Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(7): 107469, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38876305

RESUMEN

Leucine rich repeat kinase 2 (LRRK2) is a large multidomain protein containing two catalytic domains, a kinase and a GTPase, as well as protein interactions domains, including a WD40 domain. The association of increased LRRK2 kinase activity with both the familial and sporadic forms of Parkinson's disease has led to an intense interest in determining its cellular function. However, small molecule probes that can bind to LRRK2 and report on or affect its cellular activity are needed. Here, we report the identification and characterization of the first high-affinity LRRK2-binding designed ankyrin-repeat protein (DARPin), named E11. Using cryo-EM, we show that DARPin E11 binds to the LRRK2 WD40 domain. LRRK2 bound to DARPin E11 showed improved behavior on cryo-EM grids, resulting in higher resolution LRRK2 structures. DARPin E11 did not affect the catalytic activity of a truncated form of LRRK2 in vitro but decreased the phosphorylation of Rab8A, a LRRK2 substrate, in cells. We also found that DARPin E11 disrupts the formation of microtubule-associated LRRK2 filaments in cells, which are known to require WD40-based dimerization. Thus, DARPin E11 is a new tool to explore the function and dysfunction of LRRK2 and guide the development of LRRK2 kinase inhibitors that target the WD40 domain instead of the kinase.

2.
PLoS Pathog ; 19(5): e1011368, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37155700

RESUMEN

The bacterial human pathogen Helicobacter pylori produces a type IV secretion system (cagT4SS) to inject the oncoprotein CagA into gastric cells. The cagT4SS external pilus mediates attachment of the apparatus to the target cell and the delivery of CagA. While the composition of the pilus is unclear, CagI is present at the surface of the bacterium and required for pilus formation. Here, we have investigated the properties of CagI by an integrative structural biology approach. Using Alpha Fold 2 and Small Angle X-ray scattering, it was found that CagI forms elongated dimers mediated by rod-shape N-terminal domains (CagIN) prolonged by globular C-terminal domains (CagIC). Three Designed Ankyrin Repeat Proteins (DARPins) K2, K5 and K8 selected against CagI interacted with CagIC with subnanomolar affinities. The crystal structures of the CagI:K2 and CagI:K5 complexes were solved and identified the interfaces between the molecules, thereby providing a structural explanation for the difference in affinity between the two binders. Purified CagI and CagIC were found to interact with adenocarcinoma gastric (AGS) cells, induced cell spreading and the interaction was inhibited by K2. The same DARPin inhibited CagA translocation by up to 65% in AGS cells while inhibition levels were 40% and 30% with K8 and K5, respectively. Our study suggests that CagIC plays a key role in cagT4SS-mediated CagA translocation and that DARPins targeting CagI represent potent inhibitors of the cagT4SS, a crucial risk factor for gastric cancer development.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Humanos , Proteínas Bacterianas/metabolismo , Antígenos Bacterianos/metabolismo , Sistemas de Secreción Tipo IV/genética , Sistemas de Secreción Tipo IV/metabolismo , Proteínas de Repetición de Anquirina Diseñadas , Helicobacter pylori/metabolismo , Infecciones por Helicobacter/microbiología
3.
PLoS Pathog ; 17(12): e1010083, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34910784

RESUMEN

Mammalian adenoviruses (AdVs) comprise more than ~350 types including over 100 human (HAdVs) and just three mouse AdVs (MAdVs). While most HAdVs initiate infection by high affinity/avidity binding of their fiber knob (FK) protein to either coxsackievirus AdV receptor (CAR), CD46 or desmoglein (DSG)-2, MAdV-1 (M1) infection requires arginine-glycine-aspartate (RGD) binding integrins. To identify the receptors mediating MAdV infection we generated five novel reporter viruses for MAdV-1/-2/-3 (M1, M2, M3) transducing permissive murine (m) CMT-93 cells, but not B16 mouse melanoma cells expressing mCAR, human (h) CD46 or hDSG-2. Recombinant M1 or M3 FKs cross-blocked M1 and M3 but not M2 infections. Profiling of murine and human cells expressing RGD-binding integrins suggested that αvß6 and αvß8 heterodimers are associated with M1 and M3 infections. Ectopic expression of mß6 in B16 cells strongly enhanced M1 and M3 binding, infection, and progeny production comparable with mαvß6-positive CMT-93 cells, whereas mß8 expressing cells were more permissive to M1 than M3. Anti-integrin antibodies potently blocked M1 and M3 binding and infection of CMT-93 cells and hαvß8-positive M000216 cells. Soluble integrin αvß6, and synthetic peptides containing the RGDLXXL sequence derived from FK-M1, FK-M3 and foot and mouth disease virus coat protein strongly interfered with M1/M3 infections, in agreement with high affinity interactions of FK-M1/FK-M3 with αvß6/αvß8, determined by surface plasmon resonance measurements. Molecular docking simulations of ternary complexes revealed a bent conformation of RGDLXXL-containing FK-M3 peptides on the subunit interface of αvß6/ß8, where the distal leucine residue dips into a hydrophobic pocket of ß6/8, the arginine residue ionically engages αv aspartate215, and the aspartate residue coordinates a divalent cation in αvß6/ß8. Together, the RGDLXXL-bearing FKs are part of an essential mechanism for M1/M3 infection engaging murine and human αvß6/8 integrins. These integrins are highly conserved in other mammals, and may favour cross-species virus transmission.


Asunto(s)
Infecciones por Adenoviridae/metabolismo , Adenoviridae/metabolismo , Antígenos de Neoplasias/metabolismo , Integrinas/metabolismo , Receptores Virales/metabolismo , Animales , Humanos , Ratones
4.
Bioconjug Chem ; 33(9): 1595-1601, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-35944553

RESUMEN

Efficient and cell-specific delivery of DNA is essential for the effective and safe use of gene delivery technologies. Consequently, a large variety of technologies have been developed and applied in a wide range of ex vivo and in vivo applications, including multiple approaches based on viral vectors. However, widespread success of a technology is largely determined by the versatility of the method and the ease of use. The rationally designed adapter technology previously developed redirects widely used human adenovirus serotype 5 (HAdV-C5) to a defined cell population, by binding and blocking the adenoviral knob tropism while simultaneously allowing fusions of an N-terminal retargeting module. Here we expand modularity, and thus applicability of this adapter technology, by extending the nature of the cell-binding portion. We report successful receptor-specific transduction mediated by a retargeting module consisting of either a DARPin, a single-chain variable fragment (scFv) of an antibody, a peptide, or a small molecule ligand. Furthermore, we show that an adapter can be engineered to carry more than one specificity, allowing dual targeting. Specific HAdV-C5 retargeting was thus demonstrated to human epidermal growth factor receptor 2 (HER2), human folate receptor α, and neurotensin receptor 1, effective at vector concentrations as low as a multiplicity of infection of 2.5. Therefore, we report a modular design which allows plug-and-play combinations of different binding modules, leading to efficient and specific mono- or dual-targeting while circumventing tedious optimization procedures. This extends the technology to combinational applications of cell-specific binding, supporting research in gene therapy, synthetic biology, and biotechnology.


Asunto(s)
Adenoviridae , Anticuerpos de Cadena Única , Adenoviridae/genética , Receptor 1 de Folato/metabolismo , Terapia Genética , Vectores Genéticos , Humanos , Ligandos , Receptores de Neurotensina/metabolismo , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/metabolismo
5.
Mol Pharm ; 19(10): 3576-3585, 2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-35434995

RESUMEN

Designed ankyrin repeat proteins (DARPins) are genetically engineered proteins that exhibit high specificity and affinity toward specific targets. Here, the G3-DARPin, which binds the HER2/neu receptor, was site-specifically modified with enzymatic methods and 89Zr-radiolabeled for applications in positron emission tomography (PET). Sortase A transpeptidation was used to install a desferrioxamine B (DFO) chelate bearing a reactive triglycine group to the C-terminal sortase tag of the G3-DARPin, and 89Zr-radiolabeling produced a novel 89ZrDFO-G3-DARPin radiotracer that can detect HER2/neu-positive tumors. The triglycine probe, DFO-Gly3 (1), was synthesized in 29% overall yield. After sortase A transpeptidation and purification from the nonfunctionalized protein component, the DFO-G3-DARPin product was radiolabeled to give 89ZrDFO-G3-DARPin. Binding specificity was assessed in HER2/neu-expressing BT-474 and SK-OV-3 cellular assays. The pharmacokinetics, tumor uptake, and specificity of 89ZrDFO-G3-DARPin were measured in vivo by PET imaging and confirmed by final time point (24 h) biodistribution experiments in female athymic nude mice bearing BT-474 xenografts. Sortase A transpeptidation afforded the site-specific and stoichiometrically precise functionalization of DFO-G3-DARPin with one chelate per protein. The modified DFO-G3-DARPin was purified from the nonfunctionalized DARPin by using Ni-NTA affinity chromatography. 89ZrDFO-G3-DARPin was obtained with a radiochemical purity of >95% measured by radio-size-exclusion chromatography. BT-474 tumor uptake at 24 h postadministration reached 4.41 ± 0.67 %ID/g (n = 3) with an approximate ∼70% reduction in tumor-associated activity in the blocking group (1.26 ± 0.29 %ID/g; 24 h postadministration, n = 5, P-value of <0.001). Overall, the site-specific, enzyme-mediated functionalization and characterization of 89ZrDFO-G3-DARPin in HER2/neu positive BT-474 xenografts demonstrate that DARPins are an attractive platform for generating a new class of protein-based radiotracers for PET. The specific uptake and retention of 89ZrDFO-G3-DARPin in tumors and clearance from most background tissues produced PET images with high tumor-to-background contrast.


Asunto(s)
Proteínas de Repetición de Anquirina Diseñadas , Receptor ErbB-2 , Animales , Línea Celular Tumoral , Deferoxamina/química , Femenino , Humanos , Ratones , Ratones Desnudos , Tomografía de Emisión de Positrones/métodos , Receptor ErbB-2/metabolismo , Distribución Tisular , Circonio/química
6.
Proc Natl Acad Sci U S A ; 116(20): 9859-9864, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31036638

RESUMEN

Nucleation is one of the least understood steps of microtubule dynamics. It is a kinetically unfavorable process that is templated in the cell by the γ-tubulin ring complex or by preexisting microtubules; it also occurs in vitro from pure tubulin. Here we study the nucleation inhibition potency of natural or artificial proteins in connection with their binding mode to the longitudinal surface of α- or ß-tubulin. The structure of tubulin-bound CopN, a Chlamydia protein that delays nucleation, suggests that this protein may interfere with two protofilaments at the (+) end of a nucleus. Designed ankyrin repeat proteins that share a binding mode similar to that of CopN also impede nucleation, whereas those that target only one protofilament do not. In addition, an αRep protein predicted to target two protofilaments at the (-) end does not delay nucleation, pointing to different behaviors at both ends of the nucleus. Our results link the interference with protofilaments at the (+) end and the inhibition of nucleation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Chlamydophila pneumoniae
7.
Proc Natl Acad Sci U S A ; 110(10): E869-77, 2013 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-23431166

RESUMEN

Adenoviruses (Ads) have shown promise as vectors for gene delivery in clinical trials. Efficient viral targeting to a tissue of choice requires both ablation of the virus' original tropism and engineering of an efficient receptor-mediated uptake by a specific cell population. We have developed a series of adapters binding to the virus with such high affinity that they remain fully bound for >10 d, block its natural receptor binding site and mediate interaction with a surface receptor of choice. The adapter contains two fused modules, both consisting of designed ankyrin repeat proteins (DARPins), one binding to the fiber knob of adenovirus serotype 5 and the other binding to various tumor markers. By solving the crystal structure of the complex of the trimeric knob with three bound DARPins at 1.95-Å resolution, we could use computer modeling to design a link to a trimeric protein of extraordinary kinetic stability, the capsid protein SHP from the lambdoid phage 21. We arrived at a module which binds the knob like a trimeric clamp. When this clamp was fused with DARPins of varying specificities, it enabled adenovirus serotype 5-mediated delivery of a transgene in a human epidermal growth factor receptor 2-, epidermal growth factor receptor-, or epithelial cell adhesion molecule-dependent manner with transduction efficiencies comparable to or even exceeding those of Ad itself. With these adapters, efficiently produced in Escherichia coli, Ad can be converted rapidly to new receptor specificities using any ligand as the receptor-binding moiety. Prefabricated Ads with different payloads thus can be retargeted readily to many cell types of choice.


Asunto(s)
Adenovirus Humanos/genética , Ingeniería de Proteínas/métodos , Adenovirus Humanos/metabolismo , Repetición de Anquirina/genética , Línea Celular Tumoral , Cristalografía por Rayos X , Escherichia coli/genética , Técnicas de Transferencia de Gen , Terapia Genética , Vectores Genéticos , Células HEK293 , Humanos , Modelos Moleculares , Unión Proteica , Estructura Cuaternaria de Proteína , Receptor ErbB-2/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
8.
Proc Natl Acad Sci U S A ; 109(30): 12011-6, 2012 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-22778434

RESUMEN

Microtubules are cytoskeleton filaments consisting of αß-tubulin heterodimers. They switch between phases of growth and shrinkage. The underlying mechanism of this property, called dynamic instability, is not fully understood. Here, we identified a designed ankyrin repeat protein (DARPin) that interferes with microtubule assembly in a unique manner. The X-ray structure of its complex with GTP-tubulin shows that it binds to the ß-tubulin surface exposed at microtubule (+) ends. The details of the structure provide insight into the role of GTP in microtubule polymerization and the conformational state of tubulin at the very microtubule end. They show in particular that GTP facilitates the tubulin structural switch that accompanies microtubule assembly but does not trigger it in unpolymerized tubulin. Total internal reflection fluorescence microscopy revealed that the DARPin specifically blocks growth at the microtubule (+) end by a selective end-capping mechanism, ultimately favoring microtubule disassembly from that end. DARPins promise to become designable tools for the dissection of microtubule dynamic properties selective for either of their two different ends.


Asunto(s)
Repetición de Anquirina/fisiología , Microtúbulos/metabolismo , Modelos Moleculares , Complejos Multiproteicos/metabolismo , Tubulina (Proteína)/metabolismo , Animales , Repetición de Anquirina/genética , Cristalografía por Rayos X , Cartilla de ADN/genética , Polarización de Fluorescencia , Guanosina Trifosfato/metabolismo , Microscopía Fluorescente , Ingeniería de Proteínas/métodos , Xenopus
9.
J Virol ; 87(10): 5868-81, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23487463

RESUMEN

Here, we applied the designed ankyrin repeat protein (DARPin) technology to develop novel gp120-directed binding molecules with HIV entry-inhibiting capacity. DARPins are interesting molecules for HIV envelope inhibitor design, as their high-affinity binding differs from that of antibodies. DARPins in general prefer epitopes with a defined folded structure. We probed whether this capacity favors the selection of novel gp120-reactive molecules with specificities in epitope recognition and inhibitory activity that differ from those found among neutralizing antibodies. The preference of DARPins for defined structures was notable in our selections, since of the four gp120 modifications probed as selection targets, gp120 arrested by CD4 ligation proved the most successful. Of note, all the gp120-specific DARPin clones with HIV-neutralizing activity isolated recognized their target domains in a conformation-dependent manner. This was particularly pronounced for the V3 loop-specific DARPin 5m3_D12. In stark contrast to V3-specific antibodies, 5m3_D12 preferentially recognized the V3 loop in a specific conformation, as probed by structurally arrested V3 mimetic peptides, but bound linear V3 peptides only very weakly. Most notably, this conformation-dependent V3 recognition allowed 5m3_D12 to bypass the V1V2 shielding of several tier 2 HIV isolates and to neutralize these viruses. These data provide a proof of concept that the DARPin technology holds promise for the development of HIV entry inhibitors with a unique mechanism of action.


Asunto(s)
Repetición de Anquirina , Proteína gp120 de Envoltorio del VIH/metabolismo , Inhibidores de Fusión de VIH/metabolismo , Proteínas/metabolismo , Inhibidores de Fusión de VIH/aislamiento & purificación , Humanos , Unión Proteica , Conformación Proteica , Proteínas/aislamiento & purificación
10.
ACS Nano ; 18(12): 8919-8933, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38489155

RESUMEN

The orchestrated assembly of actin and actin-binding proteins into cytoskeletal structures coordinates cell morphology changes during migration, cytokinesis, and adaptation to external stimuli. The accurate and unbiased visualization of the diverse actin assemblies within cells is an ongoing challenge. We describe here the identification and use of designed ankyrin repeat proteins (DARPins) as synthetic actin binders. Actin-binding DARPins were identified through ribosome display and validated biochemically. When introduced or expressed inside living cells, fluorescently labeled DARPins accumulated at actin filaments, validated through phalloidin colocalization on fixed cells. Nevertheless, different DARPins displayed different actin labeling patterns: some DARPins labeled efficiently dynamic structures, such as filopodia, lamellipodia, and blebs, while others accumulated primarily in stress fibers. This differential intracellular distribution correlated with DARPin-actin binding kinetics, as measured by fluorescence recovery after photobleaching experiments. Moreover, the rapid arrest of actin dynamics induced by pharmacological treatment led to the fast relocalization of DARPins. Our data support the hypothesis that the localization of actin probes depends on the inherent dynamic movement of the actin cytoskeleton. Compared to the widely used LifeAct probe, one DARPin exhibited enhanced signal-to-background ratio while retaining a similar ability to label stress fibers. In summary, we propose DARPins as promising actin-binding proteins for labeling or manipulation in living cells.


Asunto(s)
Actinas , Proteínas de Repetición de Anquirina Diseñadas , Actinas/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto de Actina/metabolismo , Proteínas de Microfilamentos/metabolismo
11.
ACS Sens ; 9(6): 2846-2857, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38807313

RESUMEN

Despite the significant potential of protein biosensors, their construction remains a trial-and-error process. The most obvious approach for addressing this is to utilize modular biosensor architectures where specificity-conferring modalities can be readily generated to recognize new targets. Toward this goal, we established a workflow that uses mRNA display-based selection of hyper-stable monobody domains for the target of choice or ribosome display to select equally stable DARPins. These binders were integrated into a two-component allosteric biosensor architecture based on a calmodulin-reporter chimera. This workflow was tested by developing biosensors for liver toxicity markers such as cytosolic aspartate aminotransferase, mitochondrial aspartate aminotransferase, and alanine aminotransferase 1. We demonstrate that our pipeline consistently produced >103 unique binders for each target within a week. Our analysis revealed that the affinity of the binders for their targets was not a direct predictor of the binder's performance in a biosensor context. The interactions between the binding domains and the reporter module affect the biosensor activity and the dynamic range. We conclude that following binding domain selection, the multiplexed biosensor assembly and prototyping appear to be the most promising approach for identifying biosensors with the desired properties.


Asunto(s)
Técnicas Biosensibles , ARN Mensajero , Técnicas Biosensibles/métodos , ARN Mensajero/genética , ARN Mensajero/análisis , Humanos , Calmodulina/química , Calmodulina/genética , Calmodulina/metabolismo
12.
J Biol Chem ; 287(37): 31085-94, 2012 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-22791712

RESUMEN

In cells, microtubule dynamics is regulated by stabilizing and destabilizing factors. Whereas proteins in both categories have been identified, their mechanism of action is rarely understood at the molecular level. This is due in part to the difficulties faced in structural approaches to obtain atomic models when tubulin is involved. Here, we design and characterize new stathmin-like domain (SLD) proteins that sequester tubulins in numbers different from two, the number of tubulins bound by stathmin or by the SLD of RB3, two stathmin family members that have been extensively studied. We established rules for the design of tight tubulin-SLD assemblies and applied them to complexes containing one to four tubulin heterodimers. Biochemical and structural experiments showed that the engineered SLDs behaved as expected. The new SLDs will be tools for structural studies of microtubule regulation. The larger complexes will be useful for cryo-electron microscopy, whereas crystallography or nuclear magnetic resonance will benefit from the 1:1 tubulin-SLD assembly. Finally, our results provide new insight into SLD function, suggesting that a major effect of these phosphorylatable proteins is the programmed release of sequestered tubulin for microtubule assembly at the specific cellular locations of members of the stathmin family.


Asunto(s)
Microtúbulos/química , Modelos Químicos , Multimerización de Proteína/fisiología , Tubulina (Proteína)/química , Animales , Microtúbulos/genética , Microtúbulos/metabolismo , Ingeniería de Proteínas , Estructura Terciaria de Proteína , Estatmina/química , Estatmina/genética , Estatmina/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
13.
RSC Chem Biol ; 4(7): 494-505, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37415866

RESUMEN

Late-stage prostate cancer often acquires resistance to conventional chemotherapies and transforms into a hormone-refractory, drug-resistant, and non-curative disease. Developing non-invasive tools to detect the biochemical changes that correlate with drug efficacy and reveal the onset of drug resistance would have important ramifications in managing the treatment regimen for individual patients. Here, we report the selection of new Designed Ankyrin Repeat Proteins (DARPins) that show high affinity toward prostate-specific antigen (PSA), a biomarker used in clinical monitoring of prostate cancer. Ribosome display and in vitro screening tools were used to select PSA-binding DARPins based on their binding affinity, selectivity, and chemical constitution. Surface plasmon resonance measurements demonstrated that the four lead candidates bind to PSA with nanomolar affinity. DARPins were site-specifically functionalised at a unique C-terminal cysteine with a hexadentate aza-nonamacrocyclic chelate (NODAGA) for subsequent radiolabelling with the positron-emitting radionuclide 68Ga. [68Ga]GaNODAGA-DARPins showed high stability toward transchelation and were stable in human serum for >2 h. Radioactive binding assays using streptavidin-loaded magnetic beads confirmed that the functionalisation and radiolabelling did not compromise the specificity of [68Ga]GaNODAGA-DARPins toward PSA. Biodistribution experiments in athymic nude mice bearing subcutaneous prostate cancer xenografts derived from the LNCaP cell line revealed that three of the four [68Ga]GaNODAGA-DARPins displayed specific tumour-binding in vivo. For DARPin-6, tumour-uptake in the normal group reached 4.16 ± 0.58% ID g-1 (n = 3; 2 h post-administration) and was reduced by ∼50% by competitive binding with a low molar activity formulation (blocking group: 2.47 ± 0.42% ID g-1; n = 3; P value = 0.018). Collectively, the experimental results support the future development of new PSA-specific imaging agents for potential use in monitoring the efficacy of androgen receptor (AR)-targeted therapies.

14.
Nat Commun ; 14(1): 3787, 2023 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-37355687

RESUMEN

The actin cytoskeleton is of fundamental importance for cellular structure and plasticity. However, abundance and function of filamentous actin in the nucleus are still controversial. Here we show that the actin-based molecular motor myosin VI contributes to the stabilization of stalled or reversed replication forks. In response to DNA replication stress, myosin VI associates with stalled replication intermediates and cooperates with the AAA ATPase Werner helicase interacting protein 1 (WRNIP1) in protecting these structures from DNA2-mediated nucleolytic attack. Using functionalized affinity probes to manipulate myosin VI levels in a compartment-specific manner, we provide evidence for the direct involvement of myosin VI in the nucleus and against a contribution of the abundant cytoplasmic pool during the replication stress response.


Asunto(s)
Replicación del ADN , Proteínas de Unión al ADN , Proteínas de Unión al ADN/metabolismo , Actinas/metabolismo , Núcleo Celular/metabolismo
15.
Cell Death Dis ; 14(10): 674, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37828008

RESUMEN

The two p53 homologues p63 and p73 regulate transcriptional programs in epithelial tissues and several cell types in these tissues express both proteins. All members of the p53 family form tetramers in their active state through a dedicated oligomerization domain that structurally assembles as a dimer of dimers. The oligomerization domain of p63 and p73 share a high sequence identity, but the p53 oligomerization domain is more divergent and it lacks a functionally important C-terminal helix present in the other two family members. Based on these structural differences, p53 does not hetero-oligomerize with p63 or p73. In contrast, p63 and p73 form hetero-oligomers of all possible stoichiometries, with the hetero-tetramer built from a p63 dimer and a p73 dimer being thermodynamically more stable than the two homo-tetramers. This predicts that in cells expressing both proteins a p632/p732 hetero-tetramer is formed. So far, the tools to investigate the biological function of this hetero-tetramer have been missing. Here we report the generation and characterization of Designed Ankyrin Repeat Proteins (DARPins) that bind with high affinity and selectivity to the p632/p732 hetero-tetramer. Using these DARPins we were able to confirm experimentally the existence of this hetero-tetramer in epithelial mouse and human tissues and show that its level increases in squamous cell carcinoma.


Asunto(s)
Carcinoma de Células Escamosas , Factores de Transcripción , Animales , Humanos , Ratones , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Proteínas de Repetición de Anquirina Diseñadas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína Tumoral p73/genética , Proteína Tumoral p73/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/metabolismo
16.
Nat Struct Mol Biol ; 30(9): 1323-1336, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37605043

RESUMEN

The third variable (V3) loop on the human immunodeficiency virus 1 (HIV-1) envelope glycoprotein trimer is indispensable for virus cell entry. Conformational masking of V3 within the trimer allows efficient neutralization via V3 only by rare, broadly neutralizing glycan-dependent antibodies targeting the closed prefusion trimer but not by abundant antibodies that access the V3 crown on open trimers after CD4 attachment. Here, we report on a distinct category of V3-specific inhibitors based on designed ankyrin repeat protein (DARPin) technology that reinstitute the CD4-bound state as a key neutralization target with up to >90% breadth. Broadly neutralizing DARPins (bnDs) bound V3 solely on open envelope and recognized a four-turn amphipathic α-helix in the carboxy-terminal half of V3 (amino acids 314-324), which we termed 'αV3C'. The bnD contact surface on αV3C was as conserved as the CD4 binding site. Molecular dynamics and escape mutation analyses underscored the functional relevance of αV3C, highlighting the potential of αV3C-based inhibitors and, more generally, of postattachment inhibition of HIV-1.


Asunto(s)
VIH-1 , Humanos , Aminoácidos , Anticuerpos , Sitios de Unión , Conformación Molecular
17.
NPJ Vaccines ; 8(1): 148, 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37777519

RESUMEN

Understanding the balance between epitope shielding and accessibility on HIV-1 envelope (Env) trimers is essential to guide immunogen selection for broadly neutralizing antibody (bnAb) based vaccines. To investigate the antigenic space of Env immunogens, we created a strategy based on synthetic, high diversity, Designed Ankyrin Repeat Protein (DARPin) libraries. We show that DARPin Antigenicity Analysis (DANA), a purely in vitro screening tool, has the capability to extrapolate relevant information of antigenic properties of Env immunogens. DANA screens of stabilized, soluble Env trimers revealed that stronger trimer stabilization led to the selection of highly mutated DARPins with length variations and framework mutations mirroring observations made for bnAbs. By mimicking heterotypic prime-boost immunization regimens, DANA may be used to select immunogen combinations that favor the selection of trimer-reactive binders. This positions DANA as a versatile strategy for distilling fundamental antigenic features of immunogens, complementary to preclinical immunogenicity testing.

18.
Elife ; 112022 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-36314779

RESUMEN

Neuroscience currently requires the use of antibodies to study synaptic proteins, where antibody binding is used as a correlate to define the presence, plasticity, and regulation of synapses. Gephyrin is an inhibitory synaptic scaffolding protein used to mark GABAergic and glycinergic postsynaptic sites. Despite the importance of gephyrin in modulating inhibitory transmission, its study is currently limited by the tractability of available reagents. Designed Ankyrin Repeat Proteins (DARPins) are a class of synthetic protein binder derived from diverse libraries by in vitro selection and tested by high-throughput screening to produce specific binders. In order to generate a functionally diverse toolset for studying inhibitory synapses, we screened a DARPin library against gephyrin mutants representing both phosphorylated and dephosphorylated states. We validated the robust use of anti-gephyrin DARPin clones for morphological identification of gephyrin clusters in rat neuron culture and mouse brain tissue, discovering previously overlooked clusters. This DARPin-based toolset includes clones with heterogenous gephyrin binding modes that allowed for identification of the most extensive gephyrin interactome to date and defined novel classes of putative interactors, creating a framework for understanding gephyrin's nonsynaptic functions. This study demonstrates anti-gephyrin DARPins as a versatile platform for studying inhibitory synapses in an unprecedented manner.


Asunto(s)
Proteínas de Repetición de Anquirina Diseñadas , Receptores de GABA-A , Ratas , Ratones , Animales , Receptores de GABA-A/metabolismo , Proteínas Portadoras/metabolismo , Sinapsis/fisiología , Biología
19.
Acta Crystallogr D Struct Biol ; 78(Pt 12): 1439-1450, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36458615

RESUMEN

Peptides comprising many hydrophobic amino acids are almost insoluble under physiological buffer conditions, which complicates their structural analysis. To investigate the three-dimensional structure of the hydrophobic leucinostatin derivative ZHAWOC6027, the previously developed host lattice display technology was applied. Two designed ankyrin-repeat proteins (DARPins) recognizing a biotinylated ZHAWOC6027 derivative were selected from a diverse library by ribosome display under aqueous buffer conditions. ZHAWOC6027 was immobilized by means of the DARPin in the host lattice and the structure of the complex was determined by X-ray diffraction. ZHAWOC6027 adopts a distorted α-helical conformation. Comparison with the structures of related compounds that have been determined in organic solvents reveals elevated flexibility of the termini, which might be functionally important.


Asunto(s)
Aminoácidos , Péptidos Catiónicos Antimicrobianos , Ribosomas , Difracción de Rayos X
20.
Cell Rep ; 39(4): 110736, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35476995

RESUMEN

The deacetylase HDAC6 has tandem catalytic domains and a zinc finger domain (ZnF) binding ubiquitin (Ub). While the catalytic domain has an antiviral effect, the ZnF facilitates influenza A virus (IAV) infection and cellular stress responses. By recruiting Ub via the ZnF, HDAC6 promotes the formation of aggresomes and stress granules (SGs), dynamic structures associated with pathologies such as neurodegeneration. IAV subverts the aggresome/HDAC6 pathway to facilitate capsid uncoating during early infection. To target this pathway, we generate designed ankyrin repeat proteins (DARPins) binding the ZnF; one of these prevents interaction with Ub in vitro and in cells. Crystallographic analysis shows that it blocks the ZnF pocket where Ub engages. Conditional expression of this DARPin reversibly impairs infection by IAV and Zika virus; moreover, SGs and aggresomes are downregulated. These results validate the HDAC6 ZnF as an attractive target for drug discovery.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Infección por el Virus Zika , Virus Zika , Histona Desacetilasa 6/metabolismo , Humanos , Virus de la Influenza A/metabolismo , Ubiquitina/metabolismo , Virus Zika/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA