. The formation of the glial scar is a critical component of the healing response to stroke, as well as other central nervous system (CNS) injuries. The goal of this study was to evaluate the toxicity of the extracellular fluid present in areas of liquefactive necrosis and determine how effectively it is segregated from the remainder of the brain. To accomplish this goal, we used a mouse model of stroke in conjunction with an extracellular fluid toxicity assay, fluorescent and electron microscopy, immunostaining, tracer injections into the infarct, and multiplex immunoassays. We confirmed that the extracellular fluid present in areas of liquefactive necrosis following stroke is toxic to primary cortical and hippocampal neurons for at least 7 weeks following stroke, and discovered that although glial scars are robust physical and endocytic barriers, they are nevertheless permeable. We found that molecules present in the area of liquefactive necrosis can leak across the glial scar and are removed by a combination of paravascular clearance and microglial endocytosis in the adjacent tissue. Despite these mechanisms, there is delayed atrophy, cytotoxic edema, and neuron loss in regions adjacent to the infarct for weeks following stroke. These findings suggest that one mechanism of neurodegeneration following stroke is the failure of glial scars to impermeably segregate areas of liquefactive necrosis from surviving brain tissue.


Asunto(s)
Infarto Cerebral/metabolismo , Cicatriz/metabolismo , Gliosis/metabolismo , Neuroglía/metabolismo , Accidente Cerebrovascular/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Células Cultivadas , Infarto Cerebral/patología , Cicatriz/patología , Gliosis/patología , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Neuroglía/patología , Accidente Cerebrovascular/patología
15.
Brain Behav Immun ; 64: 1-8, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27531189

RESUMEN

Post-stroke cognitive decline and dementia pose a significant public health problem, with 30% of stroke survivors suffering from dementia. The reason for this high prevalence is not well understood. Pathogenic B cell responses to the damaged CNS are one possible contributing factor. B-lymphocytes and antibodies are present in and around the stroke core of some human subjects who die with stroke and dementia, and mice that develop delayed cognitive dysfunction after stroke have clusters of B-lymphocytes in the stroke lesion, and antibody infiltration in the stroked hemisphere. The ablation of B-lymphocytes prevents post-stroke cognitive impairment in mice. Multiple drugs that target B cells are FDA approved, and so if pathogenic B cell responses are occurring in a subset of stroke patients, this is potentially treatable. However, it has also been demonstrated that regulatory B cells can be beneficial in mouse models of stroke. Consequently, it is important to understand the relative contribution of B-lymphocytes to recovery versus pathogenicity, and if this balance is heterogeneous in different individuals. Therefore, the purpose of this review is to summarize the current state of knowledge with regard to the role of B-lymphocytes in the etiology of post-stroke dementia.


Asunto(s)
Autoinmunidad , Linfocitos B/fisiología , Demencia/etiología , Demencia/inmunología , Accidente Cerebrovascular/complicaciones , Animales , Humanos
16.
J Neurosci ; 35(5): 2133-45, 2015 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-25653369

RESUMEN

Each year, 10 million people worldwide survive the neurologic injury associated with a stroke. Importantly, stroke survivors have more than twice the risk of subsequently developing dementia compared with people who have never had a stroke. The link between stroke and the later development of dementia is not understood. There are reports of oligoclonal bands in the CSF of stroke patients, suggesting that in some people a B-lymphocyte response to stroke may occur in the CNS. Therefore, we tested the hypothesis that a B-lymphocyte response to stroke could contribute to the onset of dementia. We discovered that, in mouse models, activated B-lymphocytes infiltrate infarcted tissue in the weeks after stroke. B-lymphocytes undergo isotype switching, and IgM, IgG, and IgA antibodies are found in the neuropil adjacent to the lesion. Concurrently, mice develop delayed deficits in LTP and cognition. Genetic deficiency, and the pharmacologic ablation of B-lymphocytes using an anti-CD20 antibody, prevents the appearance of delayed cognitive deficits. Furthermore, immunostaining of human postmortem tissue revealed that a B-lymphocyte response to stroke also occurs in the brain of some people with stroke and dementia. These data suggest that some stroke patients may develop a B-lymphocyte response to stroke that contributes to dementia, and is potentially treatable with FDA-approved drugs that target B cells.


Asunto(s)
Subgrupos de Linfocitos B/inmunología , Demencia/etiología , Infarto de la Arteria Cerebral Media/inmunología , Anciano , Animales , Estudios de Casos y Controles , Demencia/inmunología , Demencia/fisiopatología , Femenino , Humanos , Inmunoglobulinas/inmunología , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/fisiopatología , Potenciación a Largo Plazo , Masculino , Aprendizaje por Laberinto , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL
17.
Glia ; 62(8): 1227-40, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24733756

RESUMEN

Astrocytes limit inflammation after CNS injury, at least partially by physically containing it within an astrocytic scar at the injury border. We report here that astrocytic transforming growth factor-beta (TGFß) signaling is a second, distinct mechanism that astrocytes utilize to limit neuroinflammation. TGFßs are anti-inflammatory and neuroprotective cytokines that are upregulated subacutely after stroke, during a clinically accessible time window. We have previously demonstrated that TGFßs signal to astrocytes, neurons and microglia in the stroke border days after stroke. To investigate whether TGFß affects astrocyte immunoregulatory functions, we engineered "Ast-Tbr2DN" mice where TGFß signaling is inhibited specifically in astrocytes. Despite having a similar infarct size to wildtype controls, Ast-Tbr2DN mice exhibited significantly more neuroinflammation during the subacute period after distal middle cerebral occlusion (dMCAO) stroke. The peri-infarct cortex of Ast-Tbr2DN mice contained over 60% more activated CD11b(+) monocytic cells and twice as much immunostaining for the activated microglia and macrophage marker CD68 than controls. Astrocytic scarring was not altered in Ast-Tbr2DN mice. However, Ast-Tbr2DN mice were unable to upregulate TGF-ß1 and its activator thrombospondin-1 2 days after dMCAO. As a result, the normal upregulation of peri-infarct TGFß signaling was blunted in Ast-Tbr2DN mice. In this setting of lower TGFß signaling and excessive neuroinflammation, we observed worse motor outcomes and late infarct expansion after photothrombotic motor cortex stroke. Taken together, these data demonstrate that TGFß signaling is a molecular mechanism by which astrocytes limit neuroinflammation, activate TGFß in the peri-infarct cortex and preserve brain function during the subacute period after stroke.


Asunto(s)
Astrocitos/inmunología , Corteza Cerebral/inmunología , Infarto de la Arteria Cerebral Media/inmunología , Accidente Cerebrovascular/inmunología , Factor de Crecimiento Transformador beta/metabolismo , Animales , Astrocitos/patología , Antígeno CD11b/metabolismo , Corteza Cerebral/patología , Modelos Animales de Enfermedad , Femenino , Infarto de la Arteria Cerebral Media/patología , Macrófagos/patología , Macrófagos/fisiología , Ratones Transgénicos , Microglía/inmunología , Microglía/patología , Monocitos/patología , Monocitos/fisiología , Actividad Motora/fisiología , Neuroinmunomodulación/fisiología , Transducción de Señal , Accidente Cerebrovascular/patología , Trombospondina 1/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta1/metabolismo
18.
Physiol Rep ; 12(12): e16118, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38923318

RESUMEN

Stroke is a pervasive and debilitating global health concern, necessitating innovative therapeutic strategies, especially during recovery. While existing literature often focuses on acute interventions, our study addresses the uniqueness of brain tissue during wound healing, emphasizing the chronic phase following the commonly used middle cerebral artery (MCA) occlusion model. Using clinically relevant endpoints in male and female mice such as magnetic resonance imaging (MRI) and plasma neurofilament light (NFL) measurement, along with immunohistochemistry, we describe injury evolution. Our findings document significant alterations in edema, tissue remodeling, and gadolinium leakage through MRI. Plasma NFL concentration remained elevated at 30 days poststroke. Microglia responses are confined to the region adjacent to the injury, rather than continued widespread activation, and boron-dipyrromethene (BODIPY) staining demonstrated the persistent presence of foam cells within the infarct. Additional immunohistochemistry highlighted sustained B and T lymphocyte presence in the poststroke brain. These observations underscore potentially pivotal roles played by chronic inflammation brought on by the lipid-rich brain environment, and chronic blood-brain barrier dysfunction, in the development of secondary neurodegeneration. This study sheds light on the enduring consequences of ischemic stroke in the most used rodent stroke model and provides valuable insights for future research, clinical strategies, and therapeutic development.


Asunto(s)
Accidente Cerebrovascular Isquémico , Ratones Endogámicos C57BL , Animales , Masculino , Ratones , Femenino , Accidente Cerebrovascular Isquémico/patología , Accidente Cerebrovascular Isquémico/diagnóstico por imagen , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/sangre , Infarto de la Arteria Cerebral Media/patología , Modelos Animales de Enfermedad , Inflamación/patología , Encéfalo/patología , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Barrera Hematoencefálica/patología , Barrera Hematoencefálica/metabolismo , Imagen por Resonancia Magnética , Daño por Reperfusión/patología , Daño por Reperfusión/metabolismo , Proteínas de Neurofilamentos
19.
J Cereb Blood Flow Metab ; 43(7): 1099-1114, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36772984

RESUMEN

The goal of this study was to evaluate changes in metabolic homeostasis during the first 12 weeks of recovery in a distal middle cerebral artery occlusion mouse model of stroke. To achieve this goal, we compared the brain metabolomes of ipsilateral and contralateral hemispheres from aged male mice up to 12 weeks after stroke to that of age-matched naïve and sham mice. There were 707 biochemicals detected in each sample by liquid chromatography-mass spectroscopy (LC-MS). Mitochondrial fatty acid ß-oxidation, indicated by acyl carnitine levels, was increased in stroked tissue at 1 day and 4 weeks following stroke. Glucose and several glycolytic intermediates were elevated in the ipsilateral hemisphere for 12 weeks compared to the aged naïve controls, but pyruvate was decreased. Additionally, itaconate, a glycolysis inhibitor associated with activation of anti-inflammatory mechanisms in myeloid cells, was higher in the same comparisons. Spatial transcriptomics and RNA in situ hybridization localized these alterations to microglia within the area of axonal degeneration. These results indicate that chronic metabolic differences exist between stroked and control brains, including alterations in fatty acid metabolism and glycolysis within microglia in areas of degenerating white matter for at least 12 weeks after stroke.


Asunto(s)
Accidente Cerebrovascular , Sustancia Blanca , Ratones , Masculino , Animales , Microglía/metabolismo , Sustancia Blanca/metabolismo , Accidente Cerebrovascular/metabolismo , Glucólisis , Ácidos Grasos/metabolismo
20.
bioRxiv ; 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37986739

RESUMEN

Objective: We sought to create and characterize a mouse model of the inflammatory, cerebral demyelinating phenotype of X-linked adrenoleukodystrophy (ALD) that would facilitate the study of disease pathogenesis and therapy development. We also sought to cross-validate potential therapeutic targets such as fibrin, oxidative stress, and the NLRP3 inflammasome, in post-mortem human and murine brain tissues. Background: ALD is caused by mutations in the gene ABCD1 encoding a peroxisomal transporter. More than half of males with an ABCD1 mutation develop the cerebral phenotype (cALD). Incomplete penetrance and absence of a genotype-phenotype correlation imply a role for environmental triggers. Mechanistic studies have been limited by the absence of a cALD phenotype in the Abcd1-null mouse. Methods: We generated a cALD phenotype in 8-week-old, male Abcd1-null mice by deploying a two-hit method that combines cuprizone (CPZ) and experimental autoimmune encephalomyelitis (EAE) models. We employed in vivo MRI and post-mortem immunohistochemistry to evaluate myelin loss, astrogliosis, blood-brain barrier (BBB) disruption, immune cell infiltration, fibrin deposition, oxidative stress, and Nlrp3 inflammasome activation in mice. We used bead-based immunoassay and immunohistochemistry to evaluate IL-18 in CSF and post-mortem human cALD brain tissue. Results: MRI studies revealed T2 hyperintensities and post-gadolinium enhancement in the medial corpus callosum of cALD mice, similar to human cALD lesions. Both human and mouse cALD lesions shared common histologic features of myelin phagocytosis, myelin loss, abundant microglial activation, T and B-cell infiltration, and astrogliosis. Compared to wild-type controls, Abcd1-null mice had more severe cerebral inflammation, demyelination, fibrin deposition, oxidative stress, and IL-18 activation. IL-18 immunoreactivity co-localized with macrophages/microglia in the perivascular region of both human and mouse brain tissue. Interpretation: This novel mouse model of cALD suggests loss of Abcd1 function predisposes to more severe cerebral inflammation, oxidative stress, fibrin deposition, and Nlrp3 pathway activation, which parallels the findings seen in humans with cALD. We expect this model to enable long-sought investigations into cALD mechanisms and accelerate development of candidate therapies for lesion prevention, cessation, and remyelination.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA