Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(8)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37112020

RESUMEN

To promote the anticorrosion performance of epoxy/zinc (EP/Zn) coating, graphene oxide (GO) was directly incorporated into dual-component paint. Interestingly, it was found that the method of incorporating GO during the fabrication of the composite paints strongly influenced their performance. The samples were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and Raman spectroscopy. The results indicated that GO could be intercalated and modified with the polyamide curing agent while preparing component B of the paint, for which the interlayer spacing of the resulting polyamide modified GO (PGO) increased, and its dispersion in organic solvent was improved. The corrosion resistance of the coatings was studied through potentiodynamic polarization testing, electrochemical impedance spectroscopy (EIS), and immersion testing. Among the three types of as-prepared coatings, i.e., neat EP/Zn coating, GO modified EP/Zn coating (GO/EP/Zn), and PGO-modified EP/Zn coating (PGO/EP/Zn), the order of the corrosion resistance of the coatings was PGO/EP/Zn > GO/EP/Zn > neat EP/Zn. This work demonstrates that although the in situ modification of GO with a curing agent is a simple method, it evidently promotes the shielding effect of the coating and enhances its corrosion resistance.

2.
Polymers (Basel) ; 14(20)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36298028

RESUMEN

The Joule heating behavior of the carbon fiber/epoxy composite (CF/EP) was studied in this work, as well as their influence on the in-situ mechanical properties of the composites and their de-icing performance. The equilibrium temperature of the CF/EP composite could be conveniently adjusted by tuning the current according to the Joule's law. Dynamic mechanical analysis (DMA) tests indicated that the rigidity and stiffness of the fiber-reinforced composite decreased with increasing temperature, and the glass transition temperature (Tg) of the composites was around 104 °C. It was found that the flexural properties of the composites in situ, measured under the electric-current loading, depended on the current value in the range of room temperature to Tg. With increasing the loading current, either the flexural modulus or strength of CF/EP decreased gradually. Such results could be explained that the higher current loading, the larger Joule heat, led to the higher operating temperature of the composite samples and the evolution of their mechanical properties accordingly. Vickers hardness tests indicated that the micro-hardness of the composite decreased with the increase of the operating temperature, which coincided with the evolution of its flexural properties with the electric-current loading. The dependence of the failure behaviors of the CF/EP on the loading current was revealed by the analysis of their fractured surface, where micro-buckling, kinking, fiber pull-out and breakage were involved. A preliminary study indicated that less energy was consumed for the deicing of the same amount of the ice with the CF/EP composite in the case of less electric-current loading. The research on the Joule heating effect of CF/EP and their corresponding mechanical properties benefits the design and direct application of the composites under the electric-current loading.

3.
Polymers (Basel) ; 14(19)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36236021

RESUMEN

In this work, the effect of a hydrothermal environment on mechanical properties and the electrical response behavior of continuous carbon fiber/epoxy (CFRE) composite produced by the pultrusion method were investigated. Due to the relatively uniform distribution of fibers and lack of resin-rich interlayer area, this effect for the pultruded CFRE composite plates is different from the common CFRE laminated composites. Firstly, its hygroscopicity behavior was studied. The absorption ratio increases rapidly to 1.02% within 3 days before reaching a relatively stable state. A three-point bending test, a Vickers hardness test, a thermogravimetric analysis (TGA), and a scanning electron microscope (SEM) analysis were performed to investigate the effect of the hydrothermal environment on the mechanical properties and thermal stability of the CFRE composite. The results indicated that the bending strength decreased quickly within 3 days of hydrothermal treatment, followed by a stable trend, which coincided with that of the hygroscopicity behavior of the composites. The fracture surface analysis indicated that the interfacial properties of carbon fibers in the epoxy matrix were decreased after the hydrothermal treatment, and more carbon fibers could be pulled out from the CFRE in the hygroscopic state. After the hydrothermal treatment, the micro-hardness of the composites was reduced by 25%. TGA confirmed the decreased thermal stability of the CFRE composites after the hydrothermal treatment as well. Moreover, the hydrothermally treated CFRE composites could a reach stable resistance response more readily. The revealing of the effect of moisture and hot environment on the mechanical properties and electrical response behavior of pultruded CFRE composites prepares the ground for their design and practical application in the corresponding environment.

4.
Polymers (Basel) ; 14(21)2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36365483

RESUMEN

In this work, the electric-thermal effect of a carbon-fibre-reinforced epoxy composite (CFRE) panel was studied, as well as the influence of the electric heating treatment on the mechanical properties of the composite. It was observed that the temperature of the composite increased rapidly once the current was loaded, and the equilibrium surface temperature was reached within 2 min. The electric-thermal effect and mechanical properties depended on both the current loading time and the current intensity. At 5A, the flexural modulus and strength of the CFRE increased before decreasing with the current loading time. Under the same treatment time, the flexural strength of the samples treated with 5A was evidently larger than that under the small current, and all the treated samples displayed enhanced flexural strength compared to that of untreated samples. The results depicted that the low-current treatment and short time could improve the interfacial properties between CF/epoxy, along with enhancing the flexural properties of the samples. However, a large amount of the joule heating from the larger current and a more extensive time frame is predicted to cause irreversible defects to the composite, which consequently leads to the reduction in flexural strength of the composite. TGA results indicated decreased thermal stability of the CFRE composite panels after the electric heating treatment was applied.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA