Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomed Eng Online ; 23(1): 53, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858706

RESUMEN

BACKGROUND: Metastasis is one of the main factors leading to the high mortality rate of gastric cancer. The current monitoring methods are not able to accurately monitor gastric cancer metastasis. METHODS: In this paper, we constructed a new type of hollow Mn 3 O 4 nanocomposites, Mn 3 O 4 @HMSN-Cy7.5-FA, which had a size distribution of approximately 100 nm and showed good stability in different liquid environments. The in vitro magnetic resonance imaging (MRI) results show that the nanocomposite has good response effects to the acidic microenvironment of tumors. The acidic environment can significantly enhance the contrast of T 1 -weighted MRI. The cellular uptake and endocytosis results show that the nanocomposite has good targeting capabilities and exhibits good biosafety, both in vivo and in vitro. In a gastric cancer nude mouse orthotopic metastatic tumor model, with bioluminescence imaging's tumor location information, we realized in vivo MRI/fluorescence imaging (FLI) guided precise monitoring of the gastric cancer orthotopic and metastatic tumors with this nanocomposite. RESULTS: This report demonstrates that Mn 3 O 4 @HMSN-Cy7.5-FA nanocomposites is a promising nano-diagnostic platform for the precision diagnosis and therapy of gastric cancer metastasis in the future. CONCLUSIONS: In vivo MRI/FLI imaging results show that the nanocomposites can achieve accurate monitoring of gastric cancer tumors in situ and metastases. BLI's tumor location information further supports the good accuracy of MRI/FLI dual-modality imaging. The above results show that the MHCF NPs can serve as a good nano-diagnostic platform for precise in vivo monitoring of tumor metastasis. This nanocomposite provides more possibilities for the diagnosis and therapy of gastric cancer metastases.


Asunto(s)
Ácido Fólico , Imagen por Resonancia Magnética , Nanocompuestos , Metástasis de la Neoplasia , Neoplasias Gástricas , Neoplasias Gástricas/diagnóstico por imagen , Neoplasias Gástricas/patología , Animales , Nanocompuestos/química , Ratones , Línea Celular Tumoral , Humanos , Ácido Fólico/química , Compuestos de Manganeso/química , Imagen Óptica , Ratones Desnudos , Óxidos
2.
Aging (Albany NY) ; 162024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39103208

RESUMEN

BACKGROUND: Cholangiocarcinoma (CCA) is one of the most deadly cancers in the world. It usually has a bad prognosis and is challenging to identify in its early stages. Long noncoding RNAs (lncRNAs) have been shown in an increasing number of studies to be important in the control of signaling pathways, cell behaviors, and epigenetic modification that contribute to the growth of tumors. The purpose of this work was to examine the relationship between CCA and lncRNA AL161431.1. METHODS: Using TCGA clinical survival data, we evaluated the association between AL161431.1 expression and patient prognosis. Using the program cluster Profiler R, enrichment analysis was performed. Additionally, the association between immune cell infiltration and AL161431.1 expression was evaluated by a review of the TCGA database. Next, to ascertain if AL161431.1 influences tumor growth, migration, and invasion in CCA, functional in vitro assays were conducted. Quantitative real-time polymerase chain reaction (qPCR) was employed to gauge AL161431.1 expression levels in CCA cells. Western blot was used to measure protein levels. RESULTS: In CCA, AL161431.1 was extremely expressed. The patients in the high-risk group had a significantly poorer overall survival (OS) than the patients in the low-risk group. A more thorough look at the TCGA data showed a relationship between high expression levels of AL161431.1 and increased infiltration of T cells, T helper cells, and NK CD56dim cells. Furthermore, AL161431.1 knockdown in CCA cells impeded invasion, migration, and proliferation and also lowered the expression of phosphorylated Smad2/Smad3 to restrain the TGFß/SMAD signaling pathway. CONCLUSIONS: Our results indicate that the lncRNA AL161431.1 activates the TGFß/SMAD signaling pathway to enhance CCA development and metastasis. AL161431.1 could be a novel target for cholangiocarcinoma treatment or a diagnostic marker.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA